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Abstract: The liver is targeted by several human pathogenic RNA viruses for viral replication
and dissemination; despite this, the extent of innate immune sensing of RNA viruses by human
hepatocytes is insufficiently understood to date. In particular, for highly human tropic viruses such
as hepatitis C virus, cell culture models are needed to study immune sensing. However, several
human hepatoma cell lines have impaired RNA sensing pathways and fail to mimic innate immune
responses in the human liver. Here we compare the RNA sensing properties of six human hepatoma
cell lines, namely Huh-6, Huh-7, HepG2, HepG2-HFL, Hep3B, and HepaRG, with primary human
hepatocytes. We show that primary liver cells sense RNA through retinoic acid-inducible gene I
(RIG-I) like receptor (RLR) and Toll-like receptor 3 (TLR3) pathways. Of the tested cell lines, Hep3B
cells most closely mimicked the RLR and TLR3 mediated sensing in primary hepatocytes. This
was shown by the expression of RLRs and TLR3 as well as the expression and release of bioactive
interferon in primary hepatocytes and Hep3B cells. Our work shows that Hep3B cells partially mimic
RNA sensing in primary hepatocytes and thus can serve as in vitro model to study innate immunity
to RNA viruses in hepatocytes.

Keywords: hepatoma cells; primary hepatocytes; liver; RNA virus; innate immunity; RIG-I; TLR3;
interferon; arenavirus; coronavirus

1. Introduction

RNA viruses from diverse families infect the liver with different outcomes. Some
viruses, such as hepatitis C virus (HCV), persistently infect the liver, while others, such
as hepatitis A virus, cause acute infections (reviewed in [1]). Beyond such classical hep-
atitis viruses, many less tissue-specific viruses, including arenaviruses and coronaviruses,
replicate in the liver and this contributes to further dissemination and disease develop-
ment [2–4]. As in other organs, the host innate immune system can limit hepatic RNA
virus infection by sensing the foreign RNA and establishing an antiviral state in infected
and bystander cells [5,6]. This antiviral host response can, in turn, be antagonized by
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some viruses such as HCV [7,8]. Unless antagonized, innate sensing leads to recruitment
of antigen-presenting cells to the site of infection and to activation of adaptive immune
responses. Thus, it is critical to understand the innate response of hepatocytes to RNA
virus infection.

Viral RNA is sensed by either retinoic acid-inducible gene 1 (RIG-I)-like receptors
(RLR) or Toll-like receptors (TLR). While RIG-I-like receptors sense dsRNA in the cyto-
plasm [9,10], TLR3 and TLR7/8 sense dsRNA and ssRNA [11–13], respectively, in en-
dosomal compartments. TLR8 is mainly expressed by monocytes and myeloid-derived
dendritic cells [13]. RLR, TLR3, and TLR7, in contrast, are widely expressed in different
tissues and cells. Their activation leads to a signaling cascade culminating in the activation
of the transcription factors IRF3 and IRF7, which drives the expression of type I and type III
interferons (IFN-I, IFN-III). IFN-I, in turn, activates the interferon alpha receptor (IFNAR)
and transcription of interferon stimulated genes (ISG) in a paracrine and autocrine manner.
ISGs subsequently exert antiviral functions to control infection [14].

Interestingly, all but one of the known hepatitis viruses, i.e., HAV, HBV, HCV, and
HDV are highly adapted to the human host, which makes it inherently difficult to study
the host response to infection in small animal models [15–17]. Mouse models for these
viruses either require blunting of the INF-I response to establish an infection as shown
for HAV [18], or require tedious xenotransplant models, in which immunocompromised
mice are transplanted with human liver cells as used for HBV, its satellite virus HDV,
and HCV [17,19–22]. Notably, these mouse models have the disadvantage that either
all murine cells lack the antiviral IFNAR response or that important branches of the
immune response are lacking, i.e., B, T, and NK cells. Moreover, transplanted human
hepatocytes release human cytokines and chemokines upon virus infection and these are
only partially compatible with receptors on murine immune cells. In the HCV field, the
partial adaptation of the virus to the murine host [23,24] and the development of surrogate
systems for infection, such as rodent hepacivirus infections [25–27], hold the promise of
fully immunocompetent mouse models for HCV. For the remaining hepatitis viruses, such
a goal remains distant to date. Therefore in vitro systems to study the innate immune
response to human hepatitis viruses are still needed.

The gold standard of in vitro systems represents primary human hepatocytes (PHH).
However, limited availability of human tissue material, donor to donor variability, and
rapid dedifferentiation of PHH in vitro hamper the routine use of PHH in the labora-
tory [28]. Currently, the most promising in vitro system are stem cell-derived hepato-
cytes [29]. However, the use of embryonic stem cells is ethically banned in several coun-
tries and differentiation media—also for induced pluripotent stem cell (iPS) culture and
differentiation—is cost-intensive. Thus, PHH and iPS systems are not readily available
to many laboratories. Hepatoma cell lines can be considered a cost-saving alternative to
study host responses to virus infection.

A major caveat of using human hepatoma cell lines to study innate immunity is
that several hepatoma cell lines lack functional RNA sensing pathways. In particular,
the HCV susceptible cell clone Huh-7.5 lacks a functional RIG-I pathway [30]. Similarly,
TLR3 pathways seem poorly functional in hepatoma cells, having prompted researchers to
ectopically express TLR3 in these cells [31]. Alternatively, HepG2 cells were engineered
to express CD81 and miR122, two essential host factors for HCV [32]. Moreover, CD81
is an entry factor for the liver stage of the malaria parasite Plasmodium spp. Thus, the
cell line is suited to study HCV and Plasmodium infections and potentially co-infections
with both hepatotropic pathogens. How the IFN responses mounted in HepG2-HFL cells
upon infection compare to PHH responses is currently unclear. Some studies evaluated
the response to synthetic agonists of RNA sensing PRRs in selected hepatoma cells [33–36].
However, a broad review of RNA sensing capacities of human hepatoma cells lines in
comparison to PHH is currently lacking.

In this study, we set out to compare the expression and function of RNA sensors and
adaptors in six human hepatoma cell lines versus primary hepatocytes from four donors.
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Specifically, we tested Huh-6, Huh-7, Hep3B, HepG2, HepG2-HFL, the high fidelity line
developed for HCV research [32], and HepaRG cells, which are commonly used in HBV
research [34]. As a reference of a cell line derived from a non-tolerogenic organ, we included
the airway epithelial cell line A549.

In this study, we observed marked differences in the expression levels of RNA sensors
and adaptor molecules in hepatoma cell lines, which was reflected by their RNA sensing
capacity. Hep3B cells showed sensing capacities comparable to PHH. Responses to syn-
thetic RNA agonists were confirmed by infection with the RNA viruses human coronavirus
229E (CoV229E) and the arenavirus Tacaribe (TCRV). Taken together, our work suggests
that Hep3B cells can, to some extent, mimic PHH innate immunity to RNA virus infection.
This is significant as cell lines represent affordable and reproducible in vitro systems, for
instance, for antiviral or anti-inflammatory drug screening.

2. Materials and Methods
2.1. Cell Culture

The hepatoma cell lines Huh-6 [37], Huh-7 [38], HepG2 (ATCC HB-8065), HepG2-
HFL [39], Hep3B (ATCC HB-8064), and Vero cells (ATCC CCL-81) were maintained in
Dulbecco’s modified Eagle´s medium (DMEM, high glucose, Gibco, Gaithersburg, MD,
USA) supplemented with 10% fetal bovine serum (Capricorn Scientific, Ebsdorfergrund,
Germany), 2 mM L-glutamine (Gibco), and 1% non-essential amino acids (Gibco). HepG2-
HFL cells were cultivated in the presence of 5 µg/mL blasticidin (Gibco) to positively
select for CD81 and miR-122 expression. HepG2-HFL cells were kindly provided by
Matthew Evans, Icahn School of Medicine at Mount Sinai, USA. For the maintenance of their
morphology and polarization, HepG2 and HepG2-HFL cells were cultured in previously
collagen R (Serva, Heidelber, Germany)-coated cell culture dishes. The Hepa-RG cell
line [40] was cultured in Williams’s E medium (Gibco), supplemented with 10% fetal bovine
serum, 2 mM L-glutamine, 5 µg/mL insulin (Life Technologies, Carlsbad, CA, USA), and
50 µM hydrocortisone hemisuccinate (Santa Cruz, Dallas, TX, USA). For the lung epithelial
cell line A549 (ATCC CCL-185) F12K medium (Gibco) supplemented with 10% fetal bovine
serum and 2 mM L-glutamine was used. The IFN reporter cell line HL116 [41] was grown
in DMEM supplemented with 10% fetal bovine serum, 2 mM L-glutamine, and HAT
(20 µg/mL hypoxanthine, 0.2 µg/mL aminopterin, 20 µg/mL thymidine, Gibco). HL116
was a kind gift from Sandra Pellegrini (Institut Pasteur, Paris, France). For the generation
of Hep3B miR-122 subgenomic replicon (SGR) cells, Hep3B cells were first lentiviral
transduced with a lentiviral vector encoding for miR-122 and positively selected with
puromycin (2 µg/mL, Sigma-Aldrich, St. Louis, MO, USA) as described earlier [42]. Then,
subgenomic RNA, harboring a luciferase reporter gene (Luc-NS3-3′/JFH1), was in vitro
transcribed and transfected into the Hep3B miR-122 via electroporation and cultivated in
the presence of Geneticin (750 ug/mL, Gibco). All cell lines were incubated at 37 ◦C and
5% CO2.

PHH were obtained from the Department of General, Visceral, and Transplant Surgery
at Hannover Medical School. PHH from different donors were isolated from explanted
livers and plated directly on collagen-coated plates as previously described [43] and
maintained in HCM media (Lonza, Basel, Switzerland). PHH were used immediately
after isolation for the respective experiments. Clinical characteristics of the donors are
summarized in Table S1.

2.2. PRR Agonist Treatment

To assess the efficiency of TLR3, TLR7/8, TLR4, RIG-I/MDA5, and IFNAR signaling in
the different cell lines, cells were pre-treated with IFN-α (100 IU/mL, Schering Corporation)
for 24 h or left untreated, followed by stimulation with PRR agonists. The TLR7/8 agonist
R848 (Invivogen, Toulouse, France) and the TLR4 agonist LPS (Invivogen) were used at
a final concentration of 1 µg/mL or 0.1 µg/mL, respectively, and added directly into the
medium. The TLR3 agonist PolyI:C (Invivogen) was added directly to the medium at a
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concentration of 1 µg/mL or complexed with Lipofectamine 2000 (Thermo Fisher Scientific,
Waltham, MA, USA) for transfection for the stimulation of the intracellular PRRs RIG-I and
MDA5. Cells were incubated for 6 h or 24 h at 37 ◦C and assayed for mRNA induction,
protein expression, or the supernatants were assayed for IFN-I release.

2.3. qRT-PCR

Total RNA was isolated from cell lines using the NucleoSpinRNA kit (Macherey Nagel,
Düren, Germany) according to the manufacturer’s recommendations. Total RNA concen-
tration was quantified using a NanoDrop spectrophotometer and stored at −80 ◦C until
further use. Next, 500 ng of the extracted RNA was reverse transcribed using PrimeScript
RT Master Mix (Takara, Saint-Germain-en-Laye, France) according to the manufacturer’s
recommendations. The transcribed cDNA was then used to determine the upregulation of
PRRs in the respective cell lines by qPCR using SYBR Premix Ex Taq II (Takara). Primers
for the respective genes were selected from the Harvard Primer Bank (Table S2). For the
reaction, 25 ng of cDNA was used as a template and added to 1 × SYBR Premix Ex Taq II
together with each respective primer pair at a final concentration of 0.6µM. The qRT-PCR
cycling protocol was set to 45 cycles (10 s at 94 ◦C, 10 s at 60 ◦C, and 10 s at 72 ◦C), followed
by a melting curve analysis. Transcript levels were calculated by relative quantification
using the ∆∆Ct method with GapDH as an internal reference and plotted as 2−∆Ct. The
qRT-PCR was carried out with the Light Cycler R480 (Roche, Basel, Switzerland).

2.4. Immunoblot Analysis

Trypsinized cells were washed with 1 × PBS (Gibco), pelleted, and resuspended
in 200 µL of lysis buffer (1% Nonidet P40, 10% glycerol, 1 mM CaCl2 in Hepes/NaCl
supplemented with protease inhibitor mix (Sigma #P8340, dilution 1:100). Nuclear debris
was removed by centrifugation of the lysate at 12,000× g for 10 min at 4 ◦C. The total
protein amount was determined by Bradford assay using RotiQuant Bradford Dye 5 ×
(Roth, Karlsruhe, Germany). From each sample 50 µg of protein were resuspended in
5 × SDS sample buffer (1.5 M Tris (pH 6.8), 10% SDS, 8% glycerol, 1% β-mercaptoethanol,
bromophenol blue). Samples were loaded onto a 12% polyacrylamide-SDS maxi/gel
and electrophoresis was carried out overnight at 40 V. Proteins were transferred to a
polyinylidenfluoride membrane using the semi-dry Western blot technique. After the
transfer, the membrane was blocked in blocking buffer (PBS, 0.5% Tween20 and 5% milk) for
1 h at RT. After blocking, the membrane was incubated overnight 4 ◦C with the respective
antibodies to detect the following proteins: MAVS (mouse α-MAVS clone sc166583, santa
cruz 1:100), MDA5 (rabbit α-MDA5 clone D74E4, cell signaling, Danvers, MA, USA, 1:500),
RIG-I (rabbit α-RIG-I clone D14G6, cell signaling 1:1000) and TRIF (rabbit α-TRIF clone
ab13810, Abcam, Cambridge, UK, 1:500) diluted in 1 × PBS with 0.5% Tween-20 and 1%
milk. After the incubation, unbound antibodies were washed off and the membrane was
incubated with an HRP-conjugated secondary antibody (α-mouse IgG HRP and α-rabbit
IgG HRP, Sigma Aldrich 1:20,000) for 1 h at RT. In addition, the membranes were stained
against actin (mouse α-actin/HRP conjugate, santa cruz 1:50,000), as a loading control. The
membrane was again washed and the proteins of interest were detected using the ECL
Prime Western blotting detection system (GE Healthcare, Chalfont St Giles, UK) according
to the manufacturer’s instruction. The proteins were visualized using the ChemoStar
Professional Imager System (Intas, Göttingen, Germany). Signal intensity was determined
using ImageJ software.

2.5. Flow Cytometry Analysis

To measure the surface and intracellular expression of TLR3, TLR7, and TLR8, cells
were analyzed by flow cytometry. Therefore, cell suspensions were fixated using 0.5% of
PFA in PBS with 1% FCS for 10 min at RT. Afterward, cells were permeabilized with 0.1%
Saponin in PBS with 1% FCS for 20 min on ice. Subsequently, cells were stained on ice for
30 min using either primary antibodies against TLR3 (mouse α-TLR3, clone 40C1285.6,
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novusbio, Wiesbaden Nordenstadt, Germany, 2 µg/1 × 106 cells), TLR7 (rabbit α-TLR7,
clone ALX-210-874 enzo, Lörrach, Germany, 2 µg/1 × 106 cells) or TLR8 (mouse α-TLR8,
clone 44C143, enzo 2 µg/1 × 106 cells), or an isotype control. Cells were washed with
PBS with 1% FCS and stained subsequently with secondary antibodies (α-rabbit-alexa 488,
α-mouse-alexa 647) diluted in permeabilization buffer for 30 min on ice in the dark. Cells
were washed two times to remove unbound antibodies and finally resuspended in PBS
with 1% FCS. Samples were then measured with the C6 Flow Cytometer, BD Accuri (BD
Bioscience, Franklin Lakes, NJ, USA) and the analysis was carried out using FlowJo 10
software (Tree Star, Ashland, OR, USA).

2.6. Coronavirus Infection

Cells were infected with human CoV-229E-RLuc (kind gift of Volker Thiel) at a MOI 0.1
and cells and supernatants were harvested 24 h later. The cells were washed with 1 × PBS
and lysed with 35 µL PBS with 0.5% Triton-X and frozen at −80 ◦C to ensure complete
lysis. Renilla luciferase activity was measured by adding 20 µL of the lysates with 60 µL of
luciferase substrate solution (Coelenterazine, Stock: 0.42 mg/mL in methanol, working
solution 1:1000 dilution in H20) in 96-well white plates (Berthold). Each well was measured
for 0.1 sec in a Microplate reader LB960 CentroX3 (Berthold technologies, Bad Wildbad,
Germany) using MicroWin 2000 Software (Mikrotek Laborsysteme, Overath, Germany).
The supernatants were UV inactivated and used for IFN quantification as described below.

2.7. Arenavirus Infection

Cells were infected with either Tacaribe virus (TCRV) or the vaccine strain of Junin
virus (JUNV) Candid#1 at a MOI of 0.01. Supernatant and cell lysates were harvested
daily. Supernatants were titrated on Vero cells, followed by immunostaining against the
nucleoprotein (MA03-BE06, BEI Resources 1:1500; secondary antibody α-mouse-alexa 488,
Invitrogen, 1:500) to determine focus forming units (FFUs). Cell lysates were used for RNA
extraction (see above).

2.8. Quantification of Bioactive IFN

To quantify the release of bioreactive IFN into the cell culture supernatant, we used
the luciferase reporter cell line HL116. This cell line expresses a firefly luciferase gene
under the control of the IFN-inducible 6–16 promoter [41]. HL116 cells were incubated with
cell culture supernatants from previously stimulated cells for 8 h. Medium was removed,
cells were washed with PBS and lysed with 40 µL of Culture Lysis Reagent (Promega).
We transferred 10 µL of each lysate into a 96-well white plate. 40 µL/well of substrate
(Luciferase Assay System, Promega, Madison, WI, USA ) was added, and each well was
measured for 0.1 sec using the Microplate reader LB960 CentroX3 (Berthold technologies)
and the MicroWin 2000 Software (Mikrotek Laborsysteme). The amount of IFN-I was
calculated based on a recombinant IFN-I standard curve.

2.9. Statistics

Statistical analyses were performed using GraphPad Prism software version 8 (San
Diego, CA, USA). Specifically, one or two-way analysis of variance (ANOVA) testing
was followed by Dunnett, Sidak’s, or Turkey’s multiple comparison test as stated in the
Figure legends.

3. Results
3.1. Hep3B and HepG2 Cells Express Similar Levels of RNA Sensors as Primary
Human Hepatocytes

Based on the observation that some human hepatoma cell lines can have dysfunctional
RNA sensing pathways [36], we compared six hepatoma cell lines, the lung epithelial cell
line A549 and four different PHH donors with regard to the basal expression level of RNA
sensors. Transcript levels of the cytosolic dsRNA sensor retinoic acid-inducible gene I
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(RIG-I) showed inter-individual differences of up to two orders of magnitude in the four
analyzed primary human hepatocyte cultures (Figure 1a).
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Figure 1. Transcript levels and protein levels of RNA sensors and adaptors in PHH and hepatoma cells. (a) RNA expression
of RIG-I, MAVS, and MDA5 in indicated cell lines and in PHH derived from four different donors. RNA was extracted
from whole-cell lysates, mRNA expression measured by qRT-PCR, normalized to GapDH mRNA expression, and plotted as
2−∆Ct values. Results are shown as mean ± SD of three independent experiments (with technical duplicates) and in the
case of the PHH data were derived from one single experiment (n = 1, with technical duplicates). (b,d,f) Immunoblot for
MAVS, RIG-I, and MDA5 in lysates from indicated cell lines. For detection of RIG-I and MDA5, cells were left untreated or
pretreated with IFN-α (100 IU/mL). β-actin was used as a loading control. Results are representatives of three independent
experiments. (c,e,g) Expression levels of the indicated proteins were quantified as immunoblot band density and shown
relative to the β-actin loading control as mean ± SD of three independent experiments. One-way ANOVA, followed by
Dunnett’s multiple comparison test *** p < 0.001, **** p < 0.0001.
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RIG-I transcript levels in HepG2, HepG2-HFL, Hep3B, and HepaRG were in the range
of the primary human hepatocyte transcript levels. In contrast, A549, Huh-6, and Huh-7
cells showed one order of magnitude lower RIG-I mRNA levels than PHH. A similar trend
was observed for the dsRNA sensor melanoma differentiation-associated protein 5 (MDA5)
and the RIG-I and MDA5 adaptor mitochondrial antiviral signaling molecule (MAVS) with
HepG2, Hep3B, and HepaRG expressing similar transcript levels as primary hepatocytes
(Figure 1a). The HepG2 subclone HepG2-HFL, which expresses the hepatitis C virus (HCV)
host factors microRNA-122 and CD81, showed slightly reduced MDA5 levels as compared
to its parental cell line. Protein expression levels of MDA5 and MAVS largely reflected the
respective transcript levels with the exception of low protein levels of MDA5 and MAVS
in HepaRG cells (Figure 1b). As basal protein levels of MDA5 and RIG-I were close to
the detection limit, we stimulated all cell lines with type I interferon (IFN-I) alpha 2b at
100 IU/mL for 24 h. As expected MDA5 and RIG-I protein levels were markedly increased
in all cell lines. Only Huh-7 cells showed low RIG-I protein expression even after IFN-I
induction (Figure 1b). Taken together, HepG2 and Hep3B cells expressed cytosolic RNA
sensors at levels comparable to PHH.

Next, we addressed expression levels of the endosomal RNA sensors TLR3, TLR7,
and TLR8 as well as the TLR3 adaptor TIR domain-containing adaptor protein 1 (TICAM1
or TRIF) in hepatoma cell lines and primary hepatocytes. TLR3, TLR7, TLR8, and TRIF
transcripts were low in most cell lines (Figure 2a). TLR7 and TLR8 levels were markedly
higher in PHH as compared to the tested cell lines. TLR3, TLR7, and TLR8 protein were
undetectable in most hepatoma cell lines and A549 epithelial cells as measured by surface
antibody staining. Only Hep3B and HepaRG cells displayed low levels of TLR3 and
TLR8 (Figure 2b–g). TRIF expression on protein level was comparably low in all cell lines
(Figure 2h). No inter-individual differences in TRIF, TLR3, TLR7, and TLR8 transcript
levels were observed in PHH from four independent donors.

Finally, we compared transcript levels of interferon-alpha receptor (IFNAR) and
showed that primary hepatocyte cultures from the four donors had similar expression
levels, which were one order of magnitude higher than IFNAR levels in the tested cell lines
(Figure 3).

3.2. Liver Cells Primarily Sense RNA by Cytosolic RIG-like Receptors

Expression of pattern recognition receptors does not necessarily correlate with their
function as shown by the dysfunctional RIG-I pathway in the Huh-7 subclone Huh-7.5 [30].
Hence, we stimulated the RNA sensing pattern recognition receptors using synthetic lig-
ands. To mimic uninfected and infected tissue, we left cells untreated or pre-stimulated
cells with IFN-I for 24 h, respectively. Next, we stimulated the cells with 1 µg/mL extra-
cellular poly I:C, an agonist of TLR3, and measured mRNA expression levels of IFN-β
and IFN stimulated genes (ISG). Neither the PHH nor the tested epithelial and hepatoma
cell lines upregulated IFN-β mRNA expression in a TLR3 mediated manner. Only when
primed with IFN-I three out of four PHH donors show up to two log increases in INF-β
transcript levels upon TLR3 stimulation (Figure 4a). In contrast, IFN pretreatment of the
cell lines did not sensitize them to the TLR3 ligand (Figure 4a).
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independent experiments. One-way ANOVA, followed by Dunnett’s multiple comparison test * p < 0.05, **** p < 0.0001.
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μg/mL) (b) or transfected poly(I:C) (2.25 μg/well) (c) as RIG-I agonist. Transcript levels were measured by qRT-PCR 6 h 
after treatment for cell lines and 24 h after treatment for PHH, as described in Figure 1a. Data for the four different PHH 
donors are shown as mean ± SEM of single experiments performed in technical duplicates for each donor. For the cell 
lines, mean ± SEM of one experiment (performed in technical duplicates) is shown. Two-way ANOVA, followed by Dun-
nett`s multiple comparison test, **** p < 0.0001. Hepatoma cell lines were tested against PHH and only significant compar-
isons are indicated. 

The observed induction of IFN-β expression was accompanied by induction of ISG15, 
MxA, and RIG-I at 24 h post-stimulation with extracellular poly I:C in PHH. However, the 
tested cell lines showed little to no ISG induction upon TLR3 stimulation (Supplementary 
Figure S1). Upon IFN priming and TLR3 stimulation, slight induction of ISG15 was ob-
served in A549 cells as well as slight MxA induction in A549, HepG2, HepG2-HFL, and 
HepaRG cells (Supplementary Figure S1). The TLR3 mediated ISG induction in primary 
cells was even higher when cells had been pre-stimulated with IFN-I (Supplementary Fig-
ure S1). This confirms that primary liver cells have a functional TLR3 pathway, which is 
not fully recapitulated by hepatoma cell lines [35,36]. 

To test the activation of endosomal ssRNA sensors TLR7 and TLR8, we used the syn-
thetic agonist R848. We failed to detect INF-β transcript induction in cell lines or primary 
cells upon stimulation with 1 ug/mL R848 for 6 h or 24 h, respectively (Figure 4b). The 
weak induction of ISG transcripts in primary hepatocytes and cell lines (Supplementary 

Figure 4. Induction of IFN-β expression after stimulation with indicated agonists of RNA sensors in PHH and hepatoma cells
with and without IFN-α pre-stimulation. IFN-β RNA expression in PHHs and hepatoma cell lines mock-treated or pre-treated
with IFN-α (100 IU/mL) followed by addition of TLR3 agonist poly(I:C) (1µg/mL) (a), TLR7/8 agonist R848 (1 µg/mL) (b) or
transfected poly(I:C) (2.25 µg/well) (c) as RIG-I agonist. Transcript levels were measured by qRT-PCR 6 h after treatment for
cell lines and 24 h after treatment for PHH, as described in Figure 1a. Data for the four different PHH donors are shown as
mean ± SEM of single experiments performed in technical duplicates for each donor. For the cell lines, mean ± SEM of one
experiment (performed in technical duplicates) is shown. Two-way ANOVA, followed by Dunnett’s multiple comparison test,
**** p < 0.0001. Hepatoma cell lines were tested against PHH and only significant comparisons are indicated.
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The observed induction of IFN-β expression was accompanied by induction of ISG15,
MxA, and RIG-I at 24 h post-stimulation with extracellular poly I:C in PHH. However, the
tested cell lines showed little to no ISG induction upon TLR3 stimulation (Supplementary
Figure S1). Upon IFN priming and TLR3 stimulation, slight induction of ISG15 was
observed in A549 cells as well as slight MxA induction in A549, HepG2, HepG2-HFL, and
HepaRG cells (Supplementary Figure S1). The TLR3 mediated ISG induction in primary
cells was even higher when cells had been pre-stimulated with IFN-I (Supplementary
Figure S1). This confirms that primary liver cells have a functional TLR3 pathway, which is
not fully recapitulated by hepatoma cell lines [35,36].

To test the activation of endosomal ssRNA sensors TLR7 and TLR8, we used the synthetic
agonist R848. We failed to detect INF-β transcript induction in cell lines or primary cells upon
stimulation with 1 ug/mL R848 for 6 h or 24 h, respectively (Figure 4b). The weak induction
of ISG transcripts in primary hepatocytes and cell lines (Supplementary Figure S2) confirmed
the refractoriness to ssRNA and the notion that TLR7/8 pathways are mainly active in
professional antigen-presenting cells [13].

Finally, we mimicked RLR activation by transfecting the agonist poly I:C into the
cytoplasm. PHH robustly responded to RLR stimulation with an up to 100-fold in-
duction of IFN-I and ISG induction, independently of previous IFN pre-stimulation
(Figure 4c; Supplementary Figure S3). As expected, A549 cells showed a similarly ro-
bust induction of IFN-I early after transfection (Figure 4c) and ISGs at a later time point
(Supplementary Figure S3). Huh-6 and Huh-7 were largely refractory to cytosolic dsRNA,
and only upon IFN-I priming was a slight induction of IFN-β and ISGs was observed
(Figure 4c). This is in line with the low basal expression levels of RIG-I and MDA in these
cell lines, which can get induced upon IFN-I priming (Figure 1a,b). The other hepatoma cell
lines HepG2, HepG2-HFL, Hep3B, and HepaRG showed an order of magnitude stronger
INF-β and ISG responses than Huh-7 cells. Importantly, PHH responses were in a similar
range as those in HepG2, HepG2-HFL, Hep3B, and HepaRG cells (Figure 4c), indicating
that these cell lines are suitable in vitro models to study innate immunity to cytosolic
dsRNA. Interestingly, IFN-I priming did not enhance RIG-I/MDA5 responses in primary
liver cells or HepG2, HepG2-HFL, Hep3B, and HepaRG cells. In contrast, responses in
A549 were boosted upon IFN-I priming. Collectively, HepG2, HepG2-HFL, Hep3B, and
HepaRG cells best mimicked primary hepatocyte responses to cytosolic RNA stimulation.

3.3. A Subset of Hepatoma Cells and Primary Hepatocytes Release Bioactive IFN upon Cytosolic
RNA Sensing

IFN-β and ISG transcript induction is an indicator for a successfully mounted innate
antiviral response. However, the release of bioactive IFN dictates the actual level of the
antiviral response. We, therefore, measured bioactive IFN in supernatants of cell lines
and primary cells at 24 h post-stimulation with ssRNA and dsRNA agonists. Specifically,
supernatants were transferred to HL116 reporter cells, which express luciferase under
the control of an IFN-I and IFN-III inducible promoter [41]. The bioactivity assay results
largely reflected the observations on the transcript level. PHH released bioactive IFN-I upon
TLR3 and RIG-I/MDA5 agonist stimulation, but not upon TLR7/8 agonist stimulation
(Figure 5a–c). The effects were independent of previous IFN priming of the primary cells.
In the cell lines, only Hep3B cells released IFN upon TLR3 stimulation and only when
primed with IFN (Figure 5a). These responses were in the range of PHH responses. We did
not observe a response to the TLR7/8 agonist R484; but all cells except Huh-6 and Huh-7
showed robust RIG-I responses (Figure 5b,c). Hep3B cells showed the highest IFN-I release
upon RIG-I/MDA stimulation, even higher than A549 cells and PHH. This was again
independent of IFN-I priming. In summary, Hep3B hepatoma cell lines showed bioactive
IFN release comparable to primary hepatocytes after dsRNA stimulation, confirming them
as suitable in vitro models to study hepatocyte immunity to cytoplasmic dsRNA.
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Figure 5. IFN-I secretion from PHH and hepatoma cell lines after stimulation with indicated RNA sensor agonists with 
and without IFN-α pre-stimulation (100 IU/mL) and further stimulated with TLR3 agonist poly(I:C) (1 μg/mL) (a), TLR7/8 
agonist R848 (1 μg/mL), (b) or transfected poly(I:C) (2.25 μg/well), (c) as RIG-I agonist. Released IFN was measured by 
transferring cell cultures supernatants of stimulated cells to an IFN sensitive luciferase reporter cell line. U/mL was calcu-
lated using a recombinant IFN-I standard curve. Data for the four different PHH donors are shown as mean ±SEM of a 
single experiment performed in technical duplicates and for the cell lines as mean ± SEM of one representative of three 
independent experiments (performed in technical triplicates). Two-way ANOVA, followed by Dunnett’s multiple com-
parison test * p < 0.05, ** p < 0.01, **** p < 0.0001. n.d. = not detected. 

3.4. Sensing of RNA Viruses in Hepatoma Cells 
To analyze innate RNA sensing in an infection setting, we infected primary hepato-

cytes and all cell lines with the common cold human coronavirus 229E (CoV229E). Coro-
naviruses are positive-strand ssRNA viruses replicating in the cytoplasm and known to 
induce IFN [44]. PHH and hepatoma cell lines showed comparable susceptibility to 
CoV229E, while A549 cells were least susceptible as measured by the activity of a virus-
encoded Renilla luciferase (Figure 6a). 

Figure 5. IFN-I secretion from PHH and hepatoma cell lines after stimulation with indicated RNA sensor agonists with and
without IFN-α pre-stimulation (100 IU/mL) and further stimulated with TLR3 agonist poly(I:C) (1 µg/mL) (a), TLR7/8
agonist R848 (1 µg/mL), (b) or transfected poly(I:C) (2.25 µg/well), (c) as RIG-I agonist. Released IFN was measured
by transferring cell cultures supernatants of stimulated cells to an IFN sensitive luciferase reporter cell line. U/mL was
calculated using a recombinant IFN-I standard curve. Data for the four different PHH donors are shown as mean ±SEM
of a single experiment performed in technical duplicates and for the cell lines as mean ± SEM of one representative of
three independent experiments (performed in technical triplicates). Two-way ANOVA, followed by Dunnett’s multiple
comparison test * p < 0.05, ** p < 0.01, **** p < 0.0001. n.d. = not detected.

3.4. Sensing of RNA Viruses in Hepatoma Cells

To analyze innate RNA sensing in an infection setting, we infected primary hep-
atocytes and all cell lines with the common cold human coronavirus 229E (CoV229E).
Coronaviruses are positive-strand ssRNA viruses replicating in the cytoplasm and known
to induce IFN [44]. PHH and hepatoma cell lines showed comparable susceptibility to
CoV229E, while A549 cells were least susceptible as measured by the activity of a virus-
encoded Renilla luciferase (Figure 6a).
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Figure 6. Susceptibility and IFN response of PHH and hepatoma cells to CoV229E. (a) CoV infection 
in PHH and hepatoma cell lines. Cells were mock-treated or pretreated with IFN-α for 24 h and 
subsequently infected with CoV Renilla reporter virus (MOI 0.1) for 24 h. Infection with the reporter 
virus was determined 24 h post-infection by measuring luciferase activity. (b) IFN-I secretion from 
hepatoma cell lines and PHH (c) mock-treated or pretreated with IFN-α for 24 h followed by CoV 
infection. Released IFN was measured as described in Figure 5. Data for the five different PHH 
donors are shown as mean ±SD of a single experiment performed in technical duplicates and for the 
cell lines as mean ± SD of three independent experiments (performed in technical triplicates). Two-
way ANOVA, followed by Dunnett’s multiple comparison test * p < 0.05, ** p < 0.01, **** p < 0.0001. 

Among the hepatoma cell lines, Huh-7 and Hep3B cells showed the highest suscep-
tibility levels comparable to primary hepatocytes (Figure 6a). IFN-I priming reduced coro-
navirus infection levels slightly with a maximum reduction of one log in primary hepato-
cytes. We next measured the release of bioactive IFN from CoV229E infected cells. PHH 
from all donors released IFN upon CoV229E infection (Figure 6c). Most tested cell lines, 
in contrast, were unable to sense CoV229E and produce IFN. Only A549 and Hep3B cells 
released bioactive IFN and IFN priming of these cell lines increased CoV229E sensing ca-
pacities two- to threefold (Figure 6b). Taken together despite overall low IFN induction in 
response to coronavirus infection, Hep3B cells seemed to mimic the CoV229E induced 
IFN release of primary hepatocytes most reliably. 

Figure 6. Susceptibility and IFN response of PHH and hepatoma cells to CoV229E. (a) CoV infection
in PHH and hepatoma cell lines. Cells were mock-treated or pretreated with IFN-α for 24 h and
subsequently infected with CoV Renilla reporter virus (MOI 0.1) for 24 h. Infection with the reporter
virus was determined 24 h post-infection by measuring luciferase activity. (b) IFN-I secretion from
hepatoma cell lines and PHH (c) mock-treated or pretreated with IFN-α for 24 h followed by CoV
infection. Released IFN was measured as described in Figure 5. Data for the five different PHH donors
are shown as mean ±SD of a single experiment performed in technical duplicates and for the cell
lines as mean ± SD of three independent experiments (performed in technical triplicates). Two-way
ANOVA, followed by Dunnett’s multiple comparison test * p < 0.05, ** p < 0.01, **** p < 0.0001.

Among the hepatoma cell lines, Huh-7 and Hep3B cells showed the highest suscep-
tibility levels comparable to primary hepatocytes (Figure 6a). IFN-I priming reduced
coronavirus infection levels slightly with a maximum reduction of one log in primary
hepatocytes. We next measured the release of bioactive IFN from CoV229E infected cells.
PHH from all donors released IFN upon CoV229E infection (Figure 6c). Most tested cell
lines, in contrast, were unable to sense CoV229E and produce IFN. Only A549 and Hep3B
cells released bioactive IFN and IFN priming of these cell lines increased CoV229E sensing
capacities two- to threefold (Figure 6b). Taken together despite overall low IFN induction
in response to coronavirus infection, Hep3B cells seemed to mimic the CoV229E induced
IFN release of primary hepatocytes most reliably.
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To further test the ability of Hep3B to serve as a cellular model for RNA virus infection,
we used Tacaribe virus (TCRV) a member of New World (NW) Arenaviridae family. Besides
Hep3B cells, we infected A549 cells as a control, as TCRV induces a strong innate immune
response in these cells [45,46]. TACV titer in culture supernatants increased over time in
both cell lines (Figure 7a) but was one order of magnitude higher in A549 cells as compared
to Hep3B cells. Pretreatment with IFN-α decreased viral titer in A549 cells to similar levels
as in Hep3B cells, whereas Hep3B cell pretreatment did not affect viral titers. This finding
is in line with the previous experiment (Figure 6b), suggesting that IFN priming does not
drastically enhance antiviral immunity in Hep3B cells. IFN-β induction became apparent
at day three post-infection in A549 and increased up to 600 fold on day four compared
to uninfected cells, whereas in Hep3B cells, IFN-β expression was only slightly induced
(Figure 7b).
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strain of Junin virus (JUNV) Candid#1 (Figure 8). TCRV titer in Hep3B miR-122 cells in-
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Figure 7. Susceptibility and IFN response of A549 and Hep3B cells to TCRV. Cells were mock-treated or pretreated with
IFN-α for 24 h and subsequently infected with TCRV (MOI 0.01) for indicated time points (a). Viral titer was determined
by titration on Vero cells and staining against the nucleoprotein. IFN-β mRNA expression was measured by qRT-PCR as
described in Figure 1a (b). Results are given as a mean ± SEM of three independent experiments (with technical duplicates).
Two-way ANOVA, followed by Turkeys’s multiple comparison test * p < 0.05, ** p < 0.01, *** p < 0.001.

Arenaviruses efficiently infect the liver [47], thus, co-infections with chronic hepa-
totropic viruses such as HCV are possible. To evaluate hepatoma cells as a co-infection
model system, we mimicked chronic HCV infection in Hep3B cells expressing miR-122 and
a subgenomic HCV replicon and infected these cells with either TCRV or the vaccine strain
of Junin virus (JUNV) Candid#1 (Figure 8). TCRV titer in Hep3B miR-122 cells increased
up to day five, whereas in the presence of the subgenomic HCV replicon TCRV titers
decreased starting on day four. A similar effect was observed for JUNV virus infection of
Hep3B miR-122 cells, in which the presence of the HCV subgenomic replicon reduced titers
from day three onwards. The underlying mechanism of that phenotype is currently under
investigation using the Hep3B cell line as a model to investigate potential virus co-infection
in the liver.
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4. Discussion

The liver is a central organ for replication of viruses from diverse families and liver
cell immunity is thus a key determinant of infection outcomes. Here we have shown that
cultured hepatoma cell lines have a limited ability to sense polyI:C or the RNA viruses
such as CoV229E or TCRV despite PRR expression levels, which are comparable to primary
hepatocytes. Among the six tested hepatoma cell lines, Hep3B cells displayed the highest
sensitivity to cytoplasmic dsRNA stimulation and became sensitive to extracellular dsRNA
after IFN-I priming. HepaRG cells sensed intra- and extracellular dsRNA with similar
efficiency as Hep3B cells. This is in line with previous studies showing a sensitivity of
HepaRG cells to dsRNA [34]. HepG2 cells mounted IFN-I responses via RIG-I only, whereas
Huh-7 were refractory to both RIG-I and TLR3 stimulation as previously reported [35,36].
We further show that Huh-6 cells are similarly refractory to dsRNA stimulation as Huh-7
and that HepG2-HFL cells, similar to the parental HepG2 cells, only respond to intracellular
dsRNA. This study did not only test immortalized hepatocyte cell lines as reported by
Kato and Revill [35,48], but in addition used PHH from four to five independent donors
as reference [28,43]. Despite comparable responses of Hep3B cells and PHH to synthetic
dsRNA, we observed differential sensitivity of Hep3B cells and PHH to RNA virus infection.
While PHH robustly responded to CoV229E infection and released bioactive IFN-I, Hep3B
cells only released small amounts of IFN-I. IFN-I priming markedly increased RIG-I and
MDA5 expression in Hep3B cells and concomitantly led to increased sensing of CoV229E
infection but not of the arenavirus TCRV, suggesting differential viral sensing mechanisms.
Taken together, PHH are still the gold standard for studying innate immune responses
upon RNA virus infection and Hep3B cells, in particular when primed with IFN-I, may
represent a readily available and easy to culture proxy of RIG-I/MDA5 mediated signaling.

Dysfunctional RIG-/MDA5 and TLR3 pathways have been reported in human hep-
atoma cells [30,36]. This is in line with our observations and correlates with the here
reported low expression levels of RIG-I, MDA5, TLR3, as well as the adaptor proteins
MAVS and TRIF in Huh-7 and Huh-6 cells. Previous studies overcame these limitations by
overexpressing RIG-I, MDA5, or TLR3 and demonstrated sensing of the hepatitis C virus,
which was comparable to PHH [31]. For the study of type III IFN responses to the hepatitis
C virus, HepG2-HFL cells were developed as a suitable model [32]. Here, we included the
HepG2-HFL cell line and showed that IFN-I and ISG responses to RNA ligands remain
largely unaltered in HepG2-HFL cells as compared to the parental HepG2 cells. A more
recent attractive in vitro system to study innate immunity to hepatotropic viruses are stem
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cell-derived hepatocytes [49–53]. However, the generation and maintenance of stem cell
cultures are resource-intensive and, thus, the system is not available to many laboratories.
Consequently, in the absence of immunocompetent animal models for hepatitis viruses,
hepatoma cells still qualify as surrogate models to address RIG-I/MDA5 responses and
antagonism during RNA virus infection.

In addition to strictly hepatotropic viruses, many human pathogenic RNA viruses
target the liver early during infection and replicate in this tissue. Examples are the emerging
viruses Rift Valley fever virus and Lassa virus [3,54], which cause liver pathology and
thereby may alter adaptive immunity. The detailed contribution of hepatocyte innate
immune responses after infection with these viruses remains largely enigmatic to date. In
particular, when aiming to study co-infections of these viruses with strictly human tropic
hepatitis viruses, the here described cell culture models may aid define the contribution
of hepatocyte host responses during infection. Thus, for such defined research questions,
there is a justification to use hepatoma cells, which partially mimic RNA sensing, to study
hepatocyte infection and superinfection.
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poly(I:C) (transfected, 2.25 µg/well) as a RIG-I agonist. ISG 15 expression in PHH and hepatoma
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