Effekte einer chronischen Behandlung mit dem ACE-Inhibitor Ramipril, dem ACE/NEP-Inhibitor AVE 7688 sowie in Kombination mit dem B₂-Rezeptor-Antagonisten HOE 140 in adulten diabetischen und nicht-diabetischen Ratten

INAUGURAL-DISSERTATION
zur Erlangung des Grades einer
Doktorin der Veterinärmedizin
(Dr. med. vet.)
durch die Tierärztliche Hochschule Hannover

Vorgelegt von
Alexandra Hahn
aus New York
Hannover 2003
Wissenschaftliche Betreuung: Univ.-Prof. Dr. Manfred Kietzmann

1. Gutachter: Univ.-Prof. Dr. Manfred Kietzmann
2. Gutachter: Univ.-Prof. Dr. Reinhard Mischke

Meiner Familie
1. EINLEITUNG ... 13

2. LITERATURÜBERSICHT .. 15
 2.1 Diabetes ... 15
 2.1.1 Definition, Epidemiologie und Diagnose .. 15
 2.1.2 Pathophysiologie des Typ-2-Diabetes ... 18
 2.2 Diabetische Nephropathie und terminale Niereninsuffizienz ... 20
 2.2.1 Therapeutische Ansätze und Epidemiologie ... 20
 2.2.2 Pathophysiologie ... 23
 2.3 Das Renin-Angiotensin-Aldosteron-System ... 25
 2.4 Das Kallikrein-Kinin-System .. 27
 2.4.1 Bradykinin ... 28
 2.5 Angiotensin-Konversionsenzym-Inhibitoren.. 29
 2.6 Angiotensin-Konversionsenzym/Neutrale Endopeptidase-Inhibitoren 30
 2.7 Tiermodell ... 34
 2.8 Fragestellung .. 37

3. MATERIAL UND METHODEN .. 39
 3.1 Tiere und deren Haltungsbedingungen ... 39
 3.2 Verwendete Sustanzen .. 39
 3.2.1 Ramipril .. 39
 3.2.2 Substanz AVE 7688 .. 43
 3.2.3 Substanz HOE 140 .. 44
 3.3 Untersuchungen ... 46
 3.3.1 Allgemeiner Versuchsablauf ... 46
 3.3.2 Gruppenzusammensetzung .. 47
 3.3.3 Implantation der osmotischen Minipumpen ... 48
 3.3.4 Bestimmung der Körpermasse, der Futter- und Wasseraufnahme 50
 3.3.5 Bestimmung von Albumin, Creatinin und Glukose im Urin 50
 3.3.6 Retrobulbäre Blutentnahme .. 52
Inhaltsverzeichnis

3.3.6.1 Bestimmung von Gesamtcholesterin .. 53
3.3.6.2 Bestimmung der Angiotensin-Konversionsenzym-Aktivität 53
3.3.6.3 Bestimmung von Glukose und HbA_1c .. 54
3.3.7 Blutdruckmessung .. 55
3.3.8 Oraler Glukose-Toleranztest .. 56
3.3.9 Enduntersuchung nach 26-wöchiger Behandlung ... 56
 3.3.9.1 Herz- und Blutentnahme .. 56
 3.3.9.2 Sektion .. 57
3.3.10 WORKING HEART ... 58
 3.3.10.1 Modell .. 58
 3.3.10.2 Meßbare Parameter .. 65
 3.3.10.3 Berechnete Parameter ... 65
 3.3.10.4 Belastungstest am WORKING HEART .. 68
 3.3.10.4.1 Nachlasterhöhung .. 68
3.3.11 Bestimmung von Insulin im Plasma ... 68
3.3.12 Bestimmung der Substanz MDL 108.048 im Plasma 69
3.3.13 Autoradiographische-Bindungsuntersuchung der Substanz AVE 7688 in der Ratte ... 70
3.3.14 Nierenhistologie .. 71

3.4 Statistik ... 72

4. ERGEBNISSE .. 74
4.1 Körpermasse, Futter und Wasseraufnahme ... 74
 4.1.1 Körpermasse ... 74
 4.1.2 Futteraufnahme ... 75
 4.1.3 Wasseraufnahme .. 77
4.2 Ergebnisse der Urinuntersuchungen .. 78
 4.2.1 Ergebnisse der Untersuchung von Albumin und Creatinin im Urin 78
 4.2.2 Ergebnisse der Untersuchung von Glukose im Urin 81
4.3 Ergebnisse der Bestimmung von Cholesterin im Plasma 83
4.4 Angiotensin-Konversionsenzym-Aktivität ... 85
4.5 Ergebnisse der Bestimmung von Glukose und HbA_1c im Plasma 88
4.6 Ergebnisse der Blutdruck- und Herzfrequenzmessung 91
4.7 Ergebnisse des oralen Glukose-Toleranztests ... 94
Inhaltsverzeichnis

4.8 Ergebnisse im WORKING HEART ... 96
 4.8.1 Ergebnisse der Nachlasterhöhung .. 96
 4.8.2 Basalwerte bei 80 mmHg Nachlast .. 102
4.9 Ergebnisse der Bestimmung von Insulin ... 106
4.10 Nachweis der Substanz MDL 108.048 im Plasma 108
4.11 Ergebnisse der autoradiographischen-Bindungsuntersuchung von der Substanz AVE 7688 in der Ratte ... 109
4.12 Organgewichte ... 110
4.13 Nierenhistologie ... 114

5. DISKUSSION ... 120
 5.1 Effekte von ACE-Inhibitoren, ACE/NEP-Inhibitoren und B2-Rezeptorblockade auf renale Funktion und Morphologie ... 120
 5.1.1 Einfluss auf den Blutdruck ... 120
 5.1.2 Einfluss auf Glukose im Urin ... 124
 5.1.3 Einfluss auf Nierenhistologie und Albumin/Creatinin-Ausscheidung im Urin 125
 5.1.4 Radiobindungsstudie ... 130
 5.1.5 Einfluss auf Angiotensin-Konversionsenzym-Aktivität 131
 5.1.6 Einfluss auf Cholesterin im Plasma ... 132
 5.1.7 Einfluss auf Plasma-Glukose und HbA1c ... 135
 5.1.8 Einfluss auf den oralen Glukose-Toleranztest und Plasma-Insulin 137

 5.2 Untersuchung der kardialen Funktion ... 139

 5.3 Ergebnisse weiterer Untersuchungen ... 140
 5.3.1 Körpermasse, Futter- und Wasseraufnahme 140
 5.3.2 Organgewichte ... 142

 5.4 Mögliche Rolle der Kinine – Effekte der Behandlung mit der Substanz HOE 140 144

 5.5 Abschliessende Betrachtung ... 146

6. ZUSAMMENFASSUNG .. 148

7. SUMMARY .. 151

8. LITERATURVERZEICHNIS .. 153
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>alpha</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-Konversionsenzym</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>AF</td>
<td>Aortenfluss</td>
</tr>
<tr>
<td>ALP</td>
<td>afterload pressure/ Nachlast</td>
</tr>
<tr>
<td>Ang I</td>
<td>Angiotensin I</td>
</tr>
<tr>
<td>Ang II</td>
<td>Angiotensin II</td>
</tr>
<tr>
<td>ANP</td>
<td>atriales natriuretisches Peptid</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>destilliertes Wasser</td>
</tr>
<tr>
<td>ARB</td>
<td>Angiotensin-Rezeptor-Blocker</td>
</tr>
<tr>
<td>AT₁</td>
<td>Angiotensin-1 (Subtyp)-(Rezeptor)</td>
</tr>
<tr>
<td>AT₂</td>
<td>Angiotensin-2 (Subtyp)-(Rezeptor)</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>BD</td>
<td>Blutdruck</td>
</tr>
<tr>
<td>BNP</td>
<td>“brain” natriuretisches Peptid</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyklisches Adenosinmonophosphat</td>
</tr>
<tr>
<td>CF</td>
<td>Koronarfluß</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyklisches Guanosinmonophosphat</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CNP</td>
<td>„c“ Typ natriuretisches Peptid</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzym A</td>
</tr>
<tr>
<td>D</td>
<td>Durchmesser</td>
</tr>
<tr>
<td>dl</td>
<td>Deziliter</td>
</tr>
<tr>
<td>dLVP/dt<sub>max</sub></td>
<td>maximale Druckanstiegsgeschwindigkeit des linken Ventriles</td>
</tr>
<tr>
<td>dLVP/dt<sub>min</sub></td>
<td>maximale Druckabfallsgeschwindigkeit des linken Ventriles</td>
</tr>
<tr>
<td>DNP</td>
<td>dendroaspis natriuretisches Peptid</td>
</tr>
<tr>
<td>Dr.</td>
<td>Doktor</td>
</tr>
<tr>
<td>E</td>
<td>Effizienz</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid/Ethylendiaminteraessigsäure</td>
</tr>
<tr>
<td>ESRD/ESRF</td>
<td>end-stage renal disease/ end-stage renal failure/ terminale Niereninsuffizienz</td>
</tr>
<tr>
<td>ET</td>
<td>ejection time/ Auswurfszeit</td>
</tr>
<tr>
<td>et al.</td>
<td>“et alii“</td>
</tr>
<tr>
<td>Fa.</td>
<td>Firma</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>g<sub>(phys)</sub></td>
<td>Gravitation</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>h</td>
<td>hour/ Stunde</td>
</tr>
<tr>
<td>HbA<sub>1c</sub></td>
<td>glykolisiertes Hämoglobin<sub>1c</sub></td>
</tr>
<tr>
<td>HDL</td>
<td>„high density lipoprotein“</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Hg</td>
<td>Quecksilber</td>
</tr>
<tr>
<td>HMG</td>
<td>3-Hydroxy-3-methyl-glutarsäure</td>
</tr>
<tr>
<td>HP</td>
<td>heart power/ Herzleistung</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate/ Herzfrequenz</td>
</tr>
<tr>
<td>HW</td>
<td>heart work/ Herzarbeit</td>
</tr>
<tr>
<td>IC</td>
<td>inhibitory constant/ inhibitorische Konstante</td>
</tr>
<tr>
<td>I.E.</td>
<td>internationale Einheit</td>
</tr>
<tr>
<td>i.G.T.</td>
<td>impaired glucose tolerance/ eingeschränkte Glukosetoleranz</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>JCR</td>
<td>James C. Russell</td>
</tr>
<tr>
<td>KD</td>
<td>Dissoziationskonstante</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>Ki</td>
<td>Hemmkonstante</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDL</td>
<td>„low density lipoprotein“</td>
</tr>
<tr>
<td>LH</td>
<td>Langendorff-Herz</td>
</tr>
<tr>
<td>LVEDP</td>
<td>left ventricular enddiastolic pressure/ linksventrikulärer enddiastolischer Druck</td>
</tr>
<tr>
<td>LVSP</td>
<td>left ventricular systolic pressure/ linksventrikulärer systolischer Druck</td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
</tr>
<tr>
<td>µ</td>
<td>mikro</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm (10^{-3} Gramm)</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter (10^{-3} Liter)</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter (10^{-3} Meter)</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol (10^{-3} Mol)</td>
</tr>
<tr>
<td>ms</td>
<td>Millisekunde (10^{-3} Sekunde)</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm (10^{-6} Gramm)</td>
</tr>
<tr>
<td>µmol</td>
<td>Mikromol (10^{-6} Mol)</td>
</tr>
<tr>
<td>MVO₂</td>
<td>myokardialer Sauerstoffverbrauch</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl der in einem Versuch verwendeten Tiere</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nikotinamidenindinukleotidphosphat</td>
</tr>
<tr>
<td>NDDG</td>
<td>National Diabetes Data Group</td>
</tr>
<tr>
<td>NEP</td>
<td>neutrale Endopeptidase</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-κB/ Nuklearfaktor-κB</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm (10⁻⁹ Gramm)</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer (10⁻⁹ Meter)</td>
</tr>
<tr>
<td>nmol</td>
<td>Nanomol (10⁻⁹ Mol)</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid („nitric oxide“)</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association</td>
</tr>
<tr>
<td>O₂</td>
<td>Sauerstoff</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>OGGT</td>
<td>oraler Glukose-Toleranztest</td>
</tr>
<tr>
<td>p</td>
<td>Irrtumswahrscheinlichkeit/ Signifikanz</td>
</tr>
<tr>
<td>P</td>
<td>Druck</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodsäure-Schiff</td>
</tr>
<tr>
<td>PD</td>
<td>Privatdozent</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor/ Plättchen-aktivierter Wachstumsfaktor</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein Kinase C</td>
</tr>
<tr>
<td>PLP</td>
<td>preload pressure/ Vorlast</td>
</tr>
<tr>
<td>pmol</td>
<td>Picomol (10^{-12} Mol)</td>
</tr>
<tr>
<td>p.o.</td>
<td>per os</td>
</tr>
<tr>
<td>pO₂</td>
<td>Sauerstoffpartialdruck</td>
</tr>
<tr>
<td>Prof.</td>
<td>Professor</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichte</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td>RAAS</td>
<td>Renin-Angiotensin-Aldosteron-System</td>
</tr>
<tr>
<td>RAS</td>
<td>Renin-Angiotensin-System</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean/ mittlerer Standardfehler</td>
</tr>
<tr>
<td>SV</td>
<td>Schlagvolumen</td>
</tr>
<tr>
<td>t</td>
<td>time/ Zeit</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TNFβ</td>
<td>Tumor-Nekrose-Faktor beta</td>
</tr>
<tr>
<td>t-test</td>
<td>statistischer Test</td>
</tr>
<tr>
<td>U</td>
<td>Units /Einheiten</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>United States of America/ Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>v</td>
<td>Geschwindigkeit</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
</tr>
<tr>
<td>V_{dia}</td>
<td>enddiastolisches Volumen</td>
</tr>
<tr>
<td>Vol. %</td>
<td>Volumenprozent</td>
</tr>
<tr>
<td>VPI</td>
<td>Vasopeptidase-Inhibitor</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>V_{sys}</td>
<td>endsystolisches Volumen</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>WH</td>
<td>WORKING HEART/ arbeitendes Herz</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation/ Weltgesundheitsorganisation</td>
</tr>
<tr>
<td>χ</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>ZDF</td>
<td>Zucker Diabetic Fatty</td>
</tr>
<tr>
<td>ZF</td>
<td>Zucker Fatty</td>
</tr>
</tbody>
</table>
Einleitung

1. EINLEITUNG

Einleitung

In der vorliegenden experimenteller Arbeit sollten folgende Fragen unter Einsatz von diabetischen und nicht-diabetischen Ratten untersucht werden:

Ist eine Interventionsbehandlung mit einem ACE- oder ACE/NEP-Inhibitor möglich? Ist ein Einfluss auf das kardiovaskuläre oder renale System mit diesen Substanzen möglich?

Wenn die Behandlung mit diesen Substanzen Effekte zeigt, was ist die Rolle der Kinine? Welche Rolle spielt die Blockade des B2-Receptors?
2. LITERATURÜBERSICHT

2.1 Diabetes

2.1.1 Definition, Epidemiologie und Diagnose

1. Plasma-Glukosekonzentrationen ≥ 200 mg/dl (11.1 mmol/l) bei Symptomen des Diabetes wie Polyurie, Polydipsie und unerklärlichem Gewichtsverlust.

2. Nüchterner Plasma-Glukosewert (keine Nahrungsaufnahme innerhalb der vorhergehenden 8 Stunden) ≥ 126 mg/dl (7.0 mmol/l).

3. Plasma-Glukosewerte ≥ 200 mg/dl (11.1 mmol/l) während eines oralen Glukose-Toleranztests (OGTT) 2 Stunden nach Gabe von 75 g Glukose.
Aufgrund ihrer Pathogenese und Ätiologie wird prinzipiell zwischen vier Untergruppen des Diabetes mellitus unterschieden (The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, 2002):

2. **Der Typ-2-Diabetes** kann die Insulinresistenz mit relativer Insulindefizienz als Ätiologie im Vordergrund haben oder es kann sich um einen vorwiegend sekretorischen Defekt mit oder ohne Insulinresistenz handeln.

Klinisch bedeutsam beim Menschen sind der Typ-1 und der Typ-2-Diabetes, die dritte und vierte Untergruppe wird zusammengefasst als „sekundärer Diabetes“ bezeichnet. Von allen an Diabetes erkrankten Personen leiden 90% bis 95% an dem Typ-2-Diabetes. Der Typ-2-Diabetes bleibt oft über viele Jahre undisagnostiziert, da er in seiner Anfangsphase durch sehr

2.1.2 Pathophysiologie des Typ-2-Diabetes

Im weiteren Verlauf der diabetischen Erkrankung folgt die Phase der sogenannten impaired Glukose Tolerance (iGT), wo sich zu der schon vorhandenen Insulinresistenz eine fortschreitende Dekompensation durch die pankreatischen β-Zellen gesellt. Anfänglich liegt eine kom pensatorische Hyperinsulinämie vor, um eine glykämische Homöostase im Körper zu erreichen. Mit der Zeit stellt sich ein dekompensierter Mechanismus ein und die

Der Diabetes mellitus stellt eine erhebliche chronische Stoffwechselerkrankung dar, die in viele physiologische Prozesse des Körpers eingreift. Eine zentrale Rolle spielt die aus der mangelhaften peripheren Glukoseverwertung und gesteigerten Gluconeogenese resultierenden Hyperglykämie, die aufgrund einer fehlenden Hemmung der Induktion von gluconeogenetischen Schlüsselzykmen beruht. Zusätzlich fehlt in der Leber die induzierende Wirkung des Insulins auf die glykolytischen Schlüsselzykmen Glukokinase, Phosphofructokinase-1 und Pyruvatkinase.

2.2 Diabetische Nephropathie und terminale Niereninsuffizienz

2.2.1 Therapeutische Ansätze und Epidemiologie

Klinische Studien wie der „Diabetes Control and Complications Trial“ haben deutlich gemacht, wie wichtig die stringente Überwachung des Blutglukosespiegels ist, um Folgeerkrankungen an Auge, Niere und Nerven zu verhindern (DIABETES CONTROL and COMPLICATIONS TRIAL RESEARCH GROUP 1993). Die „United Kingdom Prospective
Literaturübersicht

Diagnose Diabetes erst nach Überweisung gestellt. Bei 60% der diabetischen Patienten lagen klassische Zeichen einer diabetischen Nephropathie vor. Bei 13% lagen atypische Nierenveränderungen vor, bei 27% war zusätzlich zum Diabetes mellitus eine primär chronische Nierenkrankheit bekannt (SCHWENGER et al. 2001)

2.2.2 Pathophysiologie

Die Pathogenese der fokalen Glomeruloskrose, welche als gemeinsamer Endpunkt der progressiven renalen Schädigung unabhängig von der Ätiologie gilt, beeinhalten mehrere, sich überschneidende Mechanismen. Hierzu zählen der Anstieg des arteriellen Blutdrucks, der Verlust der Autoregulation der renalen Zirkulation, die glomeruläre Hypertrophie, die renale Fibrose und Veränderungen in der Permeabilität der glomerulären Membran.

Literaturübersicht

Histopathologisch zeichnet sich die diabetische Nephropathie durch eine glomeruläre und tubuläre Hypertrophie aus, was wiederum zu der Entwicklung der Glomerulosklerose, tubulären Atrophie und interstitiellen Fibrose beiträgt (ANDERSON u. BRENNER 1995; COOPER 1998; WOLF u. ZIYADEH 1999).

2.3 Das Renin-Angiotensin-Aldosteron-System

Das Renin-Angiotensin-Aldosteron-System (RAAS) ist ein potenter Modulator der Blutdruckregulation und der Volumenhomöostase. Von dem aus der Leber stammenden α2-

25

2.4 Das Kallikrein-Kinin-System

Vor fast einem Jahrhundert fanden die ersten Experimente statt, die das Interesse an dem Kallikrein-Kinin-System weckten. ABELOUS und BARDIER zeigten 1909, dass die

Die moderne Molekularbiologie hat es ermöglicht, die Kallikreine, ihre Vorläufer das Plasma-Präkallikrein und das gewebsständige Prokallikrein sowie die Kininogene zu isolieren und zu charakterisieren.

2.4.1 Bradykinin

Als Prototyp der Kinine gilt das Bradykinin, welches 1949 von ROCHA e SILVA et al. entdeckt wurde. Hierbei handelte es sich um eine langsam reagierende Substanz, die kontrahierende Wirkung auf die glatte Muskelatur zeigte und stark gefäßdilatierend wirkte. Die Namensgebung leitet sich von dieser schon 1949 beobachteten Reaktionsweise ab und kommt aus dem Griechischen:

brady bedeutet langsam und

Das Bradykinin ist ein basisches Nonapeptid. Die aktive Form des Bradykinins wird aus einem als Kininogen bezeichneten α-Globulin des Serums durch das Kallikrein, einer Kininogenase mit trypsinähnlicher Wirkung, abgespalten.

einer Rezeptorklassifizierung in Typ B₁- und B₂-Rezeptoren resultiert, die mit modernen Methoden der Molekularbiologie in späteren Jahren validiert werden konnte.

In der Niere vermittelt Bradykinin die Vasodilatation durch Stimulation der Stickstoffmonoxidproduktion und löst durch direkte Effekte auf die Tubuli eine gesteigerte Natriurese aus (GAINER et al. 1998).

2.5 Angiotensin-Konversionsenzym-Inhibitoren

2.6 Angiotensin-Konversionsenzym/Neutrale Endopeptidase-Inhibitoren

Die natriuretischen Peptide binden an zelloberflächengebundene Rezeptoren. ANP, CNP und BNP sind Liganden für einen Guanylatzyklase gekoppelten Rezeptor. Es wird durch Bindung dieser Peptide vermehrt Guanosintriphosphat (GTP) zu zyklischem Guanosinmonophosphat (cGMP) umgewandelt. Dies führt zu einer Vasodilatation.

Seitdem sind weitere Substanzen dieser Klasse entwickelt worden, hierzu zählen Sampatrilat (UK 81252), Fasidotril (BP 1.137), Z13752A, MDL 100.240, AVE 7688, Mixanpril, Gemopatrilat (BMS 189921) und Omapatrilat (Vanlev®).

Klinische Studien liefern weitere Beweise für die günstigen Effekte von Omapatrilat aber auch über unerwünschte Nebeneffekte. In der „Inhibition of Metalloprotease by Omapatrilat in a Randomized Excercise and Symptom“ (IMPRESS) Studie, eine Studie mit 573 Patienten die unter Herzinsuffizienz litten, konnte erstmalig der klinische Vorteil von Omapatrilat gegenüber dem konventionellen ACE-Inhibitor Lisinopril bei kombinierter Auswertung nach den Kriterien stationäre Aufnahme, Tod, Absetzen der Therapie und Verschlechterung der Herzinsuffizienz gezeigt werden (ROULEAU et al. 2000).

Die Ergebnisse der „Omapatrilat versus Enalapril Randomized Trial of Utility in Reducing Events“ (OVERTURE) Studie wurden ebenfalls im März 2002 vorgestellt. Sie sollte die Effekte von Omapatrilat auf Mortalität und Herzversagen an 5770 Patienten mit Herzversagen im Vergleich zu Enalapril untersuchen. In der Studie OVERTURE konnte Omapatrilat keine Überlegenheit gegenüber Enalapril zeigen, es wurde jedoch eine fast zweifach erhöhte Inzidenz von Angioödemen beobachtet (Enalapril: 0,5%, Omapatrilat: 0,8%). In der Studie OCTAVE war Omapatrilat zwar signifikant besser in der Blutdrucksenkung, aber es traten knapp dreimal so viele Fälle von Angioödem verglichen mit Enalapril auf (2.17% verglichen mit 0.68%) (COATS 2002).

Somit zeigt Omapatrilat durchaus positive Effekte, aber auch eine hohe Inzidenz von Angioödemen. Dies war mitunter ein Hauptgrund für die Ablehnung der Zulassungsbeantragung durch die Food and Drug Administration (FDA) 2002.

2.7 Tiermodell

Tiere, die die Geschwister der diabetischen ZDF-Ratten waren, blieben zwar dünner und euglykämisch, zeigten aber unerwarteterweise eine schlechtere Herz- und Endothelfunktion als die diabetischen ZDF-Ratten. Eine Studie von VORA et al. 1996 belegte das Vorkommen von schweren Formen der Hydronephrose ohne ergründbare anatomische Ätiologie bei lean-ZDF-Ratten. Sie schlossen daraus, dass diese Hydronephrose genetischen Ursprungs sein musste.

Abb. 1: Bild einer ZDF-Ratte im Alter von ca. 7 Wochen, Körpermasse ca. 420 g.

Abb. 2: Bild einer Wistar-Ratte im Alter von ca. 7 Wochen, Körpermasse ca. 330 g.
2.8 Fragestellung

Unter den Folgekrankheiten des Diabetes stellen kardiovaskuläre und renale Erkrankungen nicht nur ökonomisch gesehen die kosten-intensivsten Komplikationen dar, sondern auch menschlich gesehen stellen sie ein erhebliches Leiden dar.

Die wesentlichen Fragen, die in dieser Arbeit untersucht werden sollten waren:

Ist eine Interventionsbehandlung mit einem ACE- oder ACE/NEP-Inhibitor möglich? Ist ein Einfluss auf das kardiovaskuläre oder renale System mit diesen Substanzen möglich?

Wenn die Behandlung mit diesen Substanzen Effekte zeigt, was ist die Rolle der Kinine? Welche Rolle spielt die Blockade des B2-Rezeptors?
Um diese Fragen beantworten zu können, wurden an den Ratten unterschiedliche Parameter untersucht und zur Auswertung herangezogen:

Wird die renale Funktion und Morphologie durch Behandlung mit dem ACE-Inhibitor Ramipril, dem ACE/NEP-Inhibitor AVE 7688 oder durch die Kombination mit dem B₂-Rezeptor-Antagonisten HOE 140 beeinflusst?

Wird die kardiale Funktion und Morphologie durch Behandlung mit dem ACE-Inhibitor Ramipril, dem ACE/NEP-Inhibitor AVE 7688 oder durch die Kombination mit dem B₂-Rezeptor-Antagonisten HOE 140 beeinflusst?

Weisen die Ergebnisse weiterer Untersuchungen auf eine renoprotektive oder vaskuloprotektive Beeinflussung durch die Behandlung mit Ramipril, bzw. den Substanzen AVE 7688 oder HOE 140 hin?
3. MATERIAL UND METHODEN

3.1 Tiere und deren Haltungsbedingungen

Ziel dieser Studie war es, die Langzeitwirkung eines ACE/NEP (Vasopeptidase)-Inhibitors verglichen mit einem ACE-Hemmer auf die kardiale und renale Funktion an diabetischen und nicht-diabetischen Ratten zu untersuchen. Im Rahmen der Studie wurden insgesamt 140 adulte männliche Ratten eingesetzt. Hierbei handelte es sich um 75 Wistar-Ratten (Stamm HsdCpb:WU der Firma Harlan Winkelmann, D-Borchen) und 65 Zucker-Diabetic-Fatty-Ratten (Stamm ZDF/Gmi fa/fa ehem. GMI Indianapolis, U.S.A. jetzt Charles River, Wilmington U.S.A.). Alle Ratten waren bei Versuchsbeginn durchschnittlich 21 Wochen alt.

Die Tiere wurden in normierten Makrolonkäfigen der Größe 4 auf Standardeinstreu für Labortiere gehalten. In der Versuchstieranlage betrug die Raumtemperatur 18-20 °C bei einer Luftfeuchtigkeit von 50-55%. Der Tag-Nachtzyklus betrug 12 Stunden, wobei die Tagphase von 6.00 Uhr bis 18.00 Uhr andauerte und mit Kunstlicht (400 Lux) aufrecht erhalten wurde.

Es wurde eine Standard-Diät für Ratten und Mäuse der Firma Altromin GmbH (Lage) in Pelletform gefüttert („Haltungsdiät 1320“; Inhaltsstoffe: 19% Rohprotein, 4% Rohfett, 7% Rohasche, 6% Rohfaser, 11.9 MJ / kg umsetzbare Energie), Futter und Wasser standen den Tieren ad libitum zur Verfügung.

Alle Untersuchungen wurden unter Beachtung des Deutschen Tierschutzgesetzes durchgeführt.

3.2 Verwendete Sustanzen

3.2.1 Ramipril

Ramipril (Aventis Pharma Deutschland GmbH), dargestellt in Abbildung 3, ist eine Substanz aus der zweiten Generation der ACE-Hemmer. Die chemische Bezeichnung lautet: 2-[N-[(S)-1-Ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-1S,3S,5S)-2-azabicyclo[3.3.0]octan-3-carbonsäure. Die chemische Summenformel lautet C_{23}H_{32}N_{2}O_{5} und das Molekulargewicht von Ramipril beträgt 416,5 g/mol.
Material und Methoden

Ramiprilat ist ein hochaffiner, aber langsam bindender kompetitiver Inhibitor, dessen Bindung an ACE über einen Zwischenschritt erfolgt. Zunächst wird durch Bindung des Inhibitors an das Enzym ein initialer Enzym-Inhibitor-Komplex gebildet. Dieser lagert sich durch Isomerisierung langsam um und bildet so einen stabilen Enzym-Inhibitor-Komplex der nur langsam wieder dissoziiert.

Ein Maß für die Bindung eines Hemmers an das zugehörige Enzym - in diesem Fall von Ramiprilat am Angiotensin-Konversionsenzym - ist die allgemeine Hemmkonstante K_i. Über den K_i-Wert kann die Affinität von zwei konkurrierenden Substraten zu einem Enzym abgeschätzt werden. Der K_i-Wert dient als Maß für die Potenz eines Substrates als kompetitiver Hemmer eines Enzyms zu agieren und es in seiner Funktion für andere Substrate zu hemmen. Hohe K_i-Werte bedeuten, dass hohe Konzentrationen zur Enzyminhibition notwendig sind, umgekehrt deutet ein niedriger K_i-Wert auf eine große inhibitorische Potenz hin. Bezüglich ACE Hemmung beträgt der K_i-Wert für Ramiprilat 7 pmol/l. Die Inhibitorische Konstante IC_{50} gibt an, wie viele µmol/l Substanz benötigt werden um 50% des Untersuchten Enyzms zu hemmen. Je niedriger der Wert ist, desto potenter die Substanz. Der IC_{50}-Wert für Ramiprilat liegt bei 0.00015 µmol/l (CEREP FINAL STUDY REPORT, unpubliziert, 2002).

Die klinische Anwendung von Ramipril beim Patienten beruht auf einer oralen Applikation. Sowohl in der Ratte als auch im Menschen setzt nach oraler Gabe von Ramipril eine schnelle Resorption von 56% ein, die durch gleichzeitig eingenommene Nahrung nicht signifikant

Zusätzlich wurde im Verlauf dieser Studie gezeigt, dass diese Dosis eine fast vollständige Hemmung der Plasma-ACE-Aktivität gewährleistete (siehe „4.4. Angiotensin-Konversionsenzym-Aktivität“)
Material und Methoden

Abb. 3: Strukturformel des ACE-Inhibitors Ramipril (Molekulargewicht: 416,5 g/mol)

Abb. 4: Strukturformel von Ramiprilat, dem aktiven Metaboliten von Ramipril (Molekulargewicht: 388,46 g/mol)
3.2.2 Substanz AVE 7688

Der ACE/NEP-Inhibitor AVE 7688, dargestellt in Abbildung 5, ist ein Produkt der Firma Aventis Pharma Deutschland GmbH, welches sich in der präklinischen Entwicklung befindet. Die chemische Bezeichnung lautet: \(7\[(2S)-2-(acetylthio)-1-oxo-3-methyl-propyl\]amino\]-1,2,3,4,6,7,8,12b-octahydro-6-oxo-,(4S,7S,12bR)-pyrido[2,1-a][2]benzazepine-4-carbonsäure, die Summenformel ist \(C_{22}H_{28}N_{2}O_{5}S\). Die Substanz AVE 7688 ist eine “Prodrug”, deren Molekulargewicht 432,54 g/mol beträgt. Der biologisch aktive Metabolit ist die Substanz MDL 108,048 mit einem Molekulargewicht von 390,50 g/mol, die antihypertensiv wirkt. Die Substanz MDL 108,048 ist in Abbildung 6 zu sehen.

Wie Ramipril hemmt die Substanz AVE 7688 das Angiotensin-Konversionssenzym, zusätzlich aber auch das membran-gebundene Metalloenzym Neutrale Endopeptidase, welches wie ACE auch ein aktives Zink Zentrum enthält. Der \(K_i\)-Wert für MDL 108.048, dem aktiven Metaboliten von der Substanz AVE 7688 beträgt 1.2 nmol/l für ACE und <1.5 nmol/l für NEP, der \(IC_{50}\)-Wert beträgt 0.000052 µmol/l für ACE und 0.0050 µmol/l für NEP (CEREP FINAL STUDY REPORT, unpubliziert, 2002).

Die optimale orale Dosis des ACE/NEP-Inhibitors AVE 7688 bei Ratten wurde in einem nicht veröffentlichten Dosisfindungsversuch der Firma Aventis Pharma ermittelt. Eine abschließende Blutuntersuchung im Rahmen dieser Studie hat dazu gedient, die Plasmakonzentration der wirksamen Substanz MDL 108.048 zu bestimmen. Zusätzliche Bestimmungen der ACE-Aktivität in dieser Studie haben gezeigt, dass bei einer täglichen Dosis von 30 mg/kg Körpermasse täglich eine fast vollständige Hemmung des Enzyms vorlag (siehe „4.4 Angiotensin-Konversionsenzym -Aktivität“).

Während der gesamten Behandlungsdauer von 26 Wochen erhielten die Ratten die Substanz AVE 7688 in einer Dosis von 30 mg/kg Körpermasse täglich, was einer Futterzumischung von 0,075 % Substanz bei einer Futteraufnahme von 7,5 % der Körpermasse pro Tag entspricht.
Material und Methoden

\[\text{Abb. 5: Strukturformel des ACE/NEP-Inhibitors AVE 7688 (Molekulargewicht: 432,54 g/mol)} \]

\[\text{Abb. 6: Strukturformel der Substanz MDL 108,048, der aktive Metabolit der Substanz AVE 7688 (Molekulargewicht: 390,50 g/mol)} \]

3.2.3 Substanz HOE 140

Der Bradykinin-B2-Rezeptor-Antagonist HOE 140, auch Icatibant genannt, ist ein Produkt der Firma Aventis Pharma Deutschland GmbH. Die Substanz wurde an die Firma Jerini für die Entwicklung in allen Indikationen außer Osteoarthritis auslizenziert. Die chemische Bezeichnung lautet: D-arginyl-L-arginyl-L-prolyl-L-[(4R)-4-hydroxyprolyl]-glycl-L-[3-(2-thienyl)alanyl]-L-seryl-D-(1,2,3,4-tetrahydroisoquinolin-3-yl-carbonyl)-L-[(3aS,7aS)-octahydroindol-2-yl-carbonyl]-L-arginine. Die Summenformel ist (D-Arg-[Hyp3, Thi5, DTic7, Oic8] bradykinin). Abbildung 7 stellt die Struktur der Substanz HOE 140 dar, dessen Molekulargewicht 1304,59 g/mol beträgt. Bei dem Peptid handelt es sich um den zur Zeit potentesten, langwirksamsten und stabilsten Bradykinin-B\textsubscript{2}-Rezeptor-Antagonisten (BAO et al. 1991; HOCK et al. 1991; WIRTH et al. 1991). Die Gabe der Substanz HOE 140 hebt die
hypotensive Wirkung von ACE-Hemmern in Ratten partiell auf (LINZ u. SCHÖLKENS 1992; BOUAZIZ et al. 1994).

Da die Substanz HOE 140 wegen ihrer Peptidstruktur oral nicht verfügbar ist, wurde sie subkutan über implantierte osmatische Minipumpen (Alzet, Charles River Deutschland, Sulzfeld) verabreicht. Bei einer Pumprate von 0.25 µl/Stunde wurde jedes Tier mit 500 µg/kg Körpermasse/Tag behandelt. Diese Dosis gewährleistet eine Blockade der endogenen Bradykinin-B2-Rezeptoren (WIRTH et al. 1995; WIRTH et al., 1997). Implantierungsmethode siehe „3.3.3 Implantation der osmischen Minipumpen“.

Abb. 7: Struktur des selektiven Bradykinin-B2-Rezeptor-Antagonisten HOE 140.
3.3 Untersuchungen

3.3.1 Allgemeiner Versuchsablauf

Um die Langzeitwirkung eines ACE/NEP (Vasopeptidase) -Inhibitors im Vergleich zu einem ACE-Hemmer auf die renale und kardiale Funktion an Ratten zu untersuchen, wurden alle Tiere 26 Wochen behandelt. Ramipril wurde über das Trinkwasser verabreicht, die Substanz AVE 7688 über das pelletierte Futter und die Substanz HOE 140 über osmotische Minipumpen.

Im Anschluss an die 26-wöchige Behandlung erfolgte die Enduntersuchung. Dazu wurden die Ratten gewogen, narkotisiert und ein Teil des Herzens in der WORKING-HEART-Anlage untersucht (siehe „3.3.10 WORKING HEART“). Nach Entnahme des Herzens wurden Blutproben genommen und anschließend eine Sektion durchgeführt.

![Diagramm der Untersuchungen](image.png)

Abb. 8: Allgemeiner zeitlicher Verlauf der Studie, in der die Langzeitwirkung eines ACE/NEP (Vasopeptidase) -Inhibitors im Vergleich zu einem ACE-Hemmer sowohl als in Kombination mit einem B2-Rezeptor-Antagonisten auf die renale und kardiale Funktion an diabetischen und nicht-diabetischen Ratten untersucht wurde über einen Zeitraum von 26 Wochen. Dargestellt sind die Zeitpunkte (Alter in Wochen) zu dem relevante Parameter erfasst wurden.

46
3.3.2 Gruppenzusammensetzung

Im Rahmen dieser Studie wurden insgesamt 140 adulte männliche Ratten eingesetzt, die in insgesamt dreizehn Gruppen aufgeteilt wurden. Bei den Wistar-Ratten handelte es sich um: 13 Placebotiere, 12 mit Ramipril behandelte, 13 mit der Substanz AVE 7688 behandelte, 12 mit den Substanzen AVE 7688 und HOE 140 behandelte, 12 mit den Substanzen Ramipril und HOE 140 behandelte und 12 mit der Substanz HOE 140 behandelte Tiere. Bei den ZDF-Ratten handelte es sich um: 10 Placebotiere, 12 mit Ramipril behandelte, 12 mit der Substanz AVE 7688 behandelte, 10 mit den Substanzen AVE 7688 und HOE 140 behandelte, 10 mit den Substanzen Ramipril und HOE 140 behandelte und 11 mit der Substanz HOE 140 behandelten Tiere. In Tabelle 1 sind die Gruppen in Tabellenform dargestellt.

Material und Methoden

Tab. 1: Tabelle der Gruppenzusammensetzung der in der Studie untersuchten Tiere. Bei den ZDF-Ratten handelte es sich um: 10 Placebotiere (ZDF Placebo), 12 mit Ramipril behandelte (ZDF Ramipril), 12 mit der Substanz AVE 7688 behandelte (ZDF AVE 7688), 10 mit den Substanzen AVE 7688 und HOE 140 behandelte (ZDF AVE 7688 + HOE 140), 10 mit den Substanzen Ramipril und HOE 140 behandelte (ZDF Ramipril + HOE 140) und 11 mit der Substanz HOE 140 behandelte (ZDF Placebo + HOE 140) Tiere.

Bei den Wistar-Ratten handelte es sich um: 13 Placebotiere (Wistar Placebo), 12 mit Ramipril behandelte (Wistar Ramipril), 13 mit der Substanz AVE 7688 behandelte (Wistar AVE 7688), 12 mit den Substanzen AVE 7688 und HOE 140 behandelte (Wistar AVE 7688 + HOE 140), 12 mit den Substanzen Ramipril und HOE 140 behandelte (Wistar Ramipril + HOE 140) und 12 mit der Substanz HOE 140 behandelte (Wistar Placebo + HOE 140) Tiere.

<table>
<thead>
<tr>
<th>ZDF</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDF Placebo</td>
<td>10</td>
</tr>
<tr>
<td>ZDF Ramipril</td>
<td>12</td>
</tr>
<tr>
<td>ZDF AVE 7688</td>
<td>12</td>
</tr>
<tr>
<td>ZDF AVE 7688 + HOE 140</td>
<td>10</td>
</tr>
<tr>
<td>ZDF Ramipril + HOE 140</td>
<td>10</td>
</tr>
<tr>
<td>ZDF Placebo + HOE 140</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WISTAR</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wistar Placebo</td>
<td>13</td>
</tr>
<tr>
<td>Wistar Ramipril</td>
<td>12</td>
</tr>
<tr>
<td>Wistar AVE 7688</td>
<td>13</td>
</tr>
<tr>
<td>Wistar AVE 7688 + HOE 140</td>
<td>12</td>
</tr>
<tr>
<td>Wistar Ramipril + HOE 140</td>
<td>12</td>
</tr>
<tr>
<td>Wistar Placebo + HOE 140</td>
<td>12</td>
</tr>
</tbody>
</table>

3.3.3 Implantation der osmotischen Minipumpen

Hierzu wurde eine Inhalationsnarkose mit Isofluran über eine Beatmungsmaske (Größe Katzen, mittel, Firma Heiland, Hamburg), die an einer Beatmungspumpe (Universal
Material und Methoden

Respirator, Firma FMI-Instruments, Ober-Beerbach) angeschlossen war, durchgeführt. Die Ratten wurden mit 3 Vol.% Isofluran (Isofluran-Baxter, Baxter Deutschland, Unterschleißheim), 130 ml/min O₂ (Fa. Messer, Grießheim) und 375 ml/min Luft bei einer Frequenz von 60x/min und einer Inspirationsrate von 40% beatmet und narkotisiert. Die Tiere lagen auf einem beheizbaren Operationstisch (Firma FMI-Instruments, Ober-Beerbach), der auf eine konstante Temperatur von 37°C eingestellt war.

Die Ratten wurden im Nackenbereich geschoren (Schermaschine für Kleintiere, Elektra II, Schneidekopf GH 700, Firma Aesculap), anschließend wurde der rasierte Bereich, welcher dem Operationsfeld entsprach, mit Cutasept F® (63g 2-Propanol, 0,025g Benzalkoniumchlorid/100 ml aqua dest. Firma Bode) desinfiziert. Als Lichtquelle diente eine Kaltlichtlampe (Modell Kl 1400, Firma Schott, Mainz).

Das Operationsbesteck und das Hautklammergerät wurden in einem Bad aus Cutasept F® und NaCl-Gemisch im Verhältnis 1:1 zur Desinfektion eingelegt.

Chirurgisches Instrumentarium:

Das gesamte Operationsbesteck wurde von der Firma Aesculap, Tuttlingen bezogen: 1 chirurgische Pinzette; 1 anatomische Pinzette; 1 chirurgische Schere, spitz-stumpf, gerade; 1 Arterienklemme nach Pean 240 mm.

Klammergerät:

1 Hautklammergerät Größe 14 (Diener, Deutschland); Klammer nach Dr. Stichs (Firma Döll, Hofheim)

Es erfolgte ein Hautschnitt mit der chirurgischen Schere im Bereich zwischen den Schulterblättern. Mit Hilfe der Arterienklemme wurde durch vorsichtiges Tunneln eine kleine Tasche im subkutanen Bindegewebe präpariert. Die Pumpe wurde in diese Tasche eingeschoben; hierbei wurde darauf geachtet, dass der Flußregler vom Hautschnitt weg zeigte. Der Hautschnitt wurde mit Klammer geschlossen und anschließend mit Betaisodona® (10 g Povidon-Jod in 100 ml Lösung, Mundipharma GmbH, Limburg) desinfiziert. Bis zum
Material und Methoden

Erwachen aus der Narkose wurde jede Ratte auf eine 37°C warme Heizdecke gelegt. Für die gesamte Operation wurden etwa eineinhalb Minuten benötigt.

3.3.4 Bestimmung der Körpermasse, der Futter- und Wasseraufnahme

In der 21. und 31. Woche wurden bei den Tieren die Stoffwechselparameter Körpermasse, Futter- und Wasseraufnahme gemessen, um eine Aussage über die Stoffwechsellage und das Fress- und Trinkverhalten der Tiere zu erhalten. Zusätzlich wurden so bei den mit der Substanz AVE 7688 und Ramipril behandelten Tieren die aufgenommenen Behandlungsdosen überwacht. Entsprechend dem Wasserverbrauch wurde die Ramipril-Dosis für die jeweilige Gruppe angepasst, so dass eine hohe Genauigkeit der Dosierung von 1mg/kg Körpermasse Ratte über die gesamte Behandlungsdauer gewährleistet war.

Zu Behandlungsbeginn waren alle Tiere 21 Wochen alt, daher wurden in der ersten Untersuchung repräsentativ 12 ZDF Placebo und 13 Wistar Placebo Tiere untersucht. Diese Werte dienten als Ausgangswerte für die späteren Untersuchungen.

3.3.5 Bestimmung von Albumin, Creatinin und Glukose im Urin

Albuminbestimmung:

Creatininbestimmung:

Glukosebestimmung:

Die Glukosebestimmung im Urin erfolgte mit dem Testkit „Gluco-quant“ (Firma Roche Diagnostics GmbH, Mannheim) im „Roche/Hitachi 912“ Analyzer der Firma Roche Diagnostics GmbH, Mannheim. Hierbei handelt es sich um einem vollautomatischen,
Material und Methoden

3.3.6 Retrobulbäre Blutentnahme

3.3.6.1 Bestimmung von Gesamtcholesterin

Die quantitative Bestimmung von Gesamtcholesterin erfolgte in einem klinisch-chemischen Analyseautomaten von Hitachi (Hitachi Type 912 Automatic Analyzer, Roche Diagnostics GmbH, Mannheim).

3.3.6.2 Bestimmung der Angiotensin-Konversionsenzym-Aktivität

Die quantitative Bestimmung der ACE-Aktivität erfolgte photometrisch bei 340 nm mit Hilfe eines klinisch-chemischen Analyseautomaten von Hitachi (Hitachi Type 912 Automatic Analyzer, Roche Diagnostics GmbH, Mannheim).

Durch Zugabe von Tripeptidsubstrat N-[3-(2-furyl)acryloyl]-L-Phenyl-alanyl-Glycyl-Glycin (FAPGG) (Firma Sigma, Deisenhofen) wirkte ACE als Katalysator. FAPGG wurde hydrolysiert und zu Furylacryloyl-Phenylalanin (FAP) und Glycin-Glycin (GG) gespalten. Durch den hydrolytischen Abbau kam es zu einer Absorptionsabnahme bei 340 nm. Im etablierten und evaluierten spektralphotometrischen Verfahren wurde die ACE-Aktivität in der Probe durch einen Vergleich der Reaktionsgeschwindigkeit der Probe mit der eines ACE-Kalibrators (Firma Sigma, Deishofen) ermittelt.
3.3.6.3 Bestimmung von Glukose und HbA1c

Glukosebestimmung:

HbA1c-Bestimmung:
3.3.7 Blutdruckmessung

3.3.8 **Oraler Glukose-Toleranztest**

3.3.9 **Enduntersuchung nach 26-wöchiger Behandlung**

3.3.9.1 **Herz- und Blutentnahme**

Vor der Herzentnahme wurden die Ratten gewogen und narkotisiert (Ketamin 10%: 100 mg/kg Körpermasse i.m., Firma Intervet Unterschleißheim; und Xylazin 2%: 2 mg/kg Körpermasse i.m., Firma Bayer Vital, Leverkusen; 1 ml-Spritze und Kanüle 0,6x30 mm). Um eine Blutgerinnung zu vermeiden, wurden zusätzlich 3000 I.E. Heparin-Lithium/kg Körpermasse i.m. (5000 I.E./ml, Firma Sigma- Aldrich Chemie, Steinheim) verabreicht.

Das Tier wurde auf einem Labortisch in Rückenlage auf eine absorbierende Unterlage (Molinea Plus-D 40x60cm, Firma Paul Hartmann AG, Herbrechtingen) gelegt und an der ventralen Halsseite ein etwa 1,5 cm langer medianer Hautschnitt geführt (1 chirurgische Schere, spitz-stumpf gebogen; 1 chirurgische Pinzette; Firma Aesculap, Tuttlingen). Die Trachea wurde freipräpariert, inzisiert und ein Tubus eingeführt. Die Ratte wurde über einen Positivdruck-Respirator mit 5 ml Raumluft/Atemzug bei einer Frequenz von 80/min beatmet.

Der Thorax wurde durch einen etwa 2 cm langen medianen Hautschnitt am kaudalen Thoraxende, gefolgt von zwei lateralen Schnitten, eröffnet (siehe Abbildung 9). Es erfolgte die Eröffnung des Herzbeutels und Entnahme des Herzens mit ca. 0,5 cm anhängender Aorta.
Material und Methoden

Das aus den großen Gefäßen austretende Blut wurde unmittelbar gewonnen und unter EDTA-Zusatz (1,6 mg Kalium-EDTA/ml Blut) bei 2000 g für eine Dauer von 10 Minuten zentrifugiert.

3.3.9.2 Sektion

Aorta entnommen. Aufgrund der Fülle der Parametern wird in dieser Arbeit nur auf die Organe Herz und Niere eingegangen.

Niere und Herz (nach WORKING-HEART-Untersuchung) wurden gewogen. Alle Organe wurden in 4%-igem Formalin fixiert oder in flüssigem Stickstoff schockgefroren und bis zur weiteren Untersuchung bei -80°C gelagert.

3.3.10 WORKING HEART

3.3.10.1 Modell

Im LANGENDORFF-Modus wird das Herz über eine Kanüle in der Aorta Ascendens versorgt. Durch den Perfusionsdruck bleiben die Aortenklappen geschlossen und es erfolgt kein Volumenauswurf aus dem linken Ventrikel (LANGENDORFF, 1895).

Isolierte Tierherzen können aber nicht nur, wie nach LANGENDORFF, retrograd über die Aorta, sondern auch antegrad über den linken Vorhof perfundiert werden. Sie werfen dann ein Schlagvolumen aus und bauen einen aortalen Druck gegen einen vorgegebenen, definierten Widerstand (Nachlast) auf. Somit verrichten sie Druck-Volumen-Arbeit und werden deshalb international als WORKING HEART bezeichnet. Dabei verrichtet der linke Ventrikel Pumparbeit, wogegen der rechte Ventrikel leer schlägt und keine messbare Arbeit verrichtet. Das isolierte, antegrad perfundierte WORKING HEART vereint Vorteile der isolierten

Für die Perfusion der Herzen wurde täglich frische, modifizierte Krebs-Henseleit-Lösung (KREBS u. HENSELEIT 1932) sowie eine modifizierte Krebs-Henseleit-Lösung mit Laktat Zusatz verwendet. Die Krebs-Henseleit-Lösung setzte sich wie folgt zusammen: 118 mmol Natriumchlorid/l, 4,7 mmol Kaliumchlorid/l, 2,52 mmol Kalziumchlorid/l, 1,64 mmol...

Material und Methoden

Für die weitere WORKING-HEART-Präparation wurde der linke Vorhof mit einer Mikrofederschere eröffnet und kanüliert. Die doppelwandige Herzkammer wurde so montiert, dass das Herz in etwa zur Hälfte von warmer Nährösung umgeben war. Es wurde in dem

Der Aortenfluss wurde ebenfalls mit einem Ultraschallflussaufnehmer gemessen. Durch Einengung des Kanalsystems durch das der Aortenfluss geleitet wurde, war es mittels einer Nachlastmembran möglich, die peripheren Druckverhältnisse im Körperkreislauf nachzustellen.

AF = Aortenflußmessung,
CF = Koronarflußmessung,
ALP = Nachlastmessung,
PLP = Vorlastmessung,
LVP = Messung des linksventrikulären Druckes,
pO₂ = Sauerstoffpartialdruckmessung,
WH = Schalterstellung im Working-Heart-Modus,
LH = Schalterstellung im Langendorff-Modus,
LV = linker Ventrikel,
RV = rechter Ventrikel
Abb. 11: Photographische Darstellung der Versuchsapparatur Isoliertes Herz, hier im WORKING-HEART-Modus dargestellt.

Abb. 12: Nahaufnahme des in die Apparatur eingebundenen Herzens.
3.3.10.2 Meßbare Parameter

Tabelle 2 enthält die in der WORKING-HEART-Apparatur gemessenen Parameter.

Tab. 2: Bezeichnungen, Formelzeichen und Einheiten der gemessenen Werte in der Versuchssapparatur WORKING HEART, die zur Auswertung und weiteren Berechnung herangezogen wurden.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Formelzeichen</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linksvventrikulärer systolischer Druck</td>
<td>LVSP</td>
<td>mmHg</td>
</tr>
<tr>
<td>Maximale Druckanstiegs geschwindigkeit des linken Ventrakels (Maß für die Kontraktilität)</td>
<td>dLVP/dt max</td>
<td>mmHg/s</td>
</tr>
<tr>
<td>Maximale Druckabfallsgeschwindigkeit des linken Ventrakels</td>
<td>dLVP/dt min</td>
<td>mmHg/s</td>
</tr>
<tr>
<td>Linksvventrikulärer enddiastolischer Druck</td>
<td>LVEDP</td>
<td>mmHg</td>
</tr>
<tr>
<td>Mittlere Vorlast (preload pressure, mean)</td>
<td>PLP mean</td>
<td>mmHg</td>
</tr>
<tr>
<td>Mittlere Nachlast (afterload pressure, mean)</td>
<td>ALP mean</td>
<td>mmHg</td>
</tr>
<tr>
<td>Aortenfluß</td>
<td>AF</td>
<td>ml/min</td>
</tr>
<tr>
<td>Koronarfluß</td>
<td>CF</td>
<td>ml/min</td>
</tr>
<tr>
<td>Sauerstoffpartialdruck</td>
<td>pO₂</td>
<td>mmHg</td>
</tr>
<tr>
<td>Herzfrequenz</td>
<td>HR</td>
<td>/min</td>
</tr>
<tr>
<td>Auswurfzeit</td>
<td>ET</td>
<td>ms</td>
</tr>
</tbody>
</table>

3.3.10.3 Berechnete Parameter

Tabelle 3 stellt die Parameter dar, die aus den in Tabelle 2 gemessenen Parametern errechnet werden können. Einige Parameter müssen anhand von Formeln berechnet werden, die nachfolgend aufgeführt sind.
Tab. 3: Bezeichnungen, Formelzeichen und Einheiten der Parameter, die aus den in Tab. 2 dargestellten Werten berechnet werden können.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Formelzeichen</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herzminutenvolumen</td>
<td>HMV</td>
<td>ml/min</td>
</tr>
<tr>
<td>Schlagvolumen</td>
<td>SV</td>
<td>µl/min</td>
</tr>
<tr>
<td>Herzarbeit</td>
<td>HW</td>
<td>mJ</td>
</tr>
<tr>
<td>Herzleistung</td>
<td>HP</td>
<td>mW</td>
</tr>
<tr>
<td>Myokardialer Sauerstoffverbrauch</td>
<td>MVO₂</td>
<td>µmol/s</td>
</tr>
<tr>
<td>Effizienz</td>
<td>E</td>
<td>%</td>
</tr>
</tbody>
</table>

Herzminutenvolumen

Das Herzminutenvolumen (HMV) wurde durch die Addition von Aortenfluß (AF) und Koronarfluß (CF) berechnet. Die Einheit der Parameter ist ml/min.

Schlagvolumen

Die Berechnung des Schlagvolumens (SV) erfolgte unter Einsatz folgender Formel:

\[
SV \ [µl] = 10^3 \times \left(AF \ [ml/ \min] + CF \ [ml/ \min] \right) / HR \ [\text{hr}],
\]

wobei AF = Aortenfluß und CF = Koronarfluß

Herzarbeit

Aus der allgemeinen Formel für die Herzarbeit:

\[HW = P \times V + 0,5 \times m \times v^2 \] (P = Druck, V = Volumen, m = Masse, v = Geschwindigkeit)

errechnet sich folgende Formel für die erbrachte Herzarbeit im WORKING HEART:

\[HW = (ALP_{\text{mean}}-PLP_{\text{mean}}) \times SV + 0,5 \times \rho \times SV \times v^2 \]

(\(\rho\) = Dichte des Perfusates. Bei der hier verwendeten modifizierten Krebs-Henseleit-Lösung beträgt sie 1,004 kg/m³.)

Die Geschwindigkeit ist durch die Formel nach NEELY et al. (1967) definiert:

\[v = SV / \left(\pi \times r^2 \times ET \right) \]

(\(r\) = Radius der Aorta, in dieser Working-Heart-Anlage beträgt sie \(10^{-3} \times 0,09\) m, ET= Auswurfzeit in ms)

Daraus ergibt sich die hier verwendete Formel für die Herzarbeit:

\[HW [J] = 133,3 \left[\frac{(N/m^2)}{mmHg} \right] \times (ALP_{\text{mean}} - PLP_{\text{mean}}) [mmHg] \times SV [m^3] \]

\[+ 0,5 \times 1,004 [kg/m^3] \times SV [m^3] \times (SV [m^3] / (\pi \times r^2 [m^2] \times ET [s]))^2 \]

(1mmHg = 133,3 Pa = 133,3 N/m²)

Herzleistung

Leistung wurde definiert als Arbeit pro Zeit, deshalb ergibt sich folgende Formel für die Herzleistung (HP):

\[HP [W] = HW [J] \times HR [/s] \]

Myokardialer Sauerstoffverbrauch

Die Berechnung für den myokardialen Sauerstoffverbrauch (MVO₂) erfolgte nach NEELY et al. (1967):

\[MVO₂ [\mu mol / s] = (0,0227 \times (pO₂ arteriell - pO₂ venös) [mmHg] / 760 [mmHg] \]
Material und Methoden

/0,0224 [ml / µmol])× CF [ml / s]

Dabei ist 0,0227 der Bunsensche Löslichkeitskoeffizient für die verwendete Krebs-Henseleit-Lösung, 760 mmHg der angenommene Luftdruck und 0,0224 ist der Umrechnungsfaktor für das Gasvolumen.

Effizienz

Wird die Herzleistung auf den Sauerstoffverbrauch bezogen, erhält man die Effizienz (E) des Herzens. Durch Einsatz des Energieäquivalentes von 0,441 J pro µmol Sauerstoff kann die Effizienz in Prozent angegeben werden:

\[E \% = \frac{H_{P} [W]}{(MVO_{2}[\mu mol / s] \times 0,441 [J / \mu mol]) \times 100} \]

3.3.10.4 Belastungstest am WORKING HEART

Nachdem die Herzen in die WORKING-HEART-Apparatur eingehängt, im Langendorff Modus vollständig prépariert und in den WORKING-HEART-Modus umgeschaltet worden waren, fand eine etwa fünfzehnminütige Stabilisierungsphase statt. Diese erfolgte bei einer Vorlast von 11 mmHg und einer Nachlast von 80 mmHg. Anschließend erfolgte über Nachlastveränderung ein Belastungstest.

3.3.10.4.1 Nachlasterhöhung

Im Verlauf der Nachlasterhöhung wurde die Vorlast auf 11 mmHg eingestellt. Ausgehend von 40 mmHg wurde die Nachlast in 20 mmHg-Schritten nach jeweils zweiminütiger Dauer erhöht, bis kein Aortenfluß mehr vorhanden war. Es wurden die Mittelwerte aller Parameter aus allen Herzaktionen am Ende der Zweiminutenphasen berechnet und ausgewertet.

3.3.11 Bestimmung von Insulin im Plasma

Die Messung von Insulin erfolgte mittels Radioimmunoassay (RIA) (Sensitive Rat Insulin RIA Kit, Firma Linco Research Inc., St. Charles, U.S.A.) im klinisch-chemischen Labor der Fima Aventis Pharma Deutschland GmbH unter der Leitung von Prof. Dr. J. Sandow, mit
Material und Methoden

Die Probe wurde mit Assay-Puffer und Ratten-Hormon-Antikörpern 24h lang inkubiert, anschließend wurde 125Jod-markiertes Ratten-Hormon (Insulin) hinzugegeben und erneut 24h inkubiert. Je mehr nicht-markiertes Antigen vorhanden war, desto weniger markiertes (radioaktives) Antigen wurde gebunden.

3.3.12 Bestimmung der Substanz MDL 108.048 im Plasma

Die Bestimmung von MDL 108.048, der aktive Metabolit von AVE 7688, im Plasma erfolgte mittels einer innerhalb der Firma Aventis Pharma Deutschland GmbH etablierten Methode mit LC MS/MS (Liquid Chromatography Mass Spectrometry/ Mass Spectrometry) nach Spaltung möglicher Konjugate mit Dithiothreitol (DTT) in dem Gerät API 3000 der Firma Applied Biosystems (Bezug über Firma Sciex, Toronto, Kanada).

LC MS/MS stellt die selektivste und sensitivste Methode in der Bioanalytik dar. Nach Auftrennung mittels LC wurde die organische Verbindung im Vakuum verdampft und zerfiel
Material und Methoden

3.3.13 Autoradiographische-Bindungsuntersuchung der Substanz AVE 7688 in der Ratte

Es sollte untersucht werden, in welchen Organen die Substanz AVE 7688 bzw. deren aktiver Metabolit das MDL 108.048 nach oraler Gabe bindet. Dies wurde anhand einer autoradiographischen-Bindungsstudie mit 14C-markierten AVE 7688 an einer vorher unbehandelten männlichen Wistar-Ratte ermittelt, unter Einbeziehung der Radioluminographie im „Drug Metabolism and Pharmacokinetics“ (DMPK) Labor der Firma Aventis Pharma Deutschland GmbH. Die Radioluminographie erlaubt die Untersuchung der Verteilung von Substanzen im Tier, ohne Organe oder Gewebe zu schädigen.

Für die Untersuchung der Substanz AVE 7688 wurden frische (-20°C) ultra-dünne (25 µm) Ganzkörperschnitte (Frigocut 2800 E, Leica Instruments GmbH Deutschland) für 48 Stunden mit der Vakuum-Kontakt-Technik auf einer radioaktivempfindlichen Platte in einem Fujix Bio-Imaging-Analyzer BAS 5000 inkubiert. Mit der Software Aida (Beta Version 2.2, Firma RAYTEST, Straubenhard) wurden die Konzentrationen der 14C-markierten Substanz AVE 7688 und sein aktiver Metabolit berechnet und gespeichert.

3.3.14 Nierenhistologie

Histologische Färbung:

Um die Färbung durchführen zu können, müssen die Gewebsschnitte entparaffiniert werden. Hierzu wurden sie zweimal zehn Minuten in Xylol (Firma Merck, Darmstadt) inkubiert, gefolgt von dreimaliger Inkubation für zehn Minuten in 96% Ethanol (Firma Merck, Darmstadt), einmaliger Inkubation für zehn Minuten in 70% Ethanol (Firma Merck, Darmstadt). Im Anschluß wurden die Gewebsschnitte mit destilliertem Wasser gespült. Es folgte eine Inkubation für zehn Minuten bei 60°C in Schiff’schem Reagenz (Firma Merck, Darmstadt), ein kurzes Eintauchen in Wasser und Inkubation für zwei Minuten in saurem
Material und Methoden

Hämalaun nach Mayer (1 g Hämatoxylin, 0,2 g Natriumjodat, 50 g reines Kalialaun, gelöst in 1000 ml Aqua dest. Nach einer Woche Zusatz von 15 ml Eisessig) (alle Chemikalien: Firma Merck, Darmstadt). Im Anschluss wurden die Schnitte zweimal für zehn Minuten in Leitungswasser gewaschen. Die Schnitte wurden einmal mit 70% Ethanol, dreimal mit 96% Ethanol und dreimal mit Xylol zur Dehydation gespült. Bis zum Eindecken wurden die Gewebsschnitte an der Luft getrocknet. Die Präparation und darauffolgende Untersuchung der Schnitte erfolgte im Labor der Pathologie der Firma Aventis Pharma Deutschland GmbH unter der Leitung von Dr. H.-L. Schmidts.

Histologische Untersuchung:

Die Berechnung der „Endscores“ erfolgte durch Bildung eines Mittelwertes aus der ersten und zweiten Betrachtung für die jeweiligen Tiere.

3.4 Statistik

Die Tests wurden auf einem Signifikanzniveau von 5% Irrtumswahrscheinlichkeit pro Parameter durchgeführt, das heißt, p<0,05 wurde als als signifikant betrachtet. Ergebnisse wurden als arithmetischer Mittelwert ± Standardfehler des Mittelwertes (µ ± SEM) angegeben.
4. ERGEBNISSE

4.1 Körpermasse, Futter und Wasseraufnahme

4.1.1 Körpermasse

In den ZDF-Ratten wurden bei den mit der Substanz HOE 140 behandelten Tieren eine signifikant höhere Körpermasse gegenüber der Placebogruppe in der 31., 39. und 47. Lebenswoche festgestellt. Weiterhin war die Körpermasse der mit den Substanzen AVE 7688 + HOE 140 behandelten Tieren in der 39. Lebenswoche gegenüber der Placebogruppe signifikant höher.

Die Werte für die Körpermasse der Tiere in den Gruppen von Wistar-Ratten sind der Tabelle 4 zu entnehmen, die Werte für die Körpermasse der Gruppen von ZDF-Ratten sind der in Tabelle 5 aufgelistet.
Ergebnisse

Tab. 4: Körpermasse in den sechs Gruppen von Wistar-Ratten in der 21., 31., 39., und 47. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g; $\chi \pm \text{SEM bei } n = 12-13$. *: p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Behandlungsbeginn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>495,7 ± 8,8</td>
<td>488,7 ± 11,3</td>
<td>514,9 ± 13,8</td>
<td>544,2 ± 14,6</td>
<td></td>
</tr>
<tr>
<td>AVE 7688</td>
<td>480,1 ± 10,0</td>
<td>497,3 ± 10,2</td>
<td>522,3 ± 11,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>537,1 ± 8,2 *</td>
<td>559,8 ± 7,9 *</td>
<td>578,3 ± 9,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>471,6 ± 6,6</td>
<td>521,9 ± 8,0</td>
<td>546,7 ± 7,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>475,9 ± 10,0</td>
<td>486,2 ± 11,0</td>
<td>499,1 ± 11,5 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>514,8 ± 10,0</td>
<td>527,8 ± 9,2</td>
<td>546,3 ± 9,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5: Körpermasse in den sechs Gruppen von ZDF-Ratten in der 21., 31., 39., und 47. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g; $\chi \pm \text{SEM bei } n = 10-12$. *: p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Behandlungsbeginn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>400,0 ± 9,0</td>
<td>378,7 ± 5,9</td>
<td>361,8 ± 7,6</td>
<td>352,0 ± 10,6</td>
<td></td>
</tr>
<tr>
<td>AVE 7688</td>
<td>387,7 ± 9,7</td>
<td>384,0 ± 9,3</td>
<td>378,8 ± 12,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>374,9 ± 10,7</td>
<td>360,1 ± 11,2</td>
<td>360,0 ± 17,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>437,7 ± 17,9 *</td>
<td>414,4 ± 16,0 *</td>
<td>415,0 ± 16,7 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>422,5 ± 13,3</td>
<td>406,2 ± 12,9 *</td>
<td>404,0 ± 12,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>381,0 ± 12,7</td>
<td>359,5 ± 11,7</td>
<td>370,0 ± 13,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.2 Futteraufnahme

Bei keiner der Versuchsgruppen, weder basierend auf Wistar noch denen der ZDF-Ratten, konnte in der 31. Lebenswoche im Vergleich zur Placebogruppe ein wesentlicher Unterschied
ergebnisse

gefunden werden. Werte für die Futteraufnahme der Tiere in den Gruppen von Wistar-Ratten sind der Tabelle 6 und in den Gruppen von ZDF-Ratten sind der Tabelle 7 zu entnehmen.

Tab. 6: Futteraufnahme in den sechs Gruppen von Wistar-Ratten in der 21. und 31. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g/Tag; \(\overline{\bar{x}} \pm \text{SEM bei } n = 12-13.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>21</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>19,0 ± 1,9</td>
<td>24,3 ± 1,6</td>
</tr>
<tr>
<td>AVE 7688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 7: Futteraufnahme der sechs Gruppen von ZDF-Ratten in der 21. und 31. Lebenswoche: ZDF Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g/Tag; \(\overline{\bar{x}} \pm \text{SEM bei } n = 10-12. \) Es wurden keine signifikanten Unterschiede zur Placebogruppe festgestellt.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>21</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>34,9 ± 1,9</td>
<td>50,5 ± 2,4</td>
</tr>
<tr>
<td>AVE 7688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.3 Wasseraufnahme

Bei den Wistar-Gruppen der mit den Substanzen AVE 7688+ HOE 140 und in den der mit den Substanzen Ramipril + HOE 140 behandelten Tiere war die Wasseraufnahme signifikant höher als in den Tieren der Placebogruppe in der 31. Lebenswoche.

Bei den ZDF-Ratten in der Gruppe der mit der Substanz AVE 7688 behandelten und in der mit der Substanz HOE 140 behandelten Tiere war die Wasseraufnahme signifikant höher als in den Tieren der Placebogruppe in der 31. Lebenswoche.

Die Werte für die Wasseraufnahme der Tiere in den Gruppen von Wistar-Ratten sind der Tabelle 8 zu entnehmen, die für die Gruppen von ZDF-Ratten der Tabelle 9.

Tab. 8: Wasseraufnahme der sechs Gruppen von Wistar-Ratten in der 21. und 31. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in ml/Tag; \(\bar{\chi} \pm \text{SEM bei } n = 12-13. \): \(p<0.05 \) vs. Placebo

<table>
<thead>
<tr>
<th>Wasseraufnahme in den Gruppen von Wistar-Ratten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter in Wochen</td>
</tr>
<tr>
<td>Gruppen</td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>AVE 7688</td>
</tr>
<tr>
<td>Ramipril</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
</tr>
<tr>
<td>AVE 768 + HOE140</td>
</tr>
<tr>
<td>Ramipril + HOE140</td>
</tr>
</tbody>
</table>
Ergebnisse

Tab. 9: Wasseraufnahme der sechs Gruppen von ZDF-Ratten in der 21. und 31. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in ml/Tag; $\bar{\chi} \pm$ SEM bei n = 10-12. *: p<0,05 vs. Placebo

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Alter in Wochen</th>
<th>Behandlungsbeginn</th>
<th>Wasseraufnahme (ml/Tag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>112,1 ± 8,2</td>
<td>197,0 ± 6,2</td>
<td></td>
</tr>
<tr>
<td>AVE 7688</td>
<td>144,0 ± 10,5 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>180,0 ± 8,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE140</td>
<td>133,9 ± 13,2 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE140</td>
<td>157,9 ± 16,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE140</td>
<td>161,4 ± 7,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Ergebnisse der Urinuntersuchungen

4.2.1 Ergebnisse der Untersuchung von Albumin und Creatinin im Urin

Die Ergebnisse für die Bestimmung von Albumin/Creatinin im Urin können für die Tiere in den Gruppen von Wistar-Ratten der Tabelle 10, für die Tiere in den Gruppen von ZDF-Ratten der Tabelle 11 entnommen werden.

Ergebnisse

Eine graphische Darstellung der Albumin/Creatinin-Werte im Urin der Wistar- und ZDF-Gruppen kann den Abbildungen 13 und 14 entnommen werden.

Tab. 10: Durchschnittliche Albumin/Creatinin-Spiegel im Urin der sechs Gruppen von Wistar-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mg/mmol; \(\bar{x} \pm SEM \) bei n = 12 - 13. \(*: p<0,05 \) vs. Placebo.

<table>
<thead>
<tr>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>42,24 ± 21,59</td>
<td>149,82 ± 64,10</td>
<td>290,10 ± 73,69</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>18,07 ± 4,89 *</td>
<td>21,21 ± 8,18 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>184,27 ± 49,62</td>
<td>188,40 ± 42,28</td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>32,59 ± 13,05 *</td>
<td>126,93 ± 51,27</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>23,20 ± 10,53 *</td>
<td>33,06 ± 17,08 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>230,60 ± 103,77</td>
<td>146,72 ± 51,52</td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse

Tab. 11: Durchschnittliche Albumin/Creatinin-Spiegel im Urin der sechs Gruppen von ZDF-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mg/mmol; \(\bar{x} \pm \text{SEM bei } n = 10-12. *: p<0,05 \) vs. Placebo.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>Behandlungsbeginn</td>
<td>1330,99 ± 230,23</td>
<td>956,60 ± 101,78</td>
<td>1257,31 ± 206,48</td>
</tr>
<tr>
<td>AVE 7688</td>
<td></td>
<td>135,08 ± 11,63 *</td>
<td>100,86 ± 17,11 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td></td>
<td>1249,59 ± 299,07</td>
<td>841,69 ± 324,54</td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td></td>
<td>1192,97 ± 175,93</td>
<td>1732,47 ± 225,16</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td></td>
<td>210,89 ± 59,55 *</td>
<td>172,10 ± 41,34 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td></td>
<td>906,55 ± 177,32</td>
<td>1122,91 ± 303,79</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 13: Albumin/Creatinin-Verhältnis im Urin der sechs Gruppen von Wistar-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mg/mmol; \(\bar{x} \pm \text{SEM bei } n = 12 - 13. *: p<0,05 \) vs. Placebo.

Ergebnisse

Abb. 14: Albumin/Creatinin-Verhältnis im Urin der sechs Gruppen von ZDF-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mg/mmol; \(\chi \pm SEM \) bei \(n = 10-12 \). \(*:\) \(p<0,05 \) vs. Placebo.

4.2.2 Ergebnisse der Untersuchung von Glukose im Urin

Die Ergebnisse für die Bestimmung der Glukose im Urin können für die Tiere in den Gruppen der Wistar-Ratten der Tabelle 12, für die Tiere in den Gruppen der ZDF-Ratten der Tabelle 13 entnommen werden.

Bei den Wistar-Ratten war in der 31. Lebenswoche signifikant weniger Glukose im Urin in den Gruppen der mit den Substanzen AVE 7688 + HOE 140 und Ramipril + HOE 140 behandelten Tieren im Vergleich zur Placebogruppe nachweisbar.

Auffällig war die hochgradige Glukosurie in allen ZDF-Ratten. So lagen die Werte dieser Tiere in der 39. Lebenswoche zwischen 500,19 ± 15,62 und 419,13 ± 38,32 mmol/l Glukose,
Ergebnisse

bei den Wistar-Gruppen dagegen waren im Urin zu diesem Zeitpunkt zwischen 0,50 und 0,55 ± 0,03 mmol/l Glukose nachweisbar.

<table>
<thead>
<tr>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppen</td>
<td>Behandlungsbeginn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>0,85 ± 0,13</td>
<td>1,43 ± 0,09</td>
<td>0,55 ± 0,03</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>0,79 ±0,11</td>
<td>0,51 ± 0,01</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>1,62 ± 0,11</td>
<td>0,50 ± 0,00</td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE140</td>
<td>1,31 ± 0,11</td>
<td>0,50 ± 0,00</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE140</td>
<td>0,57 ± 0,05 *</td>
<td>0,50 ± 0,00</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE140</td>
<td>0,62 ± 0,06 *</td>
<td>0,50 ±0,00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppen</td>
<td>Behandlungsbeginn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>588,44 ± 10,92</td>
<td>553,97 ± 6,28</td>
<td>489,22 ± 15,26</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>520,03 ± 13,52</td>
<td>459,27 ± 15,61</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>538,69 ±8,94</td>
<td>480,17 ± 10,01</td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE140</td>
<td>580,39 ± 8,91</td>
<td>500,19 ± 15,62</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE140</td>
<td>489,38 ± 16,83</td>
<td>439,64 ± 24,06</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE140</td>
<td>490,96 ± 48,36</td>
<td>419,13 ± 38,32</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Ergebnisse der Bestimmung von Cholesterin im Plasma

Die Ergebnisse für die Bestimmung von Cholesterin im Plasma können für die Tiere in den Gruppen von Wistar-Ratten der Tabelle 14, für die Tiere in den Gruppen von ZDF-Ratten der Tabelle 15 entnommen werden.

Bei den Wistar-Ratten konnte ein signifikant niedriger Cholesterinspiegel in der 31. Lebenswoche in den mit der Substanz HOE 140 behandelten Tieren festgestellt werden, verglichen mit der Placebogruppe.

Tab. 14: Ergebnisse der Bestimmung von Cholesterin im Plasma der sechs Gruppen von Wistar-Ratten in der 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mmol/l; \(\bar{x} \pm \text{SEM bei } n = 12-13. \) \(*: p<0,05 \) vs. Placebo.

<table>
<thead>
<tr>
<th>Cholesterin im Plasma der Gruppen von Wistar-Ratten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter in Wochen</td>
</tr>
<tr>
<td>Gruppen</td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>AVE 7688</td>
</tr>
<tr>
<td>Ramipril</td>
</tr>
<tr>
<td>Placebo+HOE 140</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
</tr>
</tbody>
</table>
Tab. 15: Ergebnisse der Bestimmung von Cholesterin im Plasma der sechs Gruppen von ZDF-Ratten in der 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mmol/l; \(\bar{x} \pm \text{SEM bei } n = 10-12. *: p<0,05 \text{ vs. Placebo.}

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>5,69 ± 0,11</td>
<td>6,57 ± 0,27</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>5,04 ± 0,24</td>
<td>4,58 ± 0,11 *</td>
</tr>
<tr>
<td>Ramipril</td>
<td>6,00 ± 0,36</td>
<td>6,43 ± 0,48</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>5,78 ± 0,19</td>
<td>6,94 ± 0,33</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>5,44 ± 0,34</td>
<td>5,00 ± 0,32 *</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>5,26 ± 0,30</td>
<td>5,92 ± 0,43</td>
</tr>
</tbody>
</table>

Abb. 15: Cholesterinspiegel der sechs Gruppen von ZDF-Ratten in der 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mmol/l; \(\bar{x} \pm \text{SEM bei } n = 10-12. *: p<0,05 \text{ vs. Placebo.}
4.4 Angiotensin-Konversionsenzym-Aktivität

Die Ergebnisse für die Bestimmung der ACE-Aktivität im Plasma können für die Tiere in den Gruppen der Wistar-Ratten der Tabelle 16, für die Tiere in den Gruppen der ZDF-Ratten der Tabelle 17 entnommen werden.

Die ACE-Aktivität im Plasma der Tiere in den Gruppen von Wistar-Ratten ist in Abbildung 16, und für die Tiere in den Gruppen von ZDF-Ratten in Abbildung 17 dargestellt.
Ergebnisse

Tab. 16: Ergebnisse der Bestimmung von ACE-Aktivität im Plasma der sechs Gruppen von Wistar-Ratten in der 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in U/l; \(\bar{x} \pm \text{SEM bei } n = 12-13. \): p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>ACE-Aktivität im Plasma der Gruppen von Wistar-Ratten</th>
<th>Alter in Wochen</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>134,54 ± 6,73</td>
<td>126,69 ± 6,76</td>
<td></td>
</tr>
<tr>
<td>AVE 7688</td>
<td>28,54 ± 3,42 *</td>
<td>35,31 ± 4,01 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>52,17 ± 3,60 *</td>
<td>35,75 ± 3,38 *</td>
<td></td>
</tr>
<tr>
<td>Placebo+HOE 140</td>
<td>210,50 ± 7,89 *</td>
<td>224,83 ± 10,89 *</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>24,08 ± 3,54 *</td>
<td>27,91 ± 5,39 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>46,17 ± 2,34 *</td>
<td>44,50 ± 5,47 *</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 17: Ergebnisse der Bestimmung ACE-Aktivität im Plasma der sechs Gruppen von ZDF-Ratten in der 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in U/l; \(\bar{x} \pm \text{SEM bei } n = 10-12. \): p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>ACE-Aktivität im Plasma der Gruppen von ZDF-Ratten</th>
<th>Alter in Wochen</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDF-Gruppen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>112,40 ± 1,59</td>
<td>116,40 ± 4,07</td>
<td></td>
</tr>
<tr>
<td>AVE 7688</td>
<td>10,00 ± 2,53 *</td>
<td>9,50 ± 0,68 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>8,33 ± 1,08 *</td>
<td>25,08 ± 3,05 *</td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>101,18 ± 3,91</td>
<td>101,27 ± 3,10</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>6,30 ± 0,33 *</td>
<td>10,30 ± 0,84 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>30,40 ± 7,30 *</td>
<td>25,90 ± 3,32 *</td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse

Abb. 16: Ergebnisse der Bestimmung ACE-Aktivität im Plasma der sechs Gruppen von Wistar-Ratten in der 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in U/l; \(\bar{x} \pm SEM \) bei \(n = 12-13 \). *: \(p<0,05 \) vs. Placebo.

Abb. 17: Ergebnisse der Bestimmung der ACE-Aktivität im Plasma der sechs Gruppen von ZDF-Ratten in der 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in U/l; \(\bar{x} \pm SEM \) bei \(n = 10-12 \). *: \(p<0,05 \) vs. Placebo.
4.5 Ergebnisse der Bestimmung von Glukose und HbA1c im Plasma

Tabelle 18 stellt die Werte der Blut-Glukosespiegel der verschiedenen Behandlungsgruppen der Wistar-Ratten dar, Tabelle 19 die Werte der Blut-Glukosespiegel der verschiedenen Behandlungsgruppen der ZDF-Ratten.

Bei keiner der Versuchsgruppen, weder basierend auf Wistar noch denen der ZDF-Ratten, konnte in der 31. und 39. Woche, verglichen mit der jeweiligen Placebogruppe, ein biologisch relevanter Effekt beobachtet werden.

Tabelle 20 stellt die HbA1c Werte der verschiedenen Behandlungsgruppen der Wistar-Ratten dar, Tabelle 21 die HbA1c Werte der Gruppen der ZDF-Ratten.

Tab. 18: Blut-Glukosespiegel der sechs Gruppen von Wistar-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mmol/l; $\chi \pm$ SEM bei n = 12-13.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>7,37 ± 0,12</td>
<td>7,69 ± 0,30</td>
<td>8,12 ± 0,26</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>6,20 ± 0,17</td>
<td>6,78 ± 0,17</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>7,52 ± 0,49</td>
<td>7,14 ± 0,25</td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>9,63 ± 0,37</td>
<td>7,05 ± 0,21</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>8,54 ± 0,19</td>
<td>6,51 ± 0,17</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>7,44 ± 0,28</td>
<td>7,41 ± 0,37</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 19: Blut-Glukosespiegel der sechs Gruppen von ZDF-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mmol/l; $\chi \pm$ SEM bei n = 10-12.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>31,51 ± 1,12</td>
<td>32,73 ± 0,83</td>
<td>34,72 ± 1,20</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>29,86 ± 1,05</td>
<td>33,28 ± 0,79</td>
<td></td>
</tr>
<tr>
<td>Ramipril</td>
<td>37,00 ± 1,05</td>
<td>33,46 ± 0,97</td>
<td></td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>28,70 ± 1,20</td>
<td>32,86 ± 1,17</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>31,40 ± 0,93</td>
<td>33,05 ± 1,29</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>30,94 ± 2,71</td>
<td>32,17 ± 0,89</td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse

Tab. 20: Durchschnittliche HbA1c-Werte im Plasma der sechs Gruppen von Wistar-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in %; \(\bar{x} \pm \text{SEM} \) bei \(n = 12-13 \).

<table>
<thead>
<tr>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppen</td>
<td>Behandlungsbeginn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>4,46 ± 0,02</td>
<td>4,33 ± 0,02</td>
<td>4,44 ± 0,03</td>
</tr>
<tr>
<td>AVE 7688</td>
<td></td>
<td>4,51 ± 0,02</td>
<td>4,60 ± 0,04</td>
</tr>
<tr>
<td>Ramipril</td>
<td></td>
<td>4,53 ± 0,02</td>
<td>4,63 ± 0,05</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>4,33 ± 0,02</td>
<td>4,54 ± 0,03</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>4,50 ± 0,04</td>
<td>4,59 ± 0,02</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>4,40 ± 0,02</td>
<td>4,74 ± 0,06</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 21: Durchschnittliche HbA1c-Werte im Plasma der sechs Gruppen von ZDF-Ratten in der 21., 31. und 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in %; \(\bar{x} \pm \text{SEM} \) bei \(n = 10-12 \). *: \(p<0,05 \) vs. Placebo.

<table>
<thead>
<tr>
<th>Alter in Wochen</th>
<th>21</th>
<th>31</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppen</td>
<td>Behandlungsbeginn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>9,72 ± 0,35</td>
<td>10,90 ± 0,25</td>
<td>12,19 ± 0,15</td>
</tr>
<tr>
<td>AVE 7688</td>
<td></td>
<td>9,94 ± 0,29</td>
<td>11,13 ± 0,25</td>
</tr>
<tr>
<td>Ramipril</td>
<td></td>
<td>10,98 ± 0,23</td>
<td>12,39 ± 0,23</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>8,63 ± 0,64 *</td>
<td>11,37 ± 0,45</td>
<td></td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>9,52 ± 0,46</td>
<td>10,34 ± 0,54 *</td>
<td></td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>10,00 ± 0,33</td>
<td>10,98 ± 0,48</td>
<td></td>
</tr>
</tbody>
</table>
4.6 Ergebnisse der Blutdruck- und Herzfrequenzmessung

Die Ergebnisse für die Bestimmung des Blutdruckes und der Herzfrequenz können für die Gruppen der Wistar-Ratten der Tabelle 22, die Ergebnisse für die Gruppen der ZDF-Ratten können der Tabelle 23 entnommen werden.

In der Gruppe der Wistar-Ratten, die mit der Substanz AVE 7688 behandelt waren, und in der Gruppe der Wistar-Ratten, die mit den Substanzen AVE 7688 + HOE 140 behandelt waren, konnte ein signifikant niedrigerer Blutdruck sowie eine signifikant niedrigere Herzfrequenz, verglichen mit der Placebogruppe, festgestellt werden.

Ein vergleichbares Ergebnis zeigte sich in den ZDF-Ratten. In den ZDF-Ratten wurde ebenfalls in der Gruppe der mit der Substanz AVE 7688 und in der Gruppe der mit den Substanzen AVE 7688 + HOE 140 behandelten Tiere ein signifikant niedrigerer Blutdruck, verglichen mit der Placebogruppe, festgestellt.

Die Blutdruckwerte der Wistar- und ZDF-Gruppen sind jeweils in Abbildung 18 und Abbildung 19 dargestellt, die Herzfrequenz der Wistar- und ZDF-Gruppen sind jeweils in Abbildung 20 und Abbildung 21 dargestellt.

Tab. 22: Blutdruck (mmHg) und Herzfrequenz (Schläge/min) der sechs Gruppen von Wistar-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben ± SEM bei n = 12-13. ∗: p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Mittlerer basaler Blutdruck</th>
<th>Herzfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>180 ± 5</td>
<td>365 ± 8</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>152 ± 8 ∗</td>
<td>304 ± 9 ∗</td>
</tr>
<tr>
<td>Ramipril</td>
<td>170 ± 5</td>
<td>361 ± 7</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>167 ± 5</td>
<td>353 ± 7</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>149 ± 6 ∗</td>
<td>308 ± 9 ∗</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>170 ± 5</td>
<td>346 ± 9</td>
</tr>
</tbody>
</table>
Tab. 23: Blutdruck (mmHg) und Herzfrequenz (Schläge/min) der sechs Gruppen von ZDF-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben \(\bar{x} \pm SEM \) bei \(n = 10-12. \): \(p < 0.05 \) vs. Placebo.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Mittlerer basaler Blutdruck</th>
<th>Herzfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>164 ± 6</td>
<td>319 ± 7</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>121 ± 11 *</td>
<td>324 ± 15</td>
</tr>
<tr>
<td>Ramipril</td>
<td>147 ± 7</td>
<td>319 ± 9</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>155 ± 5</td>
<td>313 ± 7</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>119 ± 6 *</td>
<td>316 ± 12</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>140 ± 10</td>
<td>320 ± 8</td>
</tr>
</tbody>
</table>

Abb. 18: Blutdruck der sechs Gruppen von Wistar-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mmHg; \(\bar{x} \pm SEM \) bei \(n = 12-13. \): \(p < 0.05 \) vs. Placebo.
Ergebnisse

Abb. 19: Blutdruck der sechs Gruppen von ZDF-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in mmHg; $\bar{x} \pm$ SEM bei n = 10-12. *: p<0,05 vs. Placebo.

Abb. 20: Herzfrequenz der sechs Gruppen von Wistar-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in Schläge/min; $\bar{x} \pm$ SEM bei n = 12-13. *: p<0,05 vs. Placebo.
Ergebnisse

Abb. 21: Herzfrequenz der sechs Gruppen von ZDF-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in Schläge/min; \(\bar{x} \pm SEM \) bei \(n = 10-12 \).

4.7 Ergebnisse des oralen Glukose-Toleranztests

Die Mittelwerte und Standardfehler des Mittelwertes der Blut-Glukosewerte in mmol/l für die Zeitpunkte -60, 0, +30, +60, +120 und +180 Minuten vor/nach oraler Glukosegabe in den verschiedenen Behandlungsgruppen der ZDF-Ratten sind in Tabelle 24 angegeben. Eine graphische Darstellung dieser Parameter kann der Abbildung 22 entnommen werden.

Die ZDF-Ratten in der Gruppe Placebo + HOE zeigten, verglichen mit den Tieren der Placebogruppe, signifikant niedrigere Blut-Glukose-Werte zu den Zeitpunkten +30, +60, +120 und +180 Minuten nach Glukosegabe.
Ergebnisse

Tab. 24: Ergebnisse der Bestimmung von Glukose im Plasma nach oraler Glukosegabe zu verschiedenen Zeitpunkten in den sechs Gruppen von ZDF-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere.. Angaben in mmol/l; $\bar{x} \pm$ SEM bei n= 10-12. *: p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>Zeit nach oraler Glukosegabe (min.)</th>
<th>-60</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>28,65 ± 1,26</td>
<td>28,45 ± 1,26</td>
<td>34,10 ± 0,97</td>
<td>33,11 ± 0,86</td>
<td>29 ± 0,63</td>
<td>27,62 ± 0,36</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>28,53 ± 1,21</td>
<td>28,74 ± 1,52</td>
<td>35,26 ± 1,07</td>
<td>33,82 ± 1,04</td>
<td>28,55 ± 0,82</td>
<td>26,14 ± 0,62</td>
</tr>
<tr>
<td>Ramipril</td>
<td>27,51 ± 0,95</td>
<td>28 ± 0,64</td>
<td>34,85 ± 0,70</td>
<td>32,95 ± 0,64</td>
<td>28,26 ± 0,65</td>
<td>26,39 ± 0,59</td>
</tr>
<tr>
<td>Placebo+Hoe140</td>
<td>26,20 ± 0,81</td>
<td>25,86 ± 0,90</td>
<td>31,07 ± 1,00</td>
<td>30,96 ± 0,69*</td>
<td>26,91 ± 0,60*</td>
<td>25,46 ± 0,63*</td>
</tr>
<tr>
<td>AVE7688+Hoe140</td>
<td>25,90 ± 0,89</td>
<td>26,60 ± 1,10</td>
<td>32,15 ± 1,05</td>
<td>33,68 ± 1,03</td>
<td>28,26 ± 0,70</td>
<td>26,35 ± 0,67</td>
</tr>
<tr>
<td>Ramipril+Hoe140</td>
<td>28,77 ± 1,29</td>
<td>27,26 ± 0,72</td>
<td>31,99 ± 1,05</td>
<td>34,58 ± 1,11</td>
<td>28,56 ± 0,64</td>
<td>26,40 ± 0,63</td>
</tr>
</tbody>
</table>

Abb. 22: Ergebnisse des oralen Glukose-Toleranztests (Blut-Glukose in mmol/l) in den sechs Gruppen von ZDF-Ratten in der 39. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. (Blut-Glukose in mmol/l). Angaben in mmol/l; $\bar{x} \pm$ SEM bei n= 10-12. *: p<0,05 vs. Placebo.
Ergebnisse

4.8 Ergebnisse im WORKING HEART

4.8.1 Ergebnisse der Nachlasterhöhung

Die Mittelwerte und mittleren Standardfehler, die für die gemessenen und berechneten Parameter wie linksventrikulärer systolischer Druck, linksventrikulärer enddiastolischer Druck, die maximale Druckanstiegs geschwindigkeit als Maß für die Kontraktilität, die maximale linksventrikuläre Druckabfallsgeschwindigkeit, Aortenfluss, Koronarfluss, Herz frequenz; Herzminutenvolumen, Schlagvolumen, Auswurfzeit, Herzarbeit, Herzleistung, myokardialer Sauerstoffverbrauch und Effizienz erhalten wurden, sind in Tabelle 25 angegeben. Bei der Nachlasterhöhung sind die Werte für alle Belastungsstufen von 40 bis 200 mm Hg dargestellt.

Graphisch abgebildet sind die Kontraktilität, der Aortenfluss, der Koronarfluss, die Herzleistung und die Effizienz, sowohl für die Wistar Placebogruppe, als auch für die ZDF Placebogruppe jeweils in Abbildung 23-27.

Ergebnisse

Tab. 25: Ergebnisse der Nachlasterhöhungsversuche der Gruppen Placebo Wistar und Placebo ZDF, die im WORKING HEART durchgeführt wurden. Es sind für alle gemessenen und berechneten Parameter jeweils die Mittelwerte (\(\bar{x}\)) und mittleren Standardfehler (SEM) bei den Nachlaststufen von 40 bis 200 mm Hg dargestellt. LVSP = linksventrikulärer systolischer Druck, LVEDP = linksventrikulärer enddiastolischer Druck, dLVP/dt\(_{\text{max}}\) = maximale linksventrikuläre Druckanstiegs geschwindigkeit, dLVP/dt\(_{\text{min}}\) = maximale linksventrikuläre Druckabfallsgeschwindigkeit, AF = Aortenfluss, CF = Koronarfluss, HR = Herzfrequenz, HMV = Herzminutenvolumen, SV = Schlagvolumen, ET = Auswurfzeit, HW = Herzarbeit, HP = Herzleistung, MVO\(_2\) = myokardialer Sauerstoffverbrauch, E = Effizienz. \(*\): p<0,05 vs. Wistar Placebo.

<table>
<thead>
<tr>
<th>Belastungsstufe (mm Hg Nachlast)</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVSP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo Gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>(\bar{x})</td>
<td>103,08</td>
<td>121,03</td>
<td>137,13</td>
<td>155,67</td>
<td>165,95</td>
<td>178,39</td>
<td>186,71</td>
<td>187,34</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>5,17</td>
<td>4,40</td>
<td>3,82</td>
<td>3,28</td>
<td>3,25</td>
<td>2,85</td>
<td>4,08</td>
<td>4,26</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\bar{x})</td>
<td>107,67</td>
<td>124,22</td>
<td>134,36</td>
<td>144,08</td>
<td>151,37</td>
<td>159,45</td>
<td>164,78</td>
<td>165,78</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>4,34</td>
<td>2,54</td>
<td>3,87</td>
<td>5,22</td>
<td>6,71</td>
<td>8,53</td>
<td>10,45</td>
<td>10,86</td>
</tr>
<tr>
<td>LVEDP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo Gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>(\bar{x})</td>
<td>12,59</td>
<td>13,69</td>
<td>13,95</td>
<td>15,30</td>
<td>16,31</td>
<td>16,45</td>
<td>17,65</td>
<td>17,75</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>1,61</td>
<td>2,20</td>
<td>2,19</td>
<td>2,12</td>
<td>2,76</td>
<td>2,44</td>
<td>2,37</td>
<td>2,31</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\bar{x})</td>
<td>17,49</td>
<td>17,37</td>
<td>16,74</td>
<td>16,32</td>
<td>16,76</td>
<td>16,89</td>
<td>17,37</td>
<td>17,53</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>2,58</td>
<td>2,53</td>
<td>1,97</td>
<td>1,82</td>
<td>1,43</td>
<td>1,35</td>
<td>1,43</td>
<td>1,40</td>
</tr>
<tr>
<td>dLVP/dt(_{\text{max}}) (mm Hg/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo Gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>(\bar{x})</td>
<td>3282</td>
<td>4225</td>
<td>4960</td>
<td>5884</td>
<td>6120</td>
<td>6428</td>
<td>6427</td>
<td>6376</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>126</td>
<td>195</td>
<td>212</td>
<td>270</td>
<td>208</td>
<td>217</td>
<td>210</td>
<td>206</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\bar{x})</td>
<td>3242</td>
<td>4160</td>
<td>4704</td>
<td>5092*</td>
<td>4958*</td>
<td>4991*</td>
<td>4976*</td>
<td>4969*</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>228</td>
<td>146</td>
<td>160</td>
<td>213</td>
<td>267</td>
<td>283</td>
<td>282</td>
<td>280</td>
</tr>
<tr>
<td>dLVP/dt(_{\text{min}}) (mm Hg/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo Gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>(\bar{x})</td>
<td>-2437</td>
<td>-3151</td>
<td>-3810</td>
<td>-4434</td>
<td>-4640</td>
<td>-4711</td>
<td>-4457</td>
<td>-4410</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>185</td>
<td>206</td>
<td>207</td>
<td>194</td>
<td>217</td>
<td>241</td>
<td>247</td>
<td>219</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\bar{x})</td>
<td>-2138</td>
<td>-2587</td>
<td>-2850*</td>
<td>-3092*</td>
<td>-3106*</td>
<td>-3143*</td>
<td>-3001*</td>
<td>-2940*</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>-114</td>
<td>-182</td>
<td>234</td>
<td>254</td>
<td>332</td>
<td>350</td>
<td>323</td>
<td>296</td>
</tr>
<tr>
<td>AF (ml/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo Gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>(\bar{x})</td>
<td>43,18</td>
<td>35,94</td>
<td>31,30</td>
<td>24,91</td>
<td>15,95</td>
<td>8,00</td>
<td>1,46</td>
<td>0,50</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>3,06</td>
<td>2,69</td>
<td>1,89</td>
<td>1,98</td>
<td>2,31</td>
<td>1,46</td>
<td>0,79</td>
<td>0,03</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\bar{x})</td>
<td>32,56*</td>
<td>29,38</td>
<td>23,52</td>
<td>18,23</td>
<td>9,43</td>
<td>4,66</td>
<td>1,28</td>
<td>0,46</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>3,27</td>
<td>3,03</td>
<td>4,03</td>
<td>3,28</td>
<td>3,08</td>
<td>2,08</td>
<td>0,79</td>
<td>0,03</td>
</tr>
<tr>
<td>CF (ml/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo Gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar</td>
<td>(\bar{x})</td>
<td>10,64</td>
<td>16,25</td>
<td>19,88</td>
<td>22,89</td>
<td>14,42</td>
<td>26,27</td>
<td>27,06</td>
<td>27,12</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>0,79</td>
<td>1,10</td>
<td>1,32</td>
<td>1,49</td>
<td>1,73</td>
<td>1,80</td>
<td>1,95</td>
<td>1,96</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\bar{x})</td>
<td>7,60*</td>
<td>11,30</td>
<td>13,70*</td>
<td>15,84*</td>
<td>15,88*</td>
<td>17,02*</td>
<td>17,42*</td>
<td>17,53*</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>0,53</td>
<td>0,69</td>
<td>0,87</td>
<td>1,16</td>
<td>1,75</td>
<td>2,05</td>
<td>2,17</td>
<td>2,19</td>
</tr>
</tbody>
</table>
Ergebnisse

Tab. 25 (fort.): Ergebnisse der Nachlasterhöhungsversuche der Gruppen Placebo Wistar und Placebo ZDF, die im WORKING HEART durchgeführt wurden. Es sind für alle gemessenen und berechneten Parameter jeweils die Mittelwerte (\(\bar{\chi} \)) und mittleren Standardfehler (SEM) bei den Nachlaststufen von 40 bis 200 mm Hg dargestellt. LVSP = linksventrikulärer systolischer Druck, LVEDP = linksventrikulärer enddiastolischer Druck, dLVP/dt\(_{\text{max}} \) = maximale linksventrikuläre Druckanstiegs geschwindigkeit, dLVP/dt\(_{\text{min}} \) = maximale linksventrikuläre Druckabfallsgeschwindigkeit, AF = Aortenfluss, CF = Koronarfluss, HR = Herzfrequenz, HMV = Herzmittvolumen, SV = Schlagvolumen, ET = Auswurfzeit, HW = Herzarbeit, HP = Herzleistung, MVO\(_2\) = myokardialer Sauerstoffverbrauch, E = Effizienz, *: p<0,05 vs. Wistar Placebo.

<table>
<thead>
<tr>
<th>Parameter (Einheit)</th>
<th>Belastungstufe (mm Hg Nachlast)</th>
<th>Placebo Gruppe</th>
<th>Wistar</th>
<th>ZDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (Schläge/min)</td>
<td>40 60 80 100 120 140 160 180 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\bar{\chi})</td>
<td>(\bar{\chi})</td>
<td>(\bar{\chi})</td>
<td>(\bar{\chi})</td>
</tr>
<tr>
<td></td>
<td>SEM 12,36 12,92 12,70 12,97 13,95 12,29 12,29 12,03 12,15</td>
<td>SEM 97,52* 110,3* 120,26 122,4* 102,5* 106,0* 108,1* 108,43* 108,4*</td>
<td>SEM 10,66 8,75 12,29 11,90 19,41 20,34 20,90 20,98 21,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53,82 52,19 51,18 47,80 40,38 34,28 28,51 27,62 27,59</td>
<td>40,16* 40,68* 37,22* 34,06* 25,32* 21,68* 18,70* 17,98* 17,98*</td>
<td>3,48 3,71 3,06 3,07 2,97 2,70 2,18 1,96 1,96</td>
<td></td>
</tr>
<tr>
<td>HMV (ml/min)</td>
<td>379,65 359,70 334,52 306,06 241,94 194,70 158,96 155,43 155,53</td>
<td>432,33 374,07 315,64 278,17 258,86 223,80 199,15 193,84 193,85</td>
<td>43,60 31,82 38,50 29,79 26,02 26,00 26,46 27,26 27,26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>379,65 359,70 334,52 306,06 241,94 194,70 158,96 155,43 155,53</td>
<td>432,33 374,07 315,64 278,17 258,86 223,80 199,15 193,84 193,85</td>
<td>43,60 31,82 38,50 29,79 26,02 26,00 26,46 27,26 27,26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>379,65 359,70 334,52 306,06 241,94 194,70 158,96 155,43 155,53</td>
<td>432,33 374,07 315,64 278,17 258,86 223,80 199,15 193,84 193,85</td>
<td>43,60 31,82 38,50 29,79 26,02 26,00 26,46 27,26 27,26</td>
<td></td>
</tr>
<tr>
<td>ET (ms)</td>
<td>3,14 3,72 3,78 3,68 3,08 2,88 2,89 3,31</td>
<td>1,77 2,49 2,89 3,19 3,41 3,19 2,90 2,81 2,80</td>
<td>0,11 0,16 0,22 0,27 0,30 0,28 0,21 0,19 0,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,48 2,37 3,09 3,63 3,49 3,27 2,89 2,84 2,84</td>
<td>1,77 2,49 2,89 3,19 3,41 3,19 2,90 2,81 2,80</td>
<td>0,11 0,16 0,22 0,27 0,30 0,28 0,21 0,19 0,20</td>
<td></td>
</tr>
<tr>
<td>HW (mJ)</td>
<td>1,48 2,37 3,09 3,63 3,49 3,27 2,89 2,84 2,84</td>
<td>1,77 2,49 2,89 3,19 3,41 3,19 2,90 2,81 2,80</td>
<td>0,11 0,16 0,22 0,27 0,30 0,28 0,21 0,19 0,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,51 5,73 7,90 9,47 9,72 9,59 8,64 8,40 8,39</td>
<td>2,70* 4,53 5,68* 6,53* 5,85* 5,66* 5,16* 4,96* 4,96*</td>
<td>0,26 0,41 0,49 0,62 0,75 0,81 0,75 0,67 0,67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,51 5,73 7,90 9,47 9,72 9,59 8,64 8,40 8,39</td>
<td>2,70* 4,53 5,68* 6,53* 5,85* 5,66* 5,16* 4,96* 4,96*</td>
<td>0,26 0,41 0,49 0,62 0,75 0,81 0,75 0,67 0,67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,51 5,73 7,90 9,47 9,72 9,59 8,64 8,40 8,39</td>
<td>2,70* 4,53 5,68* 6,53* 5,85* 5,66* 5,16* 4,96* 4,96*</td>
<td>0,26 0,41 0,49 0,62 0,75 0,81 0,75 0,67 0,67</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 25 (fort.): Ergebnisse der Nachlasterhöhungsversuche der Gruppen Placebo Wistar und Placebo ZDF, die im WORKING HEART durchgeführt wurden. Es sind für alle gemessenen und berechneten Parameter jeweils die Mittelwerte (\(\bar{x} \)) und mittleren Standardfehler (SEM) bei den Nachlaststufen von 40 bis 200 mm Hg dargestellt. LVSP = linksventrikulärer systolischer Druck, LVEDP = linksventrikulärer enddiastolischer Druck, dLVP/dt\(_{\text{max}}\) = maximale linksventrikuläre Druckanstiegsgeschwindigkeit, dLVP/dt\(_{\text{min}}\) = maximale linksventrikuläre Druckabfallsgeschwindigkeit, AF = Aortenfluss, CF = Koronarfluss, HR = Herzfrequenz, HMV = Herzminutenvolumen, SV = Schlagvolumen, ET = Auswurzeit, HW = Herzarbeit, HP = Herzleistung, MVO\(_2\) = myokardialer Sauerstoffverbrauch, E = Effizienz. *: p<0.05 vs. Wistar Placebo.

Belastungsstufe (mm Hg Nachlast)	Parameter (Einheit)	Placebo Gruppe	Wistar SEM	\(\bar{x} \)	ZDF SEM	\(\bar{x} \)	\(\bar{x} \) SEM	\(\bar{x} \)	ZDF SEM	\(\bar{x} \)	\(\bar{x} \) SEM	\(\bar{x} \)	ZDF SEM	\(\bar{x} \)	\(\bar{x} \) SEM	\(\bar{x} \)	ZDF SEM	\(\bar{x} \)	\(\bar{x} \) SEM	\(\bar{x} \)	ZDF SEM	\(\bar{x} \)		
	MVO\(_2\) (µmol/s)																							
	ZDF	26,96	180,4*	290,6*	339,82	377,32	395,33	399,76	397,17	395,46	395,45													
	Wistar	8,06	12,39	16,20	17,39	16,81	15,29	13,54	13,06	13,06	13,06													
	E (%)																							
	ZDF	0,52	7,36	10,67	12,74	14,27	13,74	12,64	11,55	11,04	11,04													
	Wistar	0,29	0,86	1,70	1,93	2,35	2,18	2,05	1,94	1,94	1,94													

Abb. 23: Maximale linksventrikuläre Druckanstiegsgeschwindigkeit dLVP/dt\(_{\text{max}}\) in mm Hg/s; \(\bar{x} \pm \) SEM als Maß der Kontraktilität der Gruppen Wistar Placebo und ZDF Placebo während der Nachlasterhöhung in der WORKING-HEART-Apparatur. *: p<0.05 vs. Wistar Placebo.
Ergebnisse

Abb. 24: Aortenfluss in ml/min; \(\bar{x} \pm \text{SEM} \) der Gruppen Wistar Placebo und ZDF Placebo während der Nachlasterhöhung in der WORKING-HEART-Apparatur. *: p<0,05 vs. Wistar Placebo.

Abb. 25: Koronarfluss in ml/min; \(\bar{x} \pm \text{SEM} \) der Gruppen Wistar Placebo und ZDF Placebo während der Nachlasterhöhung in der WORKING-HEART-Apparatur. *: p<0,05 vs. Wistar Placebo.
Ergebnisse

Abb. 26: Herzleistung in mW; $\overline{x} \pm$ SEM) der Gruppen Wistar Placebo und ZDF Placebo während der Nachlasterhöhung in der WORKING-HEART-Apparatur. *: $p<0,05$ vs. Wistar Placebo.

Abb. 27: Auswurfzeit in ms; $\overline{x} \pm$ SEM der Gruppen Wistar Placebo und ZDF Placebo während der Nachlasterhöhung in der WORKING-HEART-Apparatur. *: $p<0,05$ vs. Wistar Placebo.
4.8.2 Basalwerte bei 80 mmHg Nachlast

Die Mittelwerte und mittleren Standardfehler, die für die gemessenen und berechneten Parameter maximale linksventrikuläre Druckanstiegs geschwindigkeit, Aortenfluss, Koronarfluss, Herzleistung und Auswurfzeit, welche bei 80 mmHg vor Durchführung des Belastungstests für den Vergleich der Basalwerte in Krebs-Henseleit Lösung und in Krebs- Henseleit Lösung mit Laktatzusatz gemessen und berechnet wurden, sind für die Gruppen Wistar Placebo und ZDF Placebo in Tabelle 26 dargestellt. Eine graphische Darstellung dieser Parameter kann jeweils der Abbildung 28 bis Abbildung 32 entnommen werden.

Ergebnisse

Tab. 26: Basalwerte der Gruppen Placebo Wistar perfundiert mit Krebs-Henseleit (Placebo Wistar KH), Placebo Wistar perfundiert mit Krebs-Henseleit Lösung mit Laktatzusatz (Placebo Wistar Laktat), Placebo ZDF perfundiert mit Krebs-Henseleit (Placebo ZDF KH) und Placebo ZDF perfundiert mit Krebs-Henseleit Lösung mit Laktatzusatz (Placebo ZDF KH) im WORKING HEART. Statistisch ausgewertet wurde der Vergleich Placebo Wistar mit Krebs-Henseleit Lösung (KH) vs. Placebo Wistar Krebs-Henseleit Lösung mit Laktatzusatz (Laktat) und Placebo ZDF mit Krebs-Henseleit Lösung (KH) vs. Placebo ZDF Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). *: p<0,05 vs. der Gruppe Placebo Wistar KH bzw. der Gruppe Placebo ZDF KH.

Es sind jeweils die Mittelwerte (\(\overline{x} \)) und mittleren Standardfehler (SEM) bei einer Nachlast von 80 mm Hg der Parameter dLVP/dt max = maximale linksventrikuläre Druckanstiegseschwindigkeit, AF = Aortenfluss, CF = Koronarfluss, ET = Auswurfzeit, HP = Herzeistung und Auswurfzeit = ET dargestellt.

<table>
<thead>
<tr>
<th>Basalwert Parameter (Einheit)</th>
<th>Placebo Gruppe</th>
<th>KH</th>
<th>Laktat</th>
</tr>
</thead>
<tbody>
<tr>
<td>dLVP/dt max (mm Hg/s) Wistar</td>
<td>(\overline{x})</td>
<td>4170</td>
<td>5182 *</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>259</td>
<td>184</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\overline{x})</td>
<td>4335</td>
<td>4738</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>138</td>
<td>233</td>
</tr>
<tr>
<td>AF (ml/min) Wistar</td>
<td>(\overline{x})</td>
<td>20,89</td>
<td>32,19 *</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>2,09</td>
<td>1,70</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\overline{x})</td>
<td>19,63</td>
<td>21,03</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>3,56</td>
<td>3,77</td>
</tr>
<tr>
<td>CF (ml/min) Wistar</td>
<td>(\overline{x})</td>
<td>21,80</td>
<td>21,46</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>1,62</td>
<td>1,50</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\overline{x})</td>
<td>13,46</td>
<td>13,34</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>0,81</td>
<td>0,94</td>
</tr>
<tr>
<td>HP (mW) Wistar</td>
<td>(\overline{x})</td>
<td>6,63</td>
<td>8,16 *</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>0,46</td>
<td>0,46</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\overline{x})</td>
<td>19,63</td>
<td>21,03</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>3,56</td>
<td>3,77</td>
</tr>
<tr>
<td>ET (ms) Wistar</td>
<td>(\overline{x})</td>
<td>121,91</td>
<td>106,88 *</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>4,46</td>
<td>4,00</td>
</tr>
<tr>
<td>ZDF</td>
<td>(\overline{x})</td>
<td>148,67</td>
<td>156,57</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>8,32</td>
<td>7,04</td>
</tr>
</tbody>
</table>
Ergebnisse

Abb. 28: Maximale linksventrikuläre Druckanstiegs geschwindigkeit (dLVP/dt max) in mm Hg/s; \(\overline{X} \pm \text{SEM} \) als Maß der Kontraktilität der Gruppen Placebo Wistar und Placebo ZDF während der Einschlagzeit in der WORKING-HEART-Apparatur jeweils mit Krebs-Henseleit Lösung (KH) und Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). Statistisch ausgewertet wurde der Vergleich Placebo Wistar mit Krebs-Henseleit Lösung (KH) vs. Placebo Wistar Krebs-Henseleit Lösung mit Laktatzusatz (Laktat) und Placebo ZDF mit Krebs-Henseleit Lösung (KH) vs. Placebo ZDF Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). *: p<0,05 vs. der Gruppe Placebo Wistar KH bzw. der Gruppe Placebo ZDF KH.

Abb. 29: Aortenfluss in ml/min; \(\overline{X} \pm \text{SEM} \) der Gruppen Placebo Wistar und Placebo ZDF während der Einschlagzeit in der WORKING-HEART-Apparatur jeweils mit Krebs-Henseleit Lösung (KH) und Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). Statistisch ausgewertet wurde der Vergleich Placebo Wistar mit Krebs-Henseleit Lösung (KH) vs. Placebo Wistar Krebs-Henseleit Lösung mit Laktatzusatz (Laktat) und Placebo ZDF mit Krebs-Henseleit Lösung (KH) vs. Placebo ZDF Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). *: p<0,05 vs. Placebo Wistar KH bzw. Placebo ZDF KH.
Ergebnisse

Abb. 30: Koronarfluss in ml/min; $\bar{x} \pm$ SEM der Gruppen Placebo Wistar und Placebo ZDF während der Einschlagzeit in der WORKING-HEART-Apparatur jeweils mit Krebs-Henseleit Lösung (KH) und Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). Statistisch ausgewertet wurde der Vergleich Placebo Wistar mit Krebs-Henseleit Lösung (KH) vs. Placebo Wistar Krebs-Henseleit Lösung mit Laktatzusatz (Laktat) und Placebo ZDF mit Krebs-Henseleit Lösung (KH) vs. Placebo ZDF Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). *: p<0,05 vs. Placebo Wistar KH bzw. Placebo ZDF KH.

Herzleistung vor Belastungstest

Abb. 31: Herzleistung in mW; $\bar{x} \pm$ SEM der Gruppen Placebo Wistar und Placebo ZDF während der Einschlagzeit in der WORKING-HEART-Apparatur jeweils mit Krebs-Henseleit Lösung (KH) und Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). Statistisch ausgewertet wurde der Vergleich Placebo Wistar mit Krebs-Henseleit Lösung (KH) vs. Placebo Wistar Krebs-Henseleit Lösung mit Laktatzusatz (Laktat) und Placebo ZDF mit Krebs-Henseleit Lösung (KH) vs. Placebo ZDF Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). *: p<0,05 vs. Placebo Wistar KH bzw. Placebo ZDF KH.
Ergebnisse

Abb. 32: Auswurfzeit in ms; \(\bar{x} \pm \text{SEM} \) der Gruppen Placebo Wistar und Placebo ZDF während der Einschlagzeit in der WORKING-HEART-Apparatur jeweils mit Krebs-Henseleit Lösung (KH) und Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). Statistisch ausgewertet wurde der Vergleich Placebo Wistar mit Krebs-Henseleit Lösung (KH) vs. Placebo Wistar Krebs-Henseleit Lösung mit Laktatzusatz (Laktat) und Placebo ZDF mit Krebs-Henseleit Lösung (KH) vs. Placebo ZDF Krebs-Henseleit Lösung mit Laktatzusatz (Laktat). *: p<0,05 vs. Placebo Wistar KH bzw. Placebo ZDF KH.

4.9 Ergebnisse der Bestimmung von Insulin

Die Ergebnisse für die Insulinbestimmung im Plasma der Tiere in den Gruppen der Wistar- und ZDF-Ratten können der Tabelle 27 entnommen werden.

In den verschiedenen Behandlungsgruppen der Wistar-Ratten konnte kein signifikanter Unterschied im Vergleich zur Placebogruppe festgestellt werden. Die Werte der Tiere in der Gruppe die mit der Substanz AVE 7688 und in der Gruppe die mit Ramipril behandelt wurde zeigten erhöhte Plasma-Insulinwerte, die jedoch nicht signifikant waren.

In der Gruppe der ZDF-Ratten, welche mit der Substanz AVE 7688 behandelt wurden, zeigte sich ein signifikant höherer Plasma-Insulinwert im Vergleich zur Placebogruppe.

Graphisch dargestellt sind die Plasma-Insulinwerte der Gruppen der Wistar-Ratten in Abbildung 33 und die Plasma-Insulinwerte der Gruppen der ZDF-Ratten in Abbildung 34.
Ergebnisse

Tab. 27: Ergebnisse der Bestimmung von Insulin im Plasma der sechs Gruppen von ZDF-Ratten und der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in ng/ml; $\bar{x} \pm$ SEM bei n = 12-13 bei den Wistar-Ratten und n= 10-12 bei den ZDF-Ratten. *: p<0,05 vs. Placebo.

Insulin im Plasma der Gruppen von Wistar-Ratten und ZDF-Ratten

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Wistar</th>
<th>ZDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0,78 ± 0,12</td>
<td>1,18 ± 0,21</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>1,08 ± 0,09</td>
<td>1,64 ± 0,35</td>
</tr>
<tr>
<td>Ramipril</td>
<td>1,09 ± 0,13</td>
<td>1,68 ± 0,35</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>0,80 ± 0,08</td>
<td>1,99 ± 0,24 *</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>0,88 ± 0,08</td>
<td>1,53 ± 0,14</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>0,99 ± 0,12</td>
<td>1,31 ± 0,16</td>
</tr>
</tbody>
</table>

Abb. 33: Ergebnisse der Bestimmung von Insulin (ng/ml) im Plasma der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in ng/ml; $\bar{x} \pm$ SEM bei n = 12-13.
Abb. 34: Ergebnisse der Bestimmung von Insulin (ng/ml) im Plasma der sechs Gruppen von ZDF-Ratten in der 47. Lebenswoche: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in ng/ml; \(\bar{x} \pm \text{SEM bei } n = 10-12.*: p<0,05 \text{ vs. Placebo.}

4.10 Nachweis der Substanz MDL 108.048 im Plasma

Der Nachweis der Substanz MDL 108.048, der aktive Metabolit von AVE 7688, im Plasma der Wistar-Ratten in der 47. Lebenswoche nach 26-wöchiger Behandlung ergaben folgende Werte in µg/ml; \(\bar{x} \pm \text{SEM (bei } n = 12-13) \): in der Gruppe der mit der Substanz AVE 7688 behandelten Tiere: 0,012 ± 0,001 und in der Gruppe der mit den Substanzen AVE 7688 + HOE 140 behandelten Tiere: 0,011 ± 0,00. Es konnten keine signifikanten Unterschiede zwischen den beiden Gruppen festgestellt werden.

Im Plasma der ZDF-Ratten in der 47. Lebenswoche nach 26-wöchiger Behandlung ergaben folgende Werte in µg/ml; \(\bar{x} \pm \text{SEM (bei } n = 10-12) \): in der Gruppe der mit der Substanz AVE 7688 behandelten Tiere: 0,023 ± 0,003 und in der Gruppe der mit den Substanzen AVE 7688 + HOE: 140 behandelten Tiere: 0,018 ± 0,003. Es konnten keine signifikanten Unterschiede zwischen den beiden Gruppen festgestellt werden.
4.11 Ergebnisse der autoradiographischen-Bindungsuntersuchung von der Substanz AVE 7688 in der Ratte

Per Computer wurde die Bindungsintensität von der Substanz AVE 7688 sowie dessen Metabolit in diversen Organen bestimmt. Die Untersuchung mit Ramipril wurde firmenintern im Pharmakokinetiklabor der Firma Aventis Pharma Deutschland GmbH (ehemals Hoechst AG Deutschland) 1984 durchgeführt und wird hier zum Vergleich herangezogen, da es nicht möglich war, die Untersuchung im Rahmen dieser Studie erneut durchzuführen. Aufgrund der damals weniger weit fortgeschrittenen Technologie sind die Bilder in schwarz-weiß dargestellt. Zahlen neben den jeweiligen Organen geben die relative Konzentration der Substanz, verglichen mit der Konzentration im Blut an. Zum Vergleich der beiden Untersuchungen werden die Konzentrationen in µg Equivalente 14C-Ramipril oder 14C AVE 7688/g ausgedrückt, d.h. sie stellen die Summe der Substanz und/oder seiner radioaktiv markierten Metabolite dar.

Die Konzentrationen in µg Equivalente 14C-Ramipril/g ergaben folgende Werte: Lunge ca. 0,9, Niere ca. 0,85, Leber ca. 0,8. In diesen Organen befand sich die höchste Konzentration von Ramipril und seines Metaboliten.

4.12 Organgewichte

Die Ergebnisse der Organgewichte der bei der Sektion entnommenen Organe können für die Tiere in den Gruppen der Wistar-Ratten der Tabelle 28, für die Tiere der Gruppen der ZDF-Ratten der Tabelle 29 entnommen werden.

Bei den Gruppen der Wistar-Ratten ergaben sich keine signifikante Unterschiede zur Placebogruppe bezüglich der Nierengewichte. Die Gewichte der Herzen in den mit der Substanz AVE 7688 behandelten, mit Ramipril behandelten, mit den Substanzen AVE 7688 + HOE 140 behandelten und mit den Substanzen Ramipril + HOE 140 behandelten Tieren waren signifikant niedriger als in der Placebogruppe.
Ergebnisse

In den Gruppen der ZDF-Ratten wurden signifikant niedrigere Nieren- und Herz-Gewichte, verglichen mit der Placebogruppe, in der Gruppe der mit der Substanz AVE 7688 behandelten und in der Gruppe der mit den Substanzen AVE 7688 + HOE 140 behandelten Tiere festgestellt.

Tab. 28: Durchschnittliche Organgewichte der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g bezogen auf 100 g Körpermassen; $\bar{x} \pm$ SEM bei n = 12-13. *: p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>Wistar-Gruppen</th>
<th>Niere</th>
<th>Herz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0,28 ± 0,01</td>
<td>0,29 ± 0,01</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>0,30 ± 0,01</td>
<td>0,23 ± 0,01 *</td>
</tr>
<tr>
<td>Ramipril</td>
<td>0,29 ± 0,01</td>
<td>0,22 ± 0,01 *</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>0,29 ± 0,01</td>
<td>0,27 ± 0,01</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>0,31 ± 0,01</td>
<td>0,24 ± 0,01 *</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>0,31 ± 0,01</td>
<td>0,23 ± 0,01 *</td>
</tr>
</tbody>
</table>
Tab. 29: Durchschnittliche Organgewichte der sechs Gruppen von ZDF-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g bezogen auf 100 g Körpermasse; $\bar{x} \pm$ SEM bei n = 10-12. *: p<0,05 vs. Placebo.

<table>
<thead>
<tr>
<th>ZDF-Gruppen</th>
<th>Niere</th>
<th>Herz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0,53 ± 0,02</td>
<td>0,36 ± 0,01</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>0,45 ± 0,02 *</td>
<td>0,30 ± 0,01 *</td>
</tr>
<tr>
<td>Ramipril</td>
<td>0,52 ± 0,02</td>
<td>0,35 ± 0,01</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>0,47 ± 0,02</td>
<td>0,32 ± 0,01</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>0,44 ± 0,02 *</td>
<td>0,30 ± 0,01 *</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>0,48 ± 0,03</td>
<td>0,35 ± 0,02</td>
</tr>
</tbody>
</table>

Abb. 37: Durchschnittliche Gewichte der Nieren der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g bezogen auf 100 g Körpermasse; $\bar{x} \pm$ SEM bei n = 12 – 13.
Ergebnisse

Abb. 38: Durchschnittliche Gewichte der Nieren der sechs Gruppen von ZDF-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g bezogen auf 100 g Körpermasse; $\bar{x} \pm$ SEM bei n = 10 - 12. *: p<0,05 vs. Placebo.

Abb. 39: Durchschnittliche Gewichte der Herzen der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g bezogen auf 100 g Körpermasse; $\bar{x} \pm$ SEM bei n = 12 - 13. *: p<0,05 vs. Placebo.
Ergebnisse

Abb. 40: Durchschnittliche Gewichte der Herzen der sechs Gruppen von ZDF-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben in g bezogen auf 100 g Körpermasse; $\bar{x} \pm SEM$ bei n = 10 - 12). *: p<0,05 vs. Placebo.

4.13 Nierenhistologie

Abbildung 41 und 42 zeigen Glomeruli von im Rahmen dieser Studie untersuchten Ratten. In Abbildung 41 ist eine diffuse Glomerulosklerose (1) und in Abbildung 42 eine segmental-noduläre Glomerulosklerose (1) zu erkennen. Vor allem die segmental-noduläre Glomerulosklerose, beim Menschen auch diabetische Glomerulosklerose Kimmelstiel-Wilson genannt, ist ein typischer pathologischer Befund bei diabetischen Patienten.

In den jeweiligen Abbildungen befindet sich zum Vergleich ein unauffälliges Glomerulum (3).

Als Hinweis auf eine Glomerulosklerose lässt sich auch eine Glykogenspeicherung in den gestreckten Hauptstücken nachweisen. Hierbei handelt es sich um Armani-Epstein Zellen, die in Abbildung 41 und Abbildung 42 als (2) sichtbar sind. Sie zeichnen sich durch
weitgehend leere Zellen der gestreckten Hauptstücke aus, die sich im Rahmen der Diabetes-
bedingten Glukosurie mit Glykogen füllen.

Die Ergebnisse der nierenhistologischen Untersuchungen sind in Tabelle 30 für die Gruppen
der Wistar-Ratten dargestellt und in Tabelle 31 für die Gruppen der ZDF-Ratten. Bei den
Gruppen der Wistar-Ratten konnte eine signifikante Verminderung, verglichen mit der
Placebogruppe, der glomerulären Schäden in den Gruppen der mit der Substanz AVE 7688
behandelten, mit Ramipril behandelten, mit der Substanz HOE 140 behandelten und mit den
Substanzen AVE 7688 + HOE 140 behandelten Tiere festgestellt werden. Bezüglich der
tubulären Schäden konnte ein signifikanter Unterschied zur Placebogruppe in den Gruppen
der mit der Substanz AVE 7688 behandelten, mit der Substanz HOE 140 behandelten, mit den
Substanzen AVE 7688 + HOE 140 behandelten und mit den Substanzen Ramipril + HOE 140
behandelten Tiere festgestellt werden.

In den Gruppen der ZDF-Ratten wurde eine signifikante Reduktion der glomerulären und
tubulären Schäden in den Gruppen der mit der Substanz AVE 7688 und in der Gruppe der mit
den Substanzen AVE 7688 + HOE 140 behandelten Tiere im Vergleich zur Placebogruppe
festgestellt.

Die glomerulären und tubulären Schäden an den Nieren der Gruppen der Wistar-Ratten sind
jeweils in Abbildung 43 und 45 dargestellt, die glomerulären und tubulären Schäden an den
Nieren der Gruppen der ZDF-Ratten jeweils in Abbildung 44 und 46.
Abb. 41: 1: Unvollständig diffuse Glomerulosklerose in der Niere einer Ratte. 2: Glykogenspeicherung in den gestreckten Hauptstücken (Armanni-Epstein Zellen). 3: Unauffälliges Glomerulum. PAS Färbung 175x.

Ergebnisse

Tab. 30: Glomeruläre und tubuläre Schäden (gemessen an einem Score von 0 – 5) an den Nieren der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben \(\bar{x} \pm \text{SEM} \) bei \(n = 12-13 \). *: \(p<0,05 \) vs. Placebo.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Glomeruläre Schäden</th>
<th>Tubuläre Schäden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>1,73 ± 0,29</td>
<td>1,73 ± 0,26</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>0,50 ± 0,11 *</td>
<td>0,65 ± 0,12 *</td>
</tr>
<tr>
<td>Ramipril</td>
<td>0,83 ± 0,23 *</td>
<td>1,04 ± 0,22</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>0,42 ± 0,15 *</td>
<td>0,42 ± 0,21 *</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>0,55 ± 0,27 *</td>
<td>0,36 ± 0,17 *</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>0,96 ± 0,26</td>
<td>0,71 ± 0,16 *</td>
</tr>
</tbody>
</table>

Tab. 31: Glomeruläre und tubuläre Schäden (gemessen an einem Score von 0 – 5) an den Nieren der sechs Gruppen von ZDF-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben \(\bar{x} \pm \text{SEM} \) bei \(n = 10-12 \). *: \(p<0,05 \) vs. Placebo.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Glomeruläre Schäden</th>
<th>Tubuläre Schäden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>2,45 ± 0,20</td>
<td>1,55 ± 0,17</td>
</tr>
<tr>
<td>AVE 7688</td>
<td>0,88 ± 0,16 *</td>
<td>0,29 ± 0,11 *</td>
</tr>
<tr>
<td>Ramipril</td>
<td>2,35 ± 0,18</td>
<td>1,35 ± 0,25</td>
</tr>
<tr>
<td>Placebo + HOE 140</td>
<td>2,32 ± 0,15</td>
<td>1,77 ± 0,22</td>
</tr>
<tr>
<td>AVE 7688 + HOE 140</td>
<td>1,20 ± 0,26 *</td>
<td>1,10 ± 0,23 *</td>
</tr>
<tr>
<td>Ramipril + HOE 140</td>
<td>2,50 ± 0,29</td>
<td>1,25 ± 0,23</td>
</tr>
</tbody>
</table>
Ergebnisse

Abb. 43: Glomeruläre Schäden (gemessen an einem Score von 0 – 5) an den Nieren der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben $\bar{x} \pm$ SEM bei n = 12-13. *: p<0,05 vs. Placebo.

Abb. 44: Glomeruläre Schäden (gemessen an einem Score von 0 – 5) an den Nieren der sechs Gruppen von ZDF-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben $\bar{x} \pm$ SEM bei n = 10-12. *: p<0,05 vs. Placebo.
Ergebnisse

Abb. 45: Tubuläre Schäden (gemessen an einem Score von 0 – 5) an den Nieren der sechs Gruppen von Wistar-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben $\bar{x} \pm$ SEM bei n = 12-13. \ast: p<0,05 vs. Placebo.

Abb. 46: Tubuläre Schäden (gemessen an einem Score von 0 – 5) an den Nieren der sechs Gruppen von ZDF-Ratten in der 47. Lebenswoche nach Organentnahme im Rahmen der Sektion: Placebo (Placebo), mit der Substanz AVE 7688 behandelte (AVE 7688), mit Ramipril behandelte (Ramipril), mit der Substanz HOE 140 behandelte (Placebo + HOE 140), mit den Substanzen AVE 7688 und HOE 140 behandelte (AVE 7688 + HOE 140), und mit den Substanzen Ramipril und HOE 140 behandelte (Ramipril + HOE 140) Tiere. Angaben $\bar{x} \pm$ SEM bei n = 10-12. \ast: p<0,05 vs. Placebo.
5. DISKUSSION
Ziel dieser Arbeit war, die Langzeitwirkung eines ACE/NEP-Inhibitors im Vergleich zu einem ACE-Inhibitor primär auf die renale und zusätzlich auf die kardiale Funktion an einem klinisch relevanten Modell des Typ-2-Diabetes in Ratten zu untersuchen. Weiterhin sollte die Beteiligung der Kinine unter Einsatz eines spezifischen Bradykinin-B₂-Rezeptor-Antagonisten untersucht werden. Als Tiermodell wurden adulte männliche Zucker-Diabetic-Fatty (ZDF)-Ratten mit einem manifesten Typ-2-Diabetes und adulte männliche Wistar-Ratten als Kontrollgruppe eingesetzt.

Es wurden folgende Untersuchungen durchgeführt: Nieren- und Herzfunktion, die Entwicklung von Nierenschäden, Plasmaspiegel verschiedener Blutparameter sowie die Organgewichte. In der Literatur konnte zur Zeit dieser Publikation keine Studie gefunden werden, die sowohl im ZDF-Rattenmodell als auch der Wistar-Ratte mit den gleichen Substanzen bzw. diese Kombination der Substanzen gearbeitet hat.

5.1 Effekte von ACE-Inhibitoren, ACE/NEP-Inhibitoren und B₂-Rezeptorblockade auf renale Funktion und Morphologie

5.1.1 Einfluss auf den Blutdruck
Diskussion

In dieser Studie zeigten die Wistar- und ZDF-Stämme keine systemische Hypertension, jedoch führte die Behandlung mit dem ACE/NEP-Inhibitor AVE 7688 zu einer signifikanten Blutdrucksenkung in beiden Stämmen.

Besonders in den Gruppen der ZDF-Ratten der mit dem ACE/NEP-Inhibitor AVE 7688 behandeln und mit AVE 7688+HOE 140 behandelten Tiere zeigte sich eine signifikante Blutdrucksenkung. Gleichzeitig waren diese Gruppen die einzigen unter den ZDF-Tieren, die auch eine signifikante Reduktion der glomerulären und tubulären Schäden aufwiesen. Im Gegensatz zu den Wistar-Ratten konnte in keiner der Gruppen der ZDF-Ratten ein signifikanter Unterschied in der Herzfrequenz zwischen behandelten und unbehandelten Tieren festgestellt werden. Offensichtlich zeigen sich hier stamm-spezifische Unterschiede. Das bedeutet, dass bei Blutdrucksenkung durch den Vasopeptidase-Inhibitor keine Neurohormone wie Katecholamine freigesetzt werden, die bei anderen Blutdrucksenkern wie z.B Calziumantagonisten die Herzfrequenz erhöhen. Die Herzfrequenzsenkung bei einhergehender Blutdrucksenkung durch den ACE/NEP-Inhibitor AVE 7688 ist möglicherweise darin begründet, dass der Katecholamin-bedingte cAMP-Anstieg in den Schrittmacherzellen durch die erhöhte cGMP-Bildung antagonisiert und dadurch die Triggergeschwindigkeit vermindert wird (persönliche Mitteilung PD Dr. W. Linz, Frankfurt 8. Januar, 2003). Interessant war der Befund, dass die Placebogruppe der Wistar-Ratten (179 ± 5.05 mmHg) einen signifikant höheren Blutdruck als Ausgangswert hatten als die Placebogruppe der ZDF-Ratten (163 ± 5.55 mmHg). Es lag jedoch noch keine Hypertension vor, wie sie in Spontan-Hypertensiven-Ratten existiert. Bei diesen Tieren beträgt der systolische Blutdruck mindestens 200 mmHg.

Diskussion

diabetischen Patienten, besonders demjenigen der an einer diabetischen Nephropathie erkrankt ist, im Vordergrund.

Folgende Mechanismen könnten eine zentrale Rolle spielen. Durch die ACE-Hemmung verminderte Angiotensin-II-Bildung kommt es zu einer gesteigerten Durchblutung des
Diskussion

5.1.2 Einfluss auf Glukose im Urin

Die Pathogenese der diabetischen Nephropathie ist zur Zeit noch weitgehend ungeklärt. Das hyperglykämische Milieu scheint aber eine nicht unwesentliche Rolle in der Entstehung der renalen Prozesse zu spielen, welche die für Diabetes typischen Veränderungen hervorrufen.

Als Glukoseschwelle bezeichnet man die Blutzuckerkonzentration, ab der es zu einer Glukosurie kommt. Beim Menschen gilt als Referenzwert eine Blut-Glukosekonzentration
Diskussion

In den verschiedenen Behandlungsgruppen der ZDF-Ratten konnten keine signifikanten Unterschiede der Urin-Glukosewerte, verglichen mit der Placebogruppe, festgestellt werden.

Die Werte in den jeweiligen Behandlungsgruppen der ZDF- und Wistar-Ratten spiegeln die Befunde der Plasma-Glukose und HbA₁c-Werte wider und verdeutlichen weiterhin die extrem hyperglykämische Stoffwechselsituation der ZDF-Ratten.

5.1.3 Einfluss auf Nierenhistologie und Albumin/Creatinin-Ausscheidung im Urin

In Bezug auf die Nierenhistologie zeigte der ACE/NEP-Hemmer AVE 7688 eine überlegene Wirkung. In den Wistar-Ratten zeigten die Gruppen der mit der Substanz AVE 7688 behandelten, mit Ramipril behandelten, mit der Substanz HOE 140 behandelten und mit den Substanzen AVE 7688 + HOE 140 behandelten Tiere eine signifikante Senkung der glomerulären Schäden. Die Gruppen der mit der Substanz AVE 7688 behandelten, mit der Substanz HOE 140 behandelten, mit den Substanzen AVE 7688 + HOE 140 behandelten und mit den Substanzen Ramipril + HOE 140 behandelten Tiere zeigten eine signifikante Senkung der tubulären Schäden. Auch wenn es sich hier nicht um diabetische Tiere handelt, tritt
Diskussion

Nephrosklerose auch gehäuft bei normotensiven, nicht-diabetischen älteren Personen auf, und wird dem Alterungsprozess per se zugeschrieben (SUSIC 2000).

Bei den ZDF-Tieren zeigten die Gruppen der mit der Substanz AVE 7688 behandelten und mit den Substanzen AVE 7688 + HOE 140 behandelten Tiere einheitlich und als einzige Gruppen eine signifikante Senkung sowohl der glomerulären als auch der tubulären Schäden.

Histopathologisch ist die diabetische Nephropathie durch eine glomeruläre und tubuläre Hypertrophie gekennzeichnet. Es kommt zur Entwicklung einer Glomerulosklerose, tubulärer Atrophie und interstitieller Fibrose (ANDERSON u. BRENNER 1995). Die Pathogenese dieser histologischen Veränderungen ist vielfältig. So spielt die Hyperglykämie und Glukosurie möglicherweise eine Rolle in der Modifikation der Funktion der Mesangialzellen. Hierzu zählen Faktoren wie die erhöhte Synthese von Extrazellulären Matrix Komponenten,

Ein zusätzliches Merkmal der Nephropathie ist die Proteinurie. Dies kann als Mikroalbuminurie (20-200 µg Albumin pro Minute; Albumin/Creatinin ≥ 20 mg/g) oder offene Proteinurie (Werte, die darüber liegen) manifestiert werden. Wie schon eingehend in der Literaturübersicht dargelegt, belegen experimentelle und klinische Befunde den Zusammenhang zwischen einer Proteinurie und progressiver interstitieller Fibrose und Glomerulosklerose. In der hier vorliegenden Studie konnte ebenfalls ein solcher Zusammenhang festgestellt werden. In den Gruppen der Wistar-Ratten zeigte sich in allen Gruppen bis auf bei den mit Ramipril und mit Ramipril + HOE behandelten Tieren, in denen
Diskussion

Diskussion

5.1.4 Radiobindungsstudie

Diskussion

Ramipril reichert sich auch verstärkt in der Niere an, jedoch hemmt es nur das ACE. Zusätzlich wurden deutlich geringere Konzentrationen von Ramipril in den jeweiligen Organen gefunden als von der Substanz AVE 7688. Auch der IC$_{50}$-Hemmwert bezüglich ACE für Ramipril (0.00015 µmol/l) ist höher als der für AVE 7688 bezüglich ACE (0.000052µmol/l). Dies deutet zusätzlich auf eine höhere Potenz von dem ACE/NEP-Inhibitor AVE 7688 hin.

Die hier gefundene starke Anreicherung von der Substanz AVE 7688 in der Niere, gepaart mit den um eine Potenz niedrigeren IC$_{50}$-Wert, könnte eine Erklärung für die hervorragende nephroprotektive Eigenschaft dieser Substanz sein.

5.1.5 Einfluss auf Angiotensin-Konversionsenzym-Aktivität

Überraschend war das Ergebnis in der Gruppe der mit der Substanz HOE 140 behandelten Wistar-Ratten. Hier zeigte sich eine fast doppelt so hohe ACE-Aktivität wie in der Placebogruppe. Da sich in der Literatur keine Hinweise auf eine vergleichbar langanhaltende
Diskussion

Dieser Effekt scheint jedoch stammspezifisch zu sein; er wurde nur bei den Wistar-Ratten beobachtet und führte offensichtlich nicht zu einer Blutdrucksteigerung in diesen Tieren.

5.1.6 Einfluss auf Cholesterin im Plasma

Die Gruppe der Wistar-Ratten die mit der Substanz HOE 140 behandelt wurde zeigte auch nierenhistologisch eine signifikante Reduktion der glomerulären und tubulären Schäden. Auch funktionell zeigte diese Gruppe in der 31. Lebenswoche eine signifikante Verbesserung hinsichtlich der Albumin/Creatinin-Ausscheidung.

In den Gruppen der ZDF-Ratten bei mit der Substanz AVE 7688 und bei mit den Substanzen AVE 7688 + HOE 140 behandelten Tieren konnten vergleichbare Ergebnisse in diesen zusätzlichen Parametern beobachtet werden. Bei den Gruppen der ZDF-Ratten ergaben sich
als einzige signifikante Unterschiede zur Kontrolle eine Senkung der histologisch sichtbaren glomerulären und tubulären Schäden, aber auch eine Senkung des Nierengewichtes bei mit der Substanz AVE 7688 behandelten und bei mit den Substanzen AVE 7688 + HOE 140 behandelten Tieren. Gleichzeitig wurde ausschließlich in diesen Tieren eine signifikante Reduktion der Albumin/Creatinin-Ausscheidung beobachtet.

Möglicherweise spielen bei der Enstehung der Glomerulosklerose Lipide eine Rolle. SCHMITZ et al. (1992) und KAMANNA u. KIRSCHBAUM (1993) postulierten die Beteiligung der Lipoproteine in der Pathogenese der diabetischen Nephropathie, zumindest in Ratten.

Umgekehrt wurde durch die Gabe von Östrogenen und der daraus resultierende Erhöhung der Plasma Triglyceride eine Verschlimmerung der Nephropathie in fa/фа Ratten beobachtet (GADES et al. 1998).

5.1.7 Einfluss auf Plasma-Glukose und HbA\textsubscript{1c}

Männliche homozygote ZDF-Ratten weisen im Alter von 12 Wochen einen spontanen Diabetes auf und dienen als Tiermodell für den Typ-2-Diabetes. Im Rahmen dieser Arbeit konnte anhand sämtlicher Stoffwechselparameter ein manifester Typ-2-Diabetes in den ZDF-Ratten nachvollzogen werden. Die Ermittlung der Glukose- und der HbA\textsubscript{1c}-Werte diente der Überprüfung der Glukosestoffwechsellage der Tiere.

Plasma-Glukose

HbA\textsubscript{1c}

Ähnliche stammspezifische Unterschiede, die das Vorliegen eines Typ-2-Diabetes in den ZDF-Ratten belegen, wurden auch bei der Bestimmung von glykolisiertem Hämoglobin (HbA\textsubscript{1c}) im Blut gefunden. HbA\textsubscript{1c} ist ein sogenanntes Amandori Produkt, ein frühes Produkt aus der Maillard Reaktion. Die in Erythrozyten aufgenommene Glukose bindet
Diskussion

nichtenzymatisch an die Betakette des Globins. Der Grad dieser Glykolisierung ist direkt proportional zur im Körper herrschenden Hyperglykämie. Über HbA_{1a} und HbA_{1b}, welche Schiff-Basen sind, entsteht das stabile HbA_{1c}. HbA_{1c} führt zu reduzierter Sauerstofffreisetzung aus den Erythrozyten. Der HbA_{1c}-Wert gilt als Langzeitindikator der glykämischen Stoffwechsellage eines Patienten. Glykolysierung findet kontinuierlich in der roten Blutzelle statt. Der HbA_{1c}-Wert liefert eine Aussage über die Glukosekonzentration, welcher die rote Blutzelle während ihres 120-tägigen Lebens ausgesetzt war. Einmal glykolisiert, bleiben die Erythrozyten in diesem Zustand. Der HbA_{1c}-Wert ermöglicht somit eine Aussage über die glykämische Lage eines Patienten, die für die vorhergehenden 10-12 Wochen zutrifft, also nicht nur zum aktuellen Entnahmezeitpunkt, wie es beim Blutglukosespiegel der Fall ist. Der HbA_{1c}-Wert ist auch nicht von akuten Veränderungen der Blutglukosekonzentration betroffen. Da aber eine fundierte Standardisierung der HbA_{1c}-Messung fehlt, wird der Wert nicht zur Diagnose eines Diabetes empfohlen (The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus 2002). HbA_{1c}-Werte eines stoffwechselgesunden Menschen liegen bei 4-6% des Gesamthämoglobins. Werte darüber deuten auf eine gestörte Stoffwechsellage hin. Bei Personen mit einem manifesten Diabetes sind HbA_{1c}-Werte zwischen 10-12% zu erwarten.

Diese Werte konnten in den Gruppen der Wistar- und ZDF-Ratten nachvollzogen werden. Die HbA_{1c}-Werte der Wistar-Ratten lagen über den Behandlungszeitraum zwischen 4,33% ± 0,02 und 4,74% ± 0,06. Es wurden keine signifikanten Behandlungseffekte auf den HbA_{1c}-Wert festgestellt. Im Verlauf der Studie blieben die Werte konstant. Die niedrigen Werte deuten auf eine nicht-diabetische Stoffwechsellage hin.

Im Vergleich lagen die HbA_{1c}-Werte der ZDF-Ratten zwischen 8,63% ± 0,64 und 12,39% ± 0,23 und somit deutlich höher als in den nicht-diabetischen Wistar-Ratten. Es konnte ein Anstieg der Werte im Verlauf der Studie festgestellt werden sowie signifikant niedrigere Werte in der Gruppe der ZDF-Ratten die mit der Substanz HOE 140 behandelt waren in der 31. Lebenswoche und in der Gruppe der ZDF-Ratten die mit den Substanzen AVE 7688 + HOE 140 behandelt waren in der 39. Lebenswoche. Dies deutet darauf hin, dass die B_{2}-Rezeptorblockade mit HOE 140 einen protektiven Effekt bewirkt, der in diesen Tieren zum Teil signifikant ist. Diese Wirkung von der Substanz HOE 140 ist eventuell auf einen partiell
Diskussion

Die beobachteten Effekte in der Gruppe der ZDF-Ratten die mit AVE 7688 + HOE 140 behandelt wurden, waren ebenfalls unerwartet, und sind möglicherweise auch auf die oben genannten partiell agonistischen Effekte zurückzuführen. Weitere Untersuchungen müssten durchgeführt werden, um diesen Mechanismus weiter zu untersuchen.

5.1.8 Einfluss auf den oralen Glukose-Toleranztest und Plasma-Insulin

Ein oraler Glukose-Toleranztest (OGTT) und die Bestimmung von Insulin im Plasma sollte im Rahmen dieser Studie zusätzliche Information zur Stoffwechselsequenz der Tiere geben.

OGTT

Der OGTT wird eingesetzt, um beim Menschen präklinische Formen des Diabetes mellitus zu erkennen und zu differenzieren. Im Verlauf des Tests erfolgt mehrmals eine Blutglukosebestimmung jeweils nüchtern vor, während, und in definierten Abständen nach Glukosebelastung. Referenzwerte dienen dazu, die Blutzuckerkonzentration einzustufen: als Normalbefund, gestörte Glukosetoleranz oder einen manifesten Typ-2-Diabetes. Als
diskontisches Kriterium für die Diagnose „Diabetes mellitus“ gilt ein Plasma-Glukosewert ≥ 11.1 mmol/L, 2 Stunden nach Glukosegabe im Rahmen eines OGTT (The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus 2002).

Plasma-Insulin

Diskussion

Eine Protektion der Pankreaszellen, welche im Verlauf des Diabetes zugrunde gehen, würde zu der hier beobachteten Steigerung der Insulinsekretion führen. Weiterhin könnte die gesteigerte Insulinsekretion zu der in dieser Studie beobachteten verbesserten Glukoseutilisation im Rahmen eines OGTT geführt haben.

5.2 Untersuchung der kardialen Funktion

Diskussion

5.3 Ergebnisse weiterer Untersuchungen

5.3.1 Körpermasse, Futter- und Wasseraufnahme

Die Körpermasse der Wistar-Ratten lag, insbesondere am Ende dieser Studie, deutlich über denen der ZDF-Ratten, obwohl die Wistar-Ratten durchschnittlich 50 % weniger Futter zu
Diskussion

sich nahmen als die ZDF-Ratten. Zusätzlich macht die vergleichsweise geringe Wasseraufnahme der Wistar-Ratten deutlich, wie weit die Stoffwechsellagen der zwei Stämme differierten. Während in den Gruppen der Wistar-Ratten ein anaboler Stoffwechsel vorlag, litten die Gruppen der ZDF-Ratten offensichtlich unter einer katabolen Stoffwechsellage.

Die Ermittlung der schon besprochenen Laborparameter macht deutlich, dass die ZDF-Ratten an einem manifesten Diabetes litten. Die Parameter Körpermasse, Futter- und Wasseraufnahme zeigen deutliche stammspezifische Unterschiede. Der Typ-2-Diabetes der ZDF-Ratten geht mit einer katabolen Stoffwechsellage einher. Die Tiere verlieren große Mengen Glukose und Protein über den Urin und leiden an einer stark eingeschränkten Nierenfunktion. Körpereigene Energiereserven wie Fettdepots werden in einer katabolen Stoffwechsellage mobilisiert, und es kommt zu einer Gewichtsabnahme trotz der Tatsache, dass die ZDF Tiere mehr Futter zu sich nahmen als die Wistar-Ratten. Die ZDF-Ratten wogen deutlich weniger als die nicht-diabetischen Wistar-Ratten, was sich im Verlauf der Untersuchungen noch verstärkte.

Diskussion

Trotz der signifikanten Senkung des Wasserverbrauchs in den Gruppen von ZDF-Ratten bei den mit der Substanz AVE 7688 behandelten und bei den mit der Substanz HOE 140 behandelten Tieren gegenüber der ZDF Placebogruppe, tranken die ZDF-Ratten insgesamt ca. vier- bis fünfmal soviel wie die stoffwechselgesunden Wistar-Ratten. Durstgefühl (Polydipsie) gilt als weiteres Leitsymptom des Diabetes mellitus. Dieser Durst entsteht durch die gesteigerte Harnausscheidungsrate (Polyurie). Die Polyurie wird durch die großen Mengen an nicht-resorbierter Glukose hervorgerufen und stellt eine osmotische Diurese dar.

5.3.2 Organgewichte

Hinsichtlich der Organgewichte nach Sektion bei den Gruppen von Wistar-Ratten zeigten sich bei den mit der Substanz AVE 7688, mit Ramipril, mit den Substanzen AVE 7688 + HOE 140 und mit den Substanzen Ramipril + HOE 140 behandelten Tieren signifikant niedrigere Herzwichte. Die Nierengewichte nach Sektion der Wistar-Ratten zeigten keine Unterschiede. Bei den Gruppen von ZDF-Ratten der mit der Substanz AVE 7688 und mit den
Diskussion

Substanzen AVE 7688 + HOE 140 behandelten Tieren wurde eine signifikante Reduktion der Nieren- und Herzgewichte festgestellt.

Auch die Obesitas, an der die ZDF-Ratten zu einem früheren Zeitpunkt vor Einsetzen der katabolen Stoffwechselprozesse litten, könnte eine Rolle in der Ätiologie der erhöhten Organgewichte spielen. Untersuchen haben gezeigt, dass Obesitas in dem Tiermodell des Typ-2-Diabetes in der ZDF-Ratte zu einer Erhöhung des „Cardiac Outputs“ führt, um den Anforderungen der gesteigerten Körpermasse nachzukommen. (BLOOMGARDEN 2002). Dies wäre eine zusätzlich Erklärung für die insgesamt höheren Herzgewichte der ZDF-Ratten.

Diskussion

Nieren dieser Tiere die ACE/NEP-Inhibition als überlegen. In keinem der beiden Stämme wurde die antiproliferative Wirkung durch den B₂-Rezeptor-Antagonist HOE 140 aufgehoben.

5.4 Mögliche Rolle der Kinine – Effekte der Behandlung mit der Substanz HOE 140

solche partiell agonistische Wirkung von der Substanz HOE 140 im Akutversuch, allerdings handelte es sich um eine Messung der Bronchokonstiktion im narkotisierten Meerschwein.

Abschließend sei noch die Wirkung des B₁-Rezeptors zu erwähnen. Der hauptsächliche, bekannte Unterschied zwischen B₂- und B₁-Rezeptoren liegt darin, dass der B₂-Rezeptor ständig vorliegt, der B₁-Rezeptor unter physiologischen Umständen aber nur schwach exprimiert wird. Unter pathologischen Bedingungen jedoch wird der B₁-Rezeptor sehr stark exprimiert.

Diskussion

Weitere Studien wären notwendig, um zusätzliche Kenntnisse über die hier berichteten Befunde zu gewinnen.

5.5 Abschliessende Betrachtung

Diskussion

Im Gegensatz zu den positiven Befunden bezüglich Nephroprotektion wiesen die Ergebnisse des Belastungstests im isoliert perfundierten Herzen auf keine kardioprotektiven Effekte durch Behandlung hin. Dies ist jedoch darauf zurückzuführen, dass die Herzen beider Stämme keine wesentlichen Funktionseinschränkungen zeigten.

Die Therapie der diabetischen Nephropathie mit dem ACE/NEP-Inhibitor AVE 7688 könnte ein herausragendes therapeutisches Potenzial haben. Es muss jedoch beachtet werden, dass durch Hemmung des Bradykininabbaus unerwünschte Nebenwirkungen, wie Reizhusten und Angioödem auftreten können. Ergebnisse aus klinischen Studien mit dem ACE/NEP-Inhibitor Omapatrilat verdeutlichen diese Problematik. Die Ergebnisse der klinischen Studie „OCTAVE“ (Omapatrilat Cardiovascular Assessment Versus Enalapril) zeigte fast dreimal so viele Fälle (Omapatrilat:2,17% vs. Enalapril: 0,68%) von Angioödemen in den Patienten, die mit Omapatrilat behandelt wurden verglichen mit denjenigen Patienten, die Enalapril einnahmen. In „OVERTURE“ (Omapatrilat Versus Enalapril Randomized Trial of Utility) traten knapp zweimal so viele Fälle an Angioödemen in der Omapatrilat-behandelten Gruppe auf (Omapatrilat: 0,8%, Enalapril: 0,5%) (COATS 2002). Bei dem Angioödem handelt es sich um eine Nebenwirkung, die von Gesichtsrötung, Gesichtsschwellung oder Lippenschwellung bis hin zur mechanischen Blockierung des Luftweges führen kann. Falls keine rechtzeitige Intubation stattfindet, kann es zum Erstickungstod kommen. Es müssen die Ergebnisse weitere klinischen Studien abgewartet werden, die die Zukunft der ACE/NEP-Inhibitoren bestimmen werden.
ZUSAMMENFASSUNG

Alexandra Hahn:
Effekte einer chronischen Behandlung mit dem ACE-Inhibitor Ramipril, dem ACE/NEP-Inhibitor AVE 7688 sowie in Kombination mit dem B₂-Rezeptor-Antagonisten HOE 140 in adulten diabetischen und nicht-diabetischen Ratten.

Hierfür wurden unterschiedliche Parameter wie renale Proteinausscheidung, Plasmaspiegel von endogenen biochemischen Substanzen, Insulin-Spiegel, ACE-Aktivität, Blutdruck- und Herzfrequenzänderungen, nierenhistologische Befunde und die kardiale Pumpfunktion für die Untersuchungen herangezogen. Als gesunde, nicht-diabetische Kontrollen für die diabetischen ZDF-Ratten wurden Wistar-Ratten gewählt.

Hinsichtlich der allgemeinen positiven Beeinflussung der ACE/NEP-Inhibitoren auf die renale Funktion und Morphologie, bestätigen diese Ergebnisse andere tierexperimentelle sowie klinische Untersuchungen.

besonders das hier untersuchte AVE 7688, möglicherweise ein starkes therapeutisches Potential bei der experimentellen Nephropathie. Wenn klinische Studien ähnliche Ergebnisse bezüglich Nephroprotektion zeigen, wie sie in dieser Studie gefunden wurden, dann haben ACE/NEP-Inhibitoren und besonders die Substanz AVE 7688 möglicherweise das Potential, die Anzahl der Patienten mit chronischem Nierenversagen zu reduzieren, die ansonsten eine terminale Niereninsuffizienz erleiden würden. Somit bleibt abzuwarten, ob klinische Studien mit der Substanz AVE 7688 die hier beobachtete überlegene Wirksamkeit auch am Menschen bestätigen, ohne dass unerwünschte Nebenwirkungen gehäuft auftreten.
7. SUMMARY

Alexandra Hahn:
Effects of Chronic Treatment of Adult Diabetic and Non-Diabetic Rats with the ACE Inhibitor Ramipril, the ACE/NEP Inhibitor AVE 7688 as well as in Combination with the B₂ Receptor Antagonist HOE 140

Type 2 diabetes is in the process of developing from an affliction of industrialised nations into a worldwide pandemic. Progress brings with it the adaptation of a lifestyle in which work is often primarily sedentary, and even recreation may involve little physical activity. At the same time, there is a marked increase in the consumption of high-caloric processed food, candy and snacks. According to WHO estimates, approximately 177 million people, worldwide, suffer from diabetes at the present time. WHO predicts that this number will likely double by the year 2025. Of these diabetics, approximately 90% will have type 2 diabetes. Diabetes is a disease characterised by complications, and leads to damage of the vascular system and critical organs, particularly the kidneys and the heart.

This study examined the pharmacological effects of ACE and ACE/NEP inhibitors, both individually as well as in combination with a B₂ receptor antagonist, in adult diabetic and non-diabetic rats. The focus of the study was to assess the effects on renal and cardiovascular systems by treatment with the ACE inhibitor Ramipril, the ACE/NEP inhibitor AVE 7688, and in combination with the B₂ receptor antagonist HOE 140.

Parameters such as renal protein excretion, plasma levels of endogenous biochemical levels, insulin assays, and ACE-levels, changes in blood pressure and heart rate, histological changes and cardiac function were examined. Control groups for the diabetic ZDF rats were healthy, non-diabetic Wistar rats.

Examination of albumin/creatinine excretion showed that chronic treatment with AVE 7688 improved renal function in Wistar as well as in ZDF rats. Histological examination of the kidneys showed that AVE 7688 significantly reduced glomerular and tubular injury in both strains. In the Wistar and ZDF groups, treated with AVE 7688, systolic blood pressure was significantly reduced. Wistar rats treated with AVE 7688 showed a concurrent reduction in
heart rate and heart weight. ZDF rats treated with AVE 7688 showed reduced heart weight and kidney weight. Treatment with the B₂ receptor antagonist HOE 140 did not abolish treatment effects in any of the measured parameters. However, effects were observed that indicate a partially agonistic action in this long-term treatment. HOE 140 treatment in Wistar rats showed evidence of some nephroprotective effects, on the other hand, treatment with this substance led to a positive influence on the metabolism, particularly the insulin metabolism of the ZDF rats.

Cardiac function in the isolated perfused hearts (WORKING HEART model) showed no significant improvement upon treatment with Ramipril, AVE 7688 or in combination with HOE 140.

The improvements that this study found in renal function and morphology as effected by ACE/NEP inhibitors is in accordance with other experimental and clinical studies.

This study examined for the first time effects of treatment of adult Wistar and ZDF rats for 26 weeks with the ACE inhibitor Ramipril, the ACE/NEP inhibitor AVE 7688 and the B₂ receptor antagonist HOE 140. An effective reduction of the functional and morphological features of established kidney damage was shown with AVE 7688 treatment. The distinct superior efficacy of the ACE/NEP inhibitor AVE 7688, as compared to the ACE inhibitor Ramipril, which was found in this study, confirms the results of other experimental studies. Thus ACE/NEP inhibitors, particularly AVE 7688 which was examined in this study, may offer improved therapeutic potential in the treatment of nephropathy. If clinical studies validate the findings of this study pertaining to the nephroprotective effects, then ACE/NEP inhibitors, especially AVE 7688, may have the potential to reduce the number of patients with chronic kidney disease who would otherwise progress to end-stage renal disease. It may be worthwhile to investigate, by clinical trials in human subjects, the superior efficacy of AVE 7688 observed in this study of adult Wistar rats and ZDF rats, while remaining vigilant for higher incidences of possible unwanted effects.
8. LITERATURVERZEICHNIS

ABELOUS, J.E. u. E. BARDIER (1909):
Les substances hypotensives de l’urine humaine normale.
C. R. Soc. Biol. (Paris) 66, 511-512

Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1:
Diagnosis and classification of diabetes mellitus.
Diabetic Medicine 15, 539-553

Role of angiotensin II and bradykinin in experimental diabetic nephropathy: Functional and structural studies.
Diabetes 46, 1612-1618

The role of nephron mass and of intraglomerular pressure in initiation and progression of experimental hypertensive-renal disorders.
in: Hypertension: Pathophysiology, Diagnosis and Management.
Raven Press, New York, U.S.A., S. 1553-1568

Novel subtype-selective nonpeptide bradykinin receptor antagonists FR 167344 and FR 173657.
Mol. Pharmacol. 51, 171-176

Characterization of two polymorphic sites in the human kinin B₁ receptor gene: altered frequency of an allele in patients with a history of end-stage renal failure
J. Am. Soc. Nephrol. 9, 598-604

HOE 140, a new highly potent and long-acting bradykinin antagonist in conscious rats.
Eur. J. Pharmacol. 200, 179-182

Pharmacological Properties of the New Orally Active Angiotensin Converting Enzyme Inhibitor -2-[N-[(S)-1-Ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-(1S,3S,5S)-2-azabicyclo[3.3.0]octane-3-carboxylic Acid (HOE 498).
Drug Res. 34 (II), 1411-1416

DALY, I. u. W.V. THORPE (1933): An isolated mammalian heart preparation capable of performing work for prolonged periods. J. Physiol. 79, 199

DUNN, O.J. (1964): Multiple comparisons using rank sums. Technometrics 6, 241-252

FRANK, O. (1895):
Zur Dynamik des Herzmuskels.
Z. Biol. 32, 370

FRAYN, K.N. (1993):
Insulin resistance and lipid metabolism
Curr. Opin. Lipid 4, 197-204

FREY, E.K. u. H. KRAUT (1928):
Ein neues Kreislaufhormon und seine Wirkung.
Naunyn-Schmiedebers Arch. Exp. Pathol. Pharmakol. 133, 1-56

Coronary-heart disease risk and impaired glucose tolerance: the Whitehall study.
Lancet 1, 1373-1376

Estrogen accelerates the development of renal disease in female obese Zucker rats.
Kidney Int. 53, 130-135

Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study.
Lancet 353, 617-622

Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects.

GALLE, J. u. K. HEERMEIER (1999):
Angiotensin II and oxidizes LDL: An unholy alliance creating oxidative stress.
Nephrol. Dial. Transplant 14, 2585-2589

Antihypertensive effect of the oral angiotensin converting-enzyme inhibitor SQ 14225 in man.
N. Engl. J. Med. 298, 991-995

Lipogenesis in situ in the genetically obese zucker fatty rat(+/fa): Role of hyperphagia and hyperinsulinaemia.
Diabetologia 14, 191-197

Angiotensin II stimulates extracellular matrix protein synthesis through induction of
transforming growth factor-beta expression in rat glomerular mesangial cells.
J. Clin. Invest. 93, 2431-2437

Obesity and insulin resistance.

Association between very-low-density lipoprotein and glomerular injury in obese Zucker
rats.
Am. J. Nephrol. 13, 53-58

Effects of genetic obesity on renal structure and function in the Zucker rat.

Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression
analysis.

Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats.
Kidney Int. 33, 667-672

Pharmacological treatment of hyperlipidemia reduces injury in rat 5/6 model of chronic renal
failure.
Circ. Res. 62, 367-374

Reduction in proteinuria attenuates hyperlipidemia in the nephrotic syndrome.
J. Am. Soc. Nephrol. 1, S75-S79

Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): A position
paper of the National Kidney Foundation.
Am. J. Kidney Dis. 33, 1004-1010

The pharmacological alteration of renin release.
Pharmacol. Rev. 32, 81-227

KLEIN, R., E.B. COMOR, B.A. BLOUNT; D.L. WINGARD (1991): Visual impairment and retinopathy in people with normal glucose tolerance, impaired glucose tolerance and newly diagnosed NIDDM. Diabetes Care 14, 914-918

LANGENDORFF, O. (1895): Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch. 61, 291-332

The Bedford Survey: observations on retina and lens subjects with impaired glucose tolerance and in controls with normal glucose tolerance.
Diab. Metab. 9, 303-305

MCGARRY J.D. (1992):
What if Minkowski had been ageusic? An alternative angle on diabetes.
Science 258, 766-770

Expression cloning of a human B1 bradykinin receptor.
J. Biol. Chem. 269, 21583-21586.

Glomerular hypertrophy accelerates hypertensive glomerular injury in rats.
Am. J. Physiol. 261, F459-F465

Effects of converting enzyme inhibition on barrier function in diabetic glomerulopathy.
Diabetes 39, 76-82

Relation between serum cholesterol and diabetic nephropathy.
Lancet 335, 1537-1538

Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid resorption in the rat.
Circ. Res. 37, 101-110

The renoprotective effect of angiotensin-converting enzyme inhibitors in experimental chronic renal failure is not dependent on enhanced kinin activity.
Nephrol. Dial. Transplant 13, 173-176

NATIONAL DIABETES DATA GROUP (1979): Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28, 1039-1057

Initiation and progression of diabetic nephropathy.
N. Engl. J. Med. 335, 1682-1683

N. Engl. J. Med. 345, 870-878

Signaling pathways in insulin action: molecular targets of insulin resistance.

Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus.
ILAR News 32, 16-19

Kidney Blood Press. Res. 22, 81-97

Screening of diabetic patients for microalbuminuria in primary care-The PROSIT-Project.
Proteinuria Screening and Intervention.

The paradox of the low-renin state in diabetic nephropathy.
J. Am. Soc. Nephrol. 10, 2382-2391

Diabetes Care 20, 614-620

QUASCHNING, T. L.V. D’USCIO u. L.F. LÜSCHER (2000):
Greater endothelial protection by the vasopeptidase inhibitor omapatrilat compared to the ACE-inhibitor captopril in salt-induced hypertension.
J. Am. Coll. Cardiol. 35, A248-A249
The rising tide of diabetic nephropathy – the warning before the flood?
Nephrol. Dial. Transplant. 10, 460-461

Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels,
mean blood pressure, and hyperglycemia.
Arch. Int. Med. 158, 998-1004

Plasma lipids and the progression of nephropathy in diabetes mellitus type II: effect of ACE
inhibitors.
Kidney Int. 47, 907-910

REAVEN, G.M. (1997):
Pathophysiology of insulin resistance in human disease.
Physiol. Rev. 75, 473-486

Does hyperglycemia or hyperinsulinaemia characterise the patient with chemical diabetes?
Lancet 1, 1247-1249

Pharmacology of bradykinin and related kinins.
Pharmacol. Rev. 32, 1-46

Receptors for bradykinin in rabbit aortae.

The effects of long-term intensified insulin treatment on the development of microvascular
complications of diabetes mellitus.

REMUZZI, G. (1993):
Slowing the progression of diabetic nephropathy.
N. Engl. J. Med. 329, 1496-1497

REMUZZI, G. u. T. BERTANI (1998):
Pathophysiology of progressive nephropathies.

Exp. Mol. Pathol. 54, 31-40

Sachs, L. (1991a):
Angewandte Statistik.
Springer Verlag, Berlin, S. 426-431

Sachs, L. (1991b):
Angewandte Statistik.
Springer Verlag, Berlin, S. 349-351

Cardiovasc. Res. 51, 416-428

Proc. Natl. Acad. Sci. 95, 2498-2502

Mayo Clin. Proc. 74, 126-130

Am. J. Cardiol. 72, H37-H44

Am. J. Renal Physiol. 263, F496-F502

J. Clin. Inv. 106, 171-176

Dtsch. Med. Wochenschr. 126, 1322-1326

UNITED KINGDOM PROSPECTIVE DIABETES STUDY GROUP (UKPDS) (1998): Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications inpatients with Type 2 diabetes (UKPDS 33). Lancet 352, 837-853

Global and societal implications of the diabetes epidemic.
Nature 414, 782-787

ZOJA, C., M. MORIGI, M. FIGLIUZZI, I. BRUZZI, S.D. OLDROYD, A. BENINGI, P.
Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and
other proteins.
Am J. Kidney Dis. 26, 934-941

ZUCKER, L.M. (1965):
Hereditary obesity in the rat associated with hyperlipidemia.
Ann. NY Acad. Science 131, 447-458
DANKSAGUNG

An erster Stelle möchte ich mich bei **PD Dr. Wolfgang Linz** herzlichst bedanken für die Überlassung des Themas, die unermüdliche Diskussion und Beantwortung aller Fachfragen sowie die stets freundliche und engagierte Betreuung bei der Durchführung der Experimente und bei der Anfertigung dieser Dissertation.

Des weiteren möchte ich Herrn Prof. Dr. Manfred Kietzmann (Institut für Pharmakologie, Toxikologie und Pharmazie der Tierärztlichen Hochschule Hannover) für die freundliche und hilfsbereite Betreuung und die Begutachtung dieser Dissertation danken.

Herrn Prof. Dr. Andreas E. Busch (Leiter der Indikationsgruppe Herz-Kreislauf-Erkrankungen) möchte ich besonders danken für die Ermöglichung der Anfertigung dieser Arbeit in den Einrichtungen der Aventis Pharma Deutschland GmbH.

Allen Mitarbeitern des Labors von Herrn PD Dr. Linz, insbesondere Frau Melanie Behnke, Frau Petra Fritz und Frau Silke Weber danke ich sowohl für die stets freundliche und exzellente Zusammenarbeit, als auch die konstruktive Planung der Durchführung und Auswertung der Versuche.

Insbesondere möchte ich Frau Dr. Daniela Leitzbach (Aventis Pharma Deutschland GmbH) danken für die intensive Einarbeitung in die WORKING-HEART-Anlage und für ihre Unterstützung und Hilfestellung während der Anfertigung dieser Arbeit.

Herrn Gerald Fischer, Herrn Peter Hainz und Frau Ursula Schwarzer möchte ich für die tatkräftige Unterstützung bei der Probenentnahme und Aufarbeitung sowie für die hervorragende Zusammenarbeit bedanken.

Für die Anfertigung der histologischen Schnitte danke ich Herrn Dr. Martin Heinrichs und seinen Mitarbeitern, insbesondere Frau Petra Scherer und Frau Andrea Schwab, die auch bei der gemeinsamen Organisation dieser Studie von großer Hilfe waren.

Herrn Dr. Hans-Ludwig Schmidts danke ich für die sorgfältige Sichtung der histologischen Schnitte und ausführliche Beantwortung vieler Fachfragen.

Herrn Dr. Martin Gerl, Frau Dr. Biemer-Daub (Aventis Pharma Deutschland GmbH) und ihren Mitarbeitern danke ich für die Durchführung der Blutanalysen.

An Prof. Dr. James C. Russell und Prof. Dr. Peter Rösen möchte ich meinen Dank richten für die vielen fruchtbaren Ratschläge und Diskussionen im Laufe dieser Arbeit. Als „experts in their field“ haben sie auch konstruktive Ratschläge zur Planung dieser Studie beigetragen.

Bei Herrn Rainer Uhl (Statistische Abteilung, Covidence GmbH, Eschborn am Taunus) bedanke ich mich für die umfassende Beratung bei der statischen Auswertung meiner Daten.

Schließlich möchte ich mich von Herzen bei **meinen Eltern** bedanken, die mich während des gesamten Studiums und der Promotion unterstützt haben und bei **Eoghan Jennings** (thank you, mo grá!) **und seiner Familie**, die mich liebevoll während der Anfertigung dieser Arbeit begleitet haben.