Semiquantitative Untersuchungen zu der Möglichkeit der Senkung von Kreuzkontamination mit Salmonellen bei der Schlachtung von Schweinen

Inaugural-Dissertation
zur Erlangung des Grades einer Doktorin der Veterinärmedizin
(Dr. med. vet.)
durch die tierärztliche Hochschule Hannover

Vorgelegt von
Katharina Kühnel
aus Bramsche

Bramsche 2004
Wissenschaftliche Betreuung: Univ.-Prof. Dr. Th. Blaha

1. Gutachter: Univ.-Prof. Dr. Th. Blaha

2. Gutachter: Univ.-Prof. Dr. Klein

Tag der mündlichen Prüfung: 24.11.2004
Inhaltsverzeichnis

1 EINLEITUNG 1

2 LITERATUR 3

2.1 Die Bakteriengattung Salmonella 3
2.2 Morpologie 4
2.3 Biochemische Eigenschaften 4
2.4 Serologie 5
2.5 Epidemiologie 5
2.6 Salmonellen beim Menschen 9
 2.6.1 Vorkommen 9
 2.6.2 Serovare 10
 2.6.3 Salmonellose beim Menschen 12
2.7 Salmonellen beim Schwein 13
 2.7.1 Klinik 14
 2.7.2 Latente Infektionen 15
2.8 Salmonellenüberwachung in Dänemark 20
 2.8.1 Überwachung Futtermittel 20
 2.8.2 Überwachung Zucht- und Vermehrungsbetriebe 21
 2.8.3 Überwachung Sauenbestände/ Ferkelerzeuger 21
 2.8.4 Überwachung Mastbestände 22
 2.8.5 Überwachung Frischfleisch 24
 2.8.6 Überwachung Schlachtung 24
 2.8.7 Besondere Behandlung von DT 104 Beständen 25
2.9 Salmonellenüberwachung in Deutschland 27
 2.9.1 Salmonellen-Monitoring-Programm im Rahmen des QS-Systems 27
 2.9.2 Die Umsetzung des QS-Salmonellen-Programms 28
 2.9.3 Maßnahmen im Schlachtbetrieb 30
2.10 Salmonellenepidemiologie in Bezug auf die Schlachtung 31
 2.10.1 Salmonellen im Bestand 31
2.10.2 Salmonellen während des Transports 33
2.10.3 Salmonellen im Wartestall 34
2.10.4 Salmonellen an der Schlachtlösung 37
2.10.5 Salmonellen im Fleisch 40
2.11 Hazard Analysis and Critical Control Point (HACCP)-System 42

3 MATERIAL UND METHODEN 45

3.1 Vorstellung des Schlachthofs, an dem die Untersuchungen durchgeführt wurden 45
 3.1.1 Kapazität und Anlieferungsstruktur 45
 3.1.2 Schlachtablauf 45
3.2 Beprobung 50
 3.2.1 Probennahme 52
3.3 Kultureller Nachweis 54
 3.3.1 Nicht selektive Voranreicherung 54
 3.3.2 Selektivanreicherung in Rappaport-Vassiliadisboillon (RV) 55
 3.3.3 Ausstrich auf selektiven Nährböden 56
 3.3.4 Eisen-Zweizucker-Agar nach Kligler 56
 3.3.5 Agglutination mit Seren 57
 3.3.6 Kryokonservierung 57
 3.3.7 Weitere Identifizierung 57
3.4 Resistenztest 57
3.5 Vergleichende Untersuchungen zur Umsetzung der Salmonellenbekämpfung in Deutschland und in Dänemark 58

4 ERGEBNISSE 60

4.1 Untersuchungen zum allgemeinen Risiko der Salmonellenkontamination auf dem Schlachthof (Versuch 1) 60
4.2 Untersuchungen zur Beeinflussung der Salmonellenkontamination und Salmonellenkrebkontamination bei getrennter Schlachtung von Tieren aus Betrieben der Kategorie I und Kategorie III (Versuch 2) 69
4.3 Anmerkung zur statistischen Auswertung 77
5 DISKUSSION

5.1 Untersuchungen zum allgemeinen Risiko der Salmonellenkontamination auf dem Schlachthof

5.1.1 Stall

5.1.2 Schlachtlinie

5.1.3 Schlachtumgebung

5.1.4 Tierkörper

5.2 Untersuchungen zur Beeinflussung der Salmonellenkontamination und Kreuzkontamination bei getrennter Schlachtung von Tieren aus Betrieben der Kategorie I und Kategorie III

5.3 Resistenzttest

5.4 Vergleichende Untersuchungen zur Umsetzung der Salmonellenbekämpfung in Deutschland und in Dänemark

6 SCHLUSSFOLGERUNGEN

7 ZUSAMMENFASSUNG

8 SUMMARY

9 LITERATURVERZEICHNIS

10 ANHANG

10.1 Detaillierte Auflistung der Proben für Versuch 1

11 DANKSAGUNG
1 Einleitung

Durch Infektionen oder Intoxikationen ausgelöste Magen-Darm-Erkrankungen gehören zu den häufigsten Infektionskrankheiten überhaupt in Deutschland. Sie werden durch verschiedene Erreger- vor allem Bakterien und Viren, aber auch Parasiten und Pilze- ausgelöst (ANONYMUS 2002d).

Der Anteil der menschlichen Salmonellosen, die durch vom Schwein stammende Salmonellen verursacht werden, wird auf etwa 20% geschätzt (STEINBACH u. HARTUNG 1999).

Ziel des Programms sollte die Reduktion des Salmonelleneintrages in Schlachthöfe darstellen um damit, im Sinne des Verbraucherschutzes, die Kontaminationsrate von Schweinefleisch zu minimieren (POLTEN et al. 1999).
Da es sich bei Salmonellen um ubiquitäre Keime handelt, ist auch mit einem Kontrollprogramm keine Salmonellenfreiheit zu erlangen, jedoch kann langfristig eine Reduzierung der Belastung stattfinden (GANTER 1998).
BERENDS et al. (1997) schätzen, dass 70% der Karkassenkontamination im Schlachthof daher rühren, dass die entsprechenden Schweine selbst Carrier sind und die restlichen 30% Karkassenkontamination aus Kreuzkontamination erwachsen. So wird deutlich, dass nicht nur auf Bestandsebene gehandelt werden muss, sondern dass gerade im weiteren Verlauf der Nahrungsmittelkette durch konsequente und kontinuierliche Verbesserung der Hygienebedingungen darauf gezielt werden muss, diese Erfolge aufrecht zu erhalten und zu verbessern.
Ziel dieser Arbeit ist es, durch gezielte Beprobungen Aussagen zum Risiko der Salmonellenkontamination am Schlachthof zu machen. Die Probennahme wurde in zwei Aufgabenbereiche unterteilt. Einmal sollten Aussagen zum allgemeinen Risiko der Salmonellenkontamination auf dem Schlachthof gemacht werden, als zweites wurden Untersuchungen zur Beeinflussung der Salmonellenkontamination und Salmonellenkreuzkontamination bei getrennter Schlachtung von Tieren aus Betrieben mit unterschiedlichem Salmonellenstatus durchgeführt. Im Diskussionsteil dieser Arbeit wird dann noch ein kritischer Vergleich zur Umsetzung der Salmonellenbekämpfung in Deutschland und in Dänemark erarbeitet.
2 Literatur

2.1 Die Bakteriengattung *Salmonella*

Früher wurden für fast alle nachgewiesenen Serovare Eigennamen vergeben, jetzt wird dieses nur noch für die Serovare der Subspezies *enterica* so gehandhabt, für alle anderen werden Antigenformeln verwendet.
Tabelle 1: Momentane Anzahl der Serovare in jeder Spezies, bzw. Subspezies (POPOFF et al. 2003)

<table>
<thead>
<tr>
<th>S. enterica</th>
<th>S. hongori</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>subsp. enterica</td>
<td>1492</td>
<td></td>
</tr>
<tr>
<td>subsp. salmonae</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>subsp. arizonae</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>subsp. diarizonae</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>subsp. houtenae</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>subsp. indica</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Total: 2523</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 Morphologie

Salmonellen sind 0,7- 1,5 x 2,0- 5,0 µm große, gramnegative, gerade Stäbchenbakterien. Sie sind peritrich begeißelt und in der Regel beweglich. Es können nicht bewegliche Mutanten auftreten, S. Gallinarum-Pullorum ist immer unbeweglich. Salmonellen sind fakultative Anaerobier (LE MINOR 1984).

2.3 Biochemische Eigenschaften

2.4 Serologie

2.5 Epidemiologie

Eine Einteilung in epidemiologische Gruppen erfolgt nach BLAHA (1993a):

1.) Epidemisch vorkommende, speziesadaptierte Serovare
- S. Typhi und S. Paratyphi (angepasst an Menschen)
- S. Choleraesuis (Schwein)
- S. Gallinarum- Pullorum (Huhn)
- S. Dublin (Rind)
- S. Abortusequi (Pferd)
- S. Abortusovis (Schaf)

2.) Sporadisch vorkommende, nicht speziesadaptierte Serovare
- S. Agona
- S. Manhatten
- S. Infantis
- S. Thompson
- S. Saintpaul
- viele andere mehr

3.) Endemisch vorkommende, nicht speziesadaptierte Serovare
- S. Typhimurium
- S. Enteritidis

Die Serovare der dritten Gruppe sind nicht an eine bestimmte Tierart adaptiert, weisen zum Teil eine Invasivität auf und rufen bei Tieren latente Infektionen bis hin zu schweren Krankheitserscheinungen hervor. Sie stellen für den Menschen als Haupterregen der Enteritis Infectiosa eine bedeutende Gefährdung dar. Die Gefährdung leitet sich durch die großen Erregermengen, die in die Lebensmittelkette eingetragen werden, ab und deutet nicht auf eine höhere Virulenz im Gegensatz zur Gruppe zwei hin. Hier liegt eine Populationsrelevanz für den Menschen vor (BLAHA 1993a, ROLLE u. MAYR 2002).

Abbildung 1: Grundzüge der Epidemiologie der Salmonellosen (ROLLE u. MAYR 2002)

S. Enteritidis und S. Typhimurium können sich bei minimalem Nährstoffangebot (60 mg Protein/l) und in einem Temperaturbereich von 7 bis 47°C vermehren. Für die Überlebensfähigkeit der Salmonellen in der Außenwelt sind verschiedene Faktoren von Bedeutung. Die wichtigsten Einflussfaktoren hinsichtlich der Überlebenszeit auf Oberflächen sind die Ausgangskeimzahl, die Temperatur, die relative Luftfeuchte, die einwirkende Strahlung, der „Open Air Faktor“ sowie etwaige konservierende Schutzsubstanzen. In Flüssigkeiten sind es die Ausgangskeimzahl, der pH-Wert, die Temperatur und die in der Flüssigkeit gelösten Stoffe. Bei biologisch aktiven Flüssigkeiten spielt noch eventuell auftretender Keimantagonismus eine Rolle, im festen Milieu (z. B. Boden) ist zusätzlich die Wasseraktivität zu beachten (BÖHM 1993).

Auch Einfrieren tötet Salmonellen nicht ab, sogar Langzeit-Gefrierlagerung kann überlebt werden (EKPERIGIN u. NAGARAJA 1998).

2.6 Salmonellen beim Menschen

2.6.1 Vorkommen

2.6.2 Serovare

STEINBACH und HARTUNG (1999) schätzen, dass etwa 20% der menschlichen Salmonellosen durch vom Schwein stammende Salmonellen verursacht werden.

In Abbildung 2 ist bis 1999 ein steigender Anteil an S. Typhimurium als Erreger von humanen Salmonellosen zu sehen. Zunächst handelt es sich nur um eine prozentuale Zunahme, da der

2.6.2.1 S. Typhimurium DT 104

Ursprünglich nur beim Rind nachgewiesen breitete sich dieser Phagentyp recht schnell auf andere lebensmittelliefernde Tierarten aus (Schwein, Schaf, Geflügel) und gewann so auch an Bedeutung für den Menschen. Ein weiterer Grund für seine Bedeutung liegt in der klinischen Manifestation der gastrointestinalen Infektion, welche bei Infektion mit S. Typhimurium DT 104 schwerer und mit höherer Mortalitätsrate verläuft als bei anderen Salmonella Subspezies (HUMPHREY 2001, HELMUTH et al. 2004b).

2.6.2.2 S. Choleraesuis

S. Choleraesuis, als stark an das Schwein adaptierte Salmonellenart, gehört zu den Serovaren, die eigentlich keine gravierende Gefahr für den Menschen darstellen, da Erkrankungen der Tiere erkannt und behandelt werden und somit eine Weiterleitung des Keimes in die Lebensmittelkette in der Regel unterbunden wird. Infektionen des Menschen sind somit selten, jedoch durchaus möglich und können dann auch schwere Verlaufsformen annehmen. Als

2.6.3 Salmonellose beim Menschen

Hier sollen kurz die Symptome der menschlichen Salmonellose abgehandelt werden, nicht jedoch Typhus (S. Typhi) und Paratyphus (S. Paratyphi), bei denen es sich um systemische Infektionen mit Darmbeteiligung handelt.

2.7 Salmonellen beim Schwein

2.7.1 Klinik

2.7.1.1 Septikämische Salmonellose

Durch die Erregergeneralisation kommt es zu Organveränderungen: Splenomegalie, miliare Lebernekrosen, Petechien in Nierenrinde und Epicard sowie Lungenkongestion, welche oft mit interlobulärem Ödem und Hämorrhagien einhergeht (SCHWARTZ 1999). Die bei
subakuten bzw. chronischen Formen auftretenden Darmveränderungen entsprechen denen bei enterocolitischer Salmonellose und sind dort beschrieben.

2.7.1.2 Enterocolitis

2.7.2 Latente Infektionen

Latent (lat.) bedeutet „verborgen“. Es handelt sich um eine symptomlose Infektion von Schweinen, welche den Erreger jedoch beherbergen und auch ausscheiden und somit andere empfängliche Individuen infizieren können. Die symptomlose Infektion von Schweinen ist

Abbildung 3: Die epidemiologischen Kategorien der Salmonellosen und Salmonelleninfektionen (BLAHA 1993)

In den meisten entwickelten Ländern sind latente Infektionen von größerer praktischer Bedeutung als klinisch manifeste Salmonellosen, da sie die größte Gefahr des Eintrags von Salmonellen in die Lebensmittelkette darstellen (ROLLE u. MAYR 2002).

Die quantitative Ausbreitung der Salmonellen innerhalb der Bestände ist von der Exposition (Infektionsdosis) und Disposition (Anfälligkeit der Wirte) abhängig. Es besteht eine

Tabelle 2: S. Typhimurium in Organen von 31 experimentell infizierten Schweinen während 28 Wochen nach der Infektion (WOOD et al. 1989)

<table>
<thead>
<tr>
<th>Tage nach Infektion</th>
<th>Wochen nach Infektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beprobte Organe</td>
<td>2</td>
</tr>
<tr>
<td>Gaumentonsilen</td>
<td>2</td>
</tr>
<tr>
<td>Caecum</td>
<td>2</td>
</tr>
<tr>
<td>Caudales Ileum</td>
<td>2</td>
</tr>
<tr>
<td>Colon ascendens</td>
<td>2</td>
</tr>
<tr>
<td>Colon descendens</td>
<td>2</td>
</tr>
<tr>
<td>Mandibular LN</td>
<td>2</td>
</tr>
<tr>
<td>Caudo caudales Jejunum</td>
<td>2</td>
</tr>
<tr>
<td>Craniales Ileum</td>
<td>2</td>
</tr>
<tr>
<td>ileocolic LN</td>
<td>2</td>
</tr>
<tr>
<td>Rectum</td>
<td>2</td>
</tr>
<tr>
<td>Magen</td>
<td>2</td>
</tr>
<tr>
<td>Mediales Jejunum</td>
<td>2</td>
</tr>
<tr>
<td>Jejunal LN (caud.)</td>
<td>2</td>
</tr>
<tr>
<td>Colon LN (asc.)</td>
<td>2</td>
</tr>
<tr>
<td>Craniales Jejunum</td>
<td>2</td>
</tr>
<tr>
<td>Colon LN (desc.)</td>
<td>2</td>
</tr>
<tr>
<td>Jejunal LN (med.)</td>
<td>2</td>
</tr>
<tr>
<td>Duodenum</td>
<td>2</td>
</tr>
<tr>
<td>Retropharyng. LN (med.)</td>
<td>1</td>
</tr>
<tr>
<td>Magen LN</td>
<td>2</td>
</tr>
<tr>
<td>Jejunal LN (cran.)</td>
<td>2</td>
</tr>
<tr>
<td>Anorectal LN</td>
<td>2</td>
</tr>
<tr>
<td>Ingual LN (superficial)</td>
<td>1</td>
</tr>
<tr>
<td>Leber</td>
<td>2</td>
</tr>
<tr>
<td>Pancreativoduod. LN</td>
<td>1</td>
</tr>
<tr>
<td>Cervical LN dors. sup.</td>
<td>1</td>
</tr>
<tr>
<td>Parotideal LN</td>
<td>1</td>
</tr>
<tr>
<td>Retropharyng. LN (lat.)</td>
<td>1</td>
</tr>
<tr>
<td>Sternal LN</td>
<td>1</td>
</tr>
<tr>
<td>Herz</td>
<td>1</td>
</tr>
<tr>
<td>Axillar LN</td>
<td>1</td>
</tr>
<tr>
<td>Tracheobronchial LN</td>
<td>0</td>
</tr>
<tr>
<td>Darmbein LN (med.)</td>
<td>0</td>
</tr>
<tr>
<td>Nieren LN</td>
<td>0</td>
</tr>
<tr>
<td>Milz</td>
<td>0</td>
</tr>
</tbody>
</table>

Untersuchte Tiere	2	1	1	2	4	2	3	3	3	3	4	3	31
Untersuchte Proben total	78	39	39	80	160	80	120	120	120	120	120	120	
Anzahl positive	53	29	25	27	36	13	27	15	16	16	9	17	
Positive %	67,9	74,4	64,1	33,8	22,5	16,3	22,5	12,5	13,3	13,3	5,6	14,2	

LN= Lymphknoten (Singular); LNN= Lymphknoten (Plural); cran.= cranial; caud. = caudal; med. = medial; sup. = superficial; asc. = ascendens; desc. = descendens
2.8 Salmonellenüberwachung in Dänemark

Seit seiner Einführung wurde das Programm stets weiterentwickelt. Bis heute traten einige Änderungen in Kraft. So wurde am 1.1.2001 die Beprobung der Fertigwaren geändert und am 1.8.2001 einige Änderungen in der Überwachung der Mastschweine vorgenommen.

2.8.1 Überwachung Futtermittel

Hier haben seit der Einführung des Programms keine Änderungen stattgefunden. Die Futtermittel werden zur Salmonellenelimination auf 81°C erhitzen. Das Programm sieht obligatorische Proben für alle Tierfuttermittel herstellenden Betriebe vor. Es werden sowohl die Endprodukte auf Salmonellen untersucht, als auch die an den kritischen Kontrollpunkten
2.8.2 Überwachung Zucht- und Vermehrungsbetriebe

2.8.3 Überwachung Sauenbestände/ Ferkelerzeuger

2.8.4 Überwachung Mastbestände

Hier wurden einige Änderungen in der Überwachung erarbeitet, welche am 1.8.2001 in Kraft traten.

Ab 1995 wurden sämtliche Mastschweinbestände, die jährlich mehr als 100 Schweine ablieferten, durch Fleischsaftproben, welche im Schlachtbetrieb zu nehmen waren, auf Salmonellen-Antikörper untersucht. Monatlich wurden die Ergebnisse aktualisiert, wichtig waren die Ergebnisse der letzten drei Monate. Aufgrund dieses errechneten Mittelwertes wurden die Bestände in drei Kategorien unterteilt:
Kategorie 1: mit keinen oder wenigen seropositiven Proben
Kategorie 2: mit einer mittleren Anzahl an seropositiven Proben
Kategorie 3: mit einer hohen Anzahl an seropositiven Proben.

Im weiteren Verlauf sollen die eingeführten Veränderungen kurz erläutert werden.
Zunächst wurde die vorgeschriebene Probenanzahl der je nach Größe des Betriebes zu nehmenden Proben vereinfacht. Gab es vorher eine Einteilung in sieben Bereiche, so sind diese auf drei reduziert worden. Folgende Probenanzahl ist nun vorgeschrieben:
- kleine Bestände (jährlich < 2000 geschlachtete Schweine): 60 Proben/ Jahr
- mittlere Bestände (jährlich 2001-5000 geschlachtete Schweine): 75 Proben/ Jahr
- große Bestände (jährlich > 5000 geschlachtete Schweine): 100 Proben/ Jahr

Hiermit hat sich die Probenanzahl für kleine Bestände im Vergleich zum vorherigen System erhöht, für große Bestände erniedrigt und für die mittleren Bestände ist sie in etwa gleich geblieben.
Gleichzeitig wurde beschlossen, dass ab sofort nur noch Herden mit einer jährlichen Schlachtschweineablieferung von mehr als 200 Tieren beprobt werden müssen (vorher ab mehr als 100 abgelieferten Schweinen jährlich). Der Grund dafür ist, dass in kleinen Beständen eine relativ zu große Anzahl Tiere beprobt werden müsste, um eine Herdenprävalenz mit ausreichender Präzision zu schätzen (NIELSEN 2002).
Eine weitere Änderung wurde im Rahmen der serologischen Fleischsaftuntersuchung eingeführt. Der ursprünglich genutzte Cut-off von 40 OD % (optische Dichte) wurde auf 20
OD % gesenkt. Somit werden die erreichten Ergebnisse sozusagen künstlich verschlechtert. Wurden mit einem Cut-off von 40 OD % zuletzt nur 4% der Proben als positiv gewertet, so sind es nun fast doppelt so viele (7,7%). Das bedeutet, dass einige Bestände, die sich ursprünglich in Kategorie 1 oder 2 befanden nun in Kategorie 2 oder 3 rutschen und damit auch gezwungen sind, an bestimmten Maßnahmen teilzunehmen (siehe unten).

Auch wurde die Wertung der serologischen Ergebnisse der letzten drei Monate geändert. Wurde zunächst einfach nur ein Mittelwert der letzten drei Monate gebildet, so werden diese nun gewichtet gerechnet (Verhältnis 1:1:3). Durch die stärkere Wertung des letzten Monats ist ein schnellerer Kategoriewechsel im Vergleich zum alten System möglich.

Die Einteilung in drei Kategorien wurde beibehalten, jedoch wurde die Einteilung der Kategoriengrenzen neu festgesetzt. Aus dem gewichteten Durchschnitt der serologischen Ergebnisse der letzten drei Monate wird ein Index berechnet (Spanne von 0 bis 100). Alle Bestände mit einem Index über 40 werden zu Kategorie 2 gerechnet, alle über 70 zu Kategorie 3. Da die Kapazität der Schlachthäuser, die Bestände der Kategorie 3 schachten, nicht überschritten werden durfte, wurden die Grenzen so gewählt, dass von 1902 Beständen, welche an einem Screening teilgenommen hatten, ca. 1,6% in Kategorie 3 fielen (NIELSEN et al. 2001).

Im Februar 2003 sah die Verteilung der Bestände wie folgt aus: Kategorie 1: 97,4%, Kategorie 2: 2,0%, Kategorie 3: 0,6% (ANONYMUS 2003a).

2.8.5 Überwachung Frischfleisch

Die angewandte Methode stammt ursprünglich vom USDA (United States Department of Agriculture) und ist die Methode der Wahl bei der nationalen Salmonellenüberwachung der USA. Diese Methode ist sensitiver als die vorher in Dänemark angewandte. Diesem Fakt ist es zuzuschreiben, dass die Nachweisrate von unter 1% vor 2001 auf 1,7% Ende 2001 gestiegen ist (ANONYMUS 2001b, NIelsen et al. 2001).

2.8.6 Überwachung Schlachtung

Generell werden in Dänemark eine Reihe präventiver Maßnahmen bei der Schlachtung von Schweinen getroffen. Zunächst werden die Schweine zwölf Stunden vor der Schlachtung gefastet. Während der Schlachtung werden sämtliche Geräte in 82°C heißem Wasser sterilisiert und ein so genannter Fettendenbeutel wird eingesetzt (ein Plastikbeutel, welcher um das Rektum gestülpt wird, um fäkale Kontamination zu vermeiden) (ANONYMUS 2002a).

2.8.7 Besondere Behandlung von DT 104 Beständen

Tabelle 3: Salmonellenüberwachung in der Schweinefleischerzeugung, Dänemark 2001 (WEGENER et al. 2003)

<table>
<thead>
<tr>
<th>Produktionstyp</th>
<th>Probe</th>
<th>Anzahl und Frequenz</th>
<th>Konsequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zucht und Vermehrung</td>
<td>Blut</td>
<td>10x pro Monat</td>
<td>bestätigende bakteriologische Proben der Herde, Einschränkung von Tierbewegungen falls Wert über bestimmtem Level liegt</td>
</tr>
<tr>
<td>Sauen/Ferkel</td>
<td>Kot</td>
<td>100 in 20 “Pools” von jew. 5; nur bei Bedarf</td>
<td>Einführung eines Salmonellen-reduktionsplans</td>
</tr>
<tr>
<td>Karkassen nach Schlachtung</td>
<td>Oberflächen-Proben</td>
<td>Abstriche von 5 Karkassen werden einmal täglich pro Schlachthaus zu einer Probe „gepoolt“.</td>
<td>Schlachthäuser, die eine bestimmte Anzahl pos. Proben in einem Zeitraum überschreiten müssen korrektive Maßnahmen einleiten</td>
</tr>
</tbody>
</table>

2.9 Salmonellenüberwachung in Deutschland

2.9.1 Salmonellen-Monitoring-Programm im Rahmen des QS-Systems

2.9.2 Die Umsetzung des QS-Salmonellen-Programms

Ähnlich wie in Dänemark findet auch in Deutschland eine Überwachung des Salmonellen-Antikörperstatus der Schlachtschweine statt. Die zu untersuchende Probe kann einmal als Blutprobe im Bestand oder auf dem Schlachthof als Fleischsaftprobe gewonnen werden.

Tabelle 4: Systematik der Probenentnahme (ANONYMUS 2004d)

<table>
<thead>
<tr>
<th>Probenentnahme/ Aufbewahrung</th>
<th>Prüfverfahren</th>
<th>Analyse</th>
<th>Beurteilungs- grundlage</th>
<th>Proben- entnahme</th>
<th>Prüf- umfang</th>
<th>Prüf- frequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleischsaft aus Zwerchfellpfeilerproben oder anderen geeigneten Muskellokalisationen z.B. Kehlgangsbereich oder Nackenmuskulatur</td>
<td>Serologischer Nachweis von Salmonellen-antikörpern im Fleischsaft</td>
<td>ELISA validierter Test, standardisierte Testseren</td>
<td>Kategorisierung aufgrund prozentualer Prävalenzstufen in der Stichprobe</td>
<td>im Schlachtprozess</td>
<td>in Abhängigkeit von der Jahresproduktion pro VVO-Nr.</td>
<td>in Abhängigkeit von den Anlieferungen im Jahresverlauf</td>
</tr>
<tr>
<td>Alternativ: Blutprobe (frühstens zwei Wochen vor der Schlachtung)</td>
<td></td>
<td></td>
<td></td>
<td>im Erzeugerbetrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcodekennzeichnung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufbewahrung max. 3 Wochen tiefgefroren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Im Falle der Fleischsaftprobe ist der jeweilige Schlachthof für die Organisation der Probennahme und deren Versand verantwortlich. Mit Hilfe einer zentralen Datenbank oder schlachthofeigener Software kann ein Beprobungsplan aufgestellt werden, so dass die Entnahme der Proben auf alle Ablieferungen eines Jahres gleichmäßig erfolgt (BLAHA 2003a). Der Stichprobenumfang für Mastbetriebe wird aufgrund der erwarteten jährlichen Produktion festgelegt und ist Tabelle 5 zu entnehmen.

Tabelle 5: Stichprobenumfang für Mastbetriebe nach erwarteter jährlicher Produktion (ANONYMUS 2004d)

<table>
<thead>
<tr>
<th>Anzahl pro Jahr angelieferter Tiere</th>
<th>Mindestprobenzahl je Jahr</th>
<th>Erstkategorisierung nach</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>10</td>
<td>20 Ergebnissen (spätestens 2 Jahren)</td>
</tr>
<tr>
<td>51-100</td>
<td>20</td>
<td>40 Ergebnissen (spätestens 2 Jahren)</td>
</tr>
<tr>
<td>101-200</td>
<td>30</td>
<td>60 Ergebnissen (spätestens 2 Jahren)</td>
</tr>
<tr>
<td>201-300</td>
<td>40</td>
<td>60 Ergebnissen (spätestens 1,5 Jahren)</td>
</tr>
<tr>
<td>301-400</td>
<td>50</td>
<td>60 Ergebnissen (spätestens 1,2 Jahren)</td>
</tr>
<tr>
<td>> 400</td>
<td>60</td>
<td>60 Ergebnissen (1 Jahr)</td>
</tr>
</tbody>
</table>

Die Bewertung der Untersuchungsergebnisse und die damit verbundene Einstufung des Betriebes werden nach der Erstkategorisierung viermal jährlich im Abstand von drei Monaten rückwirkend für die vergangenen zwölf Monate vorgenommen (ein „rollendes Mittel von jeweils 60 Proben). Bei dem zurzeit genutzten Cut-off Wert von 40 OD % werden die Betriebe folgendermaßen eingestuft:

- Kategorie I: <20% positive Befunde
- Kategorie II: 20%-40% positive Befunde
- Kategorie III: >40% positive Befunde (BLAHA 2003a, ANONYMUS 2004 b).

2.9.3 Maßnahmen im Schlachtbetrieb

Maßnahmen in Schlachtbetrieben sind vorgesehen, zurzeit aber noch nicht klar formuliert und befinden sich in der Ausarbeitung (ANONYMUS 2004d).

Eine vorläufige Version des Maßnahmenkatalogs vom 17.6.2002 zur Umsetzung des Salmonellenmonitoring- und –reduzierungsprogramms im Fleischzentrum sah folgende verbindliche Maßnahmen für den Schlachtprozess von Tieren von Betrieben der Kategorie III vor¹:

- Organisation der Logistik zur getrennten Anlieferung, getrennte räumliche Aufstellung während der Wartezeit und zeitlich getrennte Schlachtung von Tieren aus Kategorie-III-Beständen
- Reduzierte Schlachtbandgeschwindigkeit oder erhöhter Personaleinsatz am Schlachtband
- Reduzierung des Risikos der fäkalen Kontamination (Enddarmfreischneider mit Absaugung, Umhüllung des Enddarmes vor Eviszeration, besonders vorsichtige Eviszeration und Bearbeitung von Organen zur Vermeidung des Austretens von Magen-, Darm- und Blaseninhalt sowie von Gallenflüssigkeit)
- Reduzierung der Kontamination mit Speichel und Tonsillengewebe (Entfernung des ungespaltenen Kopfes mit der Zunge vom Schlachtkörper)

¹ Laut persönlicher Mitteilung von Prof. Dr. Th. BLAHA vom 21.06.2004
- Zusätzlich mikrobiologische Beprobung der geschlachteten Tierkörper von Tieren aus Kategorie-III-Beständen (mind. 1% der Tierkörper zur Kontrolle der Wirksamkeit der Maßnahmen)

2.10 Salmonellenepidemiologie in Bezug auf die Schlachtung

2.10.1 Salmonellen im Bestand

Kontamination von Schweinefleisch und Schweinefleischprodukten ist auf jeder Stufe der Produktion möglich. Der Hauptteil der Salmonellen, die in Schweinefleisch gefunden werden, wird jedoch von salmonelleninfizierten Schlachtschweinen in die Lebensmittelkette eingeschleppt. Um eine kurze Übersicht über mögliche Kontaminationsrouten zu bekommen, soll im Stall begonnen werden, die verschiedenen Wege der Salmonellen nachzuverzehren.

Nach BERENDS et al. (1999) beträgt die Möglichkeit, dass salmonellenfreie Schweine sich in einem kontaminierten Maststall infizieren, 85%. Ist nur eine Bucht betroffen, so beträgt die Wahrscheinlichkeit, dass eine Bucht-zu-Bucht-Transmission auftritt, 90%.
SWANENBURG et al. (2001a) geben einen Überblick über mögliche Salmonella-Kontaminationsrouten in der Schweinfleischerzeugungskette, beginnend im Bestand bis zum Schlachthaus (siehe Abbildung 4).

Mögliche Kontaminationsrouten

Im Bestand
- Infektion mit der residenten Salmonella-Hausflora

Während des Transports
- Infektion mit Salmonellen, die bereits auf dem LKW vorhanden waren
- Infektion durch ein ausscheidendes Schwein aus demselben Bestand
 - Exkretion der Salmonella-Hausflora
 - Exkretion der LKW-Flora (falls Transport länger als vier Stunden)
- Infektion durch ein ausscheidendes Schwein aus einem anderen Bestand

Im Wartebereich des Schlachthofs
- Infektion mit Salmonellen die bereits im Wartebereich vorhanden waren
- Infektion durch ein ausscheidendes Schwein aus demselben Bestand
 - Exkretion der Salmonella-Hausflora
 - Exkretion der LKW-Flora
 - Exkretion der Flora des Wartebereichs
- Infektion durch ein ausscheidendes Schwein aus einem anderen Bestand

Während der Schlachtung
- Kontamination mit Salmonellen, die bereits auf dem Schlachtequipment vorhanden waren
- Kontamination mit Salmonellen von einem anderen Schwein aus demselben Bestand, welches das Schlachtequipment kontaminiert hat
 - Salmonella-Hausflora
 - LKW-Flora
 - Flora des Wartebereichs
- Kontamination mit Salmonellen von Schweinen aus anderen Beständen, welche das Schlachtequipment kontaminiert haben

Abbildung 4: Mögl. Kontaminationsrouten von Salmonellen (angelehnt an SWANENBURG et al. 2001a)
2.10.2 Salmonellen während des Transports

MARG et al. (2001) wiesen einen negativen Einfluss des Transports sowohl auf das Allgemeinbefinden der Tiere wie auch auf die Salmonellenausscheidungsraten nach. Eine nicht transportierte, aber mit Salmonellen infizierte Kontrollgruppe zeigte eine Ausscheidungsraten von 58%, während in der transportierten Gruppe 92% aller Schweine Salmonellen ausschieden. Ähnliches konnten ISAACSON et al. (1999a) nachweisen.

Starke Stresssituationen erhöhen die Translokationsrate von Salmonellen durch die Darmwand, erhöhen den Endotoxinspiegel und verringern gleichzeitig immunologische Abwehrmechanismen im Serum (bakterizide Aktivität), so dass es den Bakterien teilweise sogar gelingt, sich im Serum zu vermehren, was in einer höheren Kontaminationsrate verschiedener Organe und Lymphknoten resultiert (SEIDLER et al. 2001).

Oft wird empfohlen, die Schweine vor dem Transport zu fasten. ISAACSON et al. (1999b) konnten nachweisen, dass nach 24 Stunden Futterentzug keine Unterschiede im Ileocaecalinhalt bezüglich Salmonellen bei transportierten und nicht transportierten Tieren festzustellen waren, was sie auf den durch das Fasten entstandenen Schutzeffekt zurückführten.

Jedoch muss zwischen Kurzstreckentransporten (unter einer Stunde, bzw. unter 125 km) und Langstreckentransporten (über sieben Stunden, bzw. über 500 km) unterschieden werden. So ist es bei Kurzzeittransporten möglich, die Salmonellennachweissrate durch vorgeschaltete Fastenzeiten der Tiere (bis zu 24 Stunden) zu senken. Je länger gefastet wurde, desto geringer waren die nachgewiesenen Salmonellenprävalenzen im Caecuminhalt. Bei Langzeittransporten stiegen jedoch die Nachweissraten mit längerem Fasten an (HAMILTON et al. 2003). Es ist möglich, dass die negativen Faktoren des Transports den schützenden
Effekt des Fastens überspielen, das Fasten selbst kann jedenfalls nicht als zusätzlicher Stress gewertet werden (MORROW et al. 2002).

2.10.3 Salmonellen im Wartestall

Der Wartestall stellt in zweierlei Hinsicht einen Problembereich dar: einmal gestaltet sich die Reinigung und Desinfektion hier recht schwierig, zum anderen lassen Salmonellen sich auch schon nach relativ kurzen Wartezeiten im Tier nachweisen.

HURD et al. (2002) verglichen Salmonellenprävalenzen im Bestand und im Wartestall nach ca. zwei Stunden Wartezeit. Sämtliche Proben (Lymphknoten, Caecuminhalt, Faeces) wiesen am Schlachthof signifikant höhere Werte auf als im Stall. Daraus lässt sich folgern, dass die schnelle Infektion während des Transports und besonders während der Zeit im Wartebereich für erhöhte Salmonellenprävalenzen verantwortlich ist. Es konnte in den Proben am

Es wird deutlich, dass nicht nur die verbrachte Zeit eine Rolle spielt, sondern auch die Reinigung des Wartebereichs einen wichtigen Faktor darstellt. Falls eine „salmonellenfreie“ Herde in einen nicht ausreichend gesäuberten Wartebereich verbracht wird, kann in kürzester Zeit eine Verbreitung stattfinden.

2.10.4 Salmonellen an der Schlachtlinie

Je mehr salmonelleninfizierte Schweine an einen Schlachthof angeliefert werden, desto höher steigt die Wahrscheinlichkeit der Kreuzkontamination während des Schlachtprozesses (BLAHA 2001b).

Verklebungen der Lunge mit dem Thorax bestehen und es dadurch zu Rupturen der Lunge während der Geschlingeentnahme kommt.

BOTTELDOORN et al. (2003) stellten weiterhin fest, dass die Karkassenkontamination aus zwei Parametern resultiert. Einmal aus dem Salmonellenstatus der angelieferten Schweine und zweitens aus der Schlachthaushygiene. Es wurde nachgewiesen, dass die Salmonellenflora im

Abbildung 5: Mögliche Kontaminationsquellen für Fleisch (GIOVANNACCI et al. 2001)

2.10.5 Salmonellen im Fleisch

2.11 Hazard Analysis and Critical Control Point (HACCP) –System

Punkt 1: Durchführung einer Gefahrenanalyse (Hazard Analysis)
Gesundheitsgefahren für den Konsumenten können chemischer, physikalischer oder mikrobieller Natur sein.

Punkt 2: Bestimmung der Critical Control Points (CCP; kritische Kontrollpunkte)
Ein CCP ist ein Punkt, Verfahren, Arbeitsgang oder Abschnitt in der Lebensmittelherstellung, an dem eine Lenkungsmaßnahme eingeführt werden kann und dadurch eine Gefährdung der Lebensmittelsicherheit verhüttet, eliminiert oder zumindest auf ein akzeptables Maß gesenkt werden kann.

Punkt 3: Festlegung von Grenzwerten für jeden CCP
Jedem CCP müssen Grenzwerte zugewiesen werden, bei deren Einhaltung sichergestellt ist, dass eine Elimination, Prävention oder Senkung der Gefährdung stattfindet.

Punkt 4: Festlegung eines Überwachungssystems der CCPs (Monitoring)
Die Einhaltung der Grenzwerte muss durchgehend überwacht werden.

Punkt 5: Festlegung von Korrekturmaßnahmen
Diese sind zu ergreifen, wenn ein CCP nicht mehr innerhalb der Grenzwerte liegt.

Punkt 6: Einführung einer Dokumentation
Die Gefahrenanalyse sowie das Monitoring und andere Maßnahmen sollen in Form einer Dokumentation vorliegen.
Punkt 7: Einführung von Maßnahmen, die verifizieren sollen, dass das HACCP-System funktioniert
(HOGUE et al. 1998, ZSCHALER u. REVERMANN 2003).

Um festzustellen, ob es sich wirklich um einen CCP (kritischen Kontrollpunkt) und nicht nur um einen CP (kritischen Punkt) handelt, sollte beachtet werden, dass ein CCP folgende Eigenschaften aufweisen muss:
Er muss die zuvor festgestellte Gefahr spezifisch ansprechen. Die zur Beherrschung der Gefahr durchzuführenden Maßnahmen sollen die Gesundheitsgefahr möglichst ausschalten, vermeiden oder auf ein in der Gefahrenanalyse festgelegtes, vertretbares Maß reduzieren. Die Ausschaltung einer spezifischen Gefahr, zum Beispiel durch ein technologisches Verfahren, muss durch ein geeignetes Überwachungssystem (Monitoring) unter Zuhilfenahme von Grenzwerten kontinuierlich zu prüfen sein. Gleichzeitig müssen geeignete und durchführbare Korrekturmaßnahmen gegeben sein, die ergriffen werden, wenn das Überwachungssystem eine mangelhafte Beherrschung des CCPs anzeigt.
3 Material und Methoden

3.1 Vorstellung des Schlachthofs, an dem die Untersuchungen durchgeführt wurden

3.1.1 Kapazität und Anlieferungsstruktur

Die Probennahme fand auf einem Schlachthof in Norddeutschland (Niedersachsen) statt. Auf dem Schlachthof werden sowohl Schweine wie auch Rinder geschlachtet. Die Kapazität liegt bei ca. 10.000 Schweinen in der Woche, die maximale Bandgeschwindigkeit bei 320 Schweinen in der Stunde.

Insgesamt liefern über 1000 Schweinehalter ihre Tiere an. Die Anlieferung geschieht teilweise durch die Tierhalter selber, teilweise über Händler, Erzeugergemeinschaften und Viehverwertungen und teilweise werden die Tiere durch den Schlachtbetrieb selbst abgeholt.

3.1.2 Schlachtablauf

Der Anlieferungsbereich besteht aus einer überdachten Rampe, an der die zuliefernden Fahrzeuge andocken, und über die die Schweine dann in die Wartebuchten getrieben werden. Bei der Entladung erfolgt die amtliche Schlachtieruntersuchung durch einen Tierarzt. Insgesamt stehen 12 Wartebuchten (pro Bucht ca. 35m²) zur Verfügung, pro Bucht finden etwa 70 Schweine Platz. Alle Buchten sind mit Bodentränken und einer Vorrichtung zur Feinversprühung von Wasser zur Intervallberieselung ausgestattet. Jeweils zwei Buchten sind über eine gemeinsame Schiebetür erreichbar, in welche Bucht die Tiere gelangen, wird durch ein schwenkbares Gitter geregelt. Die rechteckigen Buchten führen in ihrem Längsverlauf zum
Treibgang, welcher senkrecht zu den Buchten angeordnet ist. In diesem laufen die Schweine zunächst noch als Gruppe, werden am Ende dann vereinzelt und gelangen zur Betäubung (siehe Abbildung 6).

Zugang zur Betäubung

Abbildung 6: Auszug aus der Bauzeichnung: Schweinestall

Die Trennung der Buchten untereinander erfolgt durch ca. 1,10 m hohe Metallplatten, welche jedoch nicht durchgängig bis zum Boden sind, sondern einen ca. 10 cm breiten Spalt lassen. In der Mitte der Längsseite der Buchten, direkt unter den Metallplatten, befindet sich eine fest in den Boden eingelassene Metallschale, welche als Tränke dient und von beiden Seiten der Metallplatte aus zugänglich ist (d.h. kann von Schweinen aus zwei verschiedenen Buchten genutzt werden, siehe Abbildung 8).
Abbildung 7: Blick in einen Wartestall, vorne ist das schwenkbare Gitter

Abbildung 8: Blick in einen Wartestall, beachte: Tränken von beiden Seiten zugänglich
Häufig werden nachts die ersten Schweine angeliefert, seltener auch schon am Nachmittag des Vortages.

Die Betäubung der Tiere erfolgt durch Elektrobetäubung mittels eines vollautomatischen Restrainers (Kopfstrom Ø 2,1 Ampère, 2,7-3 sec; Bruststrom Ø 1,1 Ampère, 1,2-1,8 sec). Die Tiere werden liegend gestochen und entblutet und anschließend aufgehängt, dann erfolgt eine Vorreinigung in einem Peitschenwäscher (senkrechte Walzen mit ca. 20 cm langen, elastischen Plastikstreifen, die Schweine werden hängend hindurchtransportiert und dabei „abgepeitscht“). Anschließend erfolgt die Brühung im Brühbottich bei 61°C (+/- 0,5°C). Der Transport der Tiere erfolgt hängend an Schlinghaken über ein Rohrbandtransportsystem. Es folgt die Enthaarungsmaschine (Walzen und Metallaschen sowie fließendes, 55°C heißes Wasser), in welcher sich die Schweine ohne Aufhängung befinden. Dann werden auf dem sogenannten Plattenband die Klauenschuhe entfernt und die Tiere am körperfremden Ende der Achillessehne auf Haken an die Schlachttransportbahn gehängt. Sie werden in einer ersten Peitschenanlage getrocknet, danach zweimal abgeflammt (erdgasbetriebene, automatische Flammöfen) und dann in einer zweiten Peitschenanlage mittels Nass- und Trockenpeitschen nachgereinigt. Nach diesem Schritt endet der unreine Bereich („schwarze Seite“). Die „weiße Seite“ beginnt mit dem automatischen Rektalbohrer, welcher das Rektum umschneidet. Danach werden die Augen entfernt. Der Schlachtkörper wird eröffnet (an der Bauchseite, vom Schambeinkamm bis zum Brustbein), es folgt das Ausnehmen des Magen-Darmpakets (Eviszeration) und des Geschlinges (Zunge, Luftrohre, Speiseröhre, Lungen, Herz, anteilig Zwerchfell, Leber) sowie die mittige Teilung des Tierkörpers in zwei Hälften durch einen automatischen Hacker (sollte dieser einen Defekt aufweisen werden manuell betätigte Sägen eingesetzt). Nach dem Lösen des Flomens (inneres Bauchfett) und der Entkapselung der Nieren sowie dem Entfernen des Stichfleisches und des Gehirns folgt die amtliche Fleischuntersuchung. Hier werden die gesetzlich geforderten Anschnitte der Lymphknoten durchgeführt, die Tonsillen entfernt und der Tierkörper auf eventuell vorhandene Krankheitszeichen untersucht (Schema des Schlachtablaufes siehe Abbildung 9).
Abbildung 9: Schlachtablauf (Schema)
3.2 Beprobung

Die Probennahmen für die eigenen Untersuchungen wurden in zwei Aufgabenbereiche unterteilt:

1.) Untersuchungen zum allgemeinen Risiko der Salmonellenkontamination auf dem Schlachthof (Versuch 1)

2.) Untersuchungen zur Beeinflussung der Salmonellenkontamination und Salmonellenkreuzkontamination bei getrennter Schlachtung von Tieren aus Betrieben der Kategorie I und Kategorie III (Versuch 2)

Probenmaterial zu Versuch 1

Probenmaterial zu Versuch 2

An folgenden Stellen wurden vor und nach der Schlachtung die Proben genommen:
- Eviszeration: Kettenhandschuh, Schürze, Messer
- Geschlingeentnahme: Kettenhandschuh, Schürze, Messer
- Hacker: Umgebung unter dem Hacker (da die Klingen selbst nicht erreichbar waren)
- Entfernen der Mandeln: Kettenhandschuh, Messer
- Hallenmeister (Person, die beschlagnahmte Schweine am meisten berührt): Hand, Schürze, Messer
- Fünf Poolproben von jeweils zwei Darmschüsseln

3.2.1 Probennahme

Tupferproben

Stallbereich: Im Stall wurden jeweils fünf Tupferproben pro Bucht/Treibgang genommen und gepoolt.

Darmreste im Tierkörper/Kotverschmutzungen am Tierkörper: Auch hier wurden jeweils fünf Proben verschiedener Tiere zu einer Poolprobe zusammengefasst

Tränken: Die Tränken wurden einzeln beprobt und pro Tränke ein Tupfer ausgewertet.

Tonsillenproben

Tonsillenproben zu Versuch 1: Es wurden pro Bestand (Schlagzeichen) Tonsillen von fünf Tieren genommen und als Poolprobe ausgewertet. Das Entnahmebesteck wurde zwischen den einzelnen Beständen abgeflammt, die Tonsillen wurden in verschließbaren Plastikbehältern transportiert.
Tonsillenproben zu Versuch 2: Die Tonsillen der zehn letzten Tiere jedes Durchgangs wurden einzeln ausgewertet. Das Besteck wurde vor jeder Probenentnahme abgeflammt, auch hier wurden die Tonsillen in verschließbaren Plastikbehältern transportiert.

Wischproben

Haut-Stanzproben

Brühwasserproben

Die Brühwasserproben wurden mit sterilen ein-Liter-Kunststoffflaschen entnommen.
3.3 Kultureller Nachweis

Die kulturellen Untersuchungen des Probenmaterials auf Salmonellen wurden in Anlehnung an ISO 6579 in der Außenstelle für Epidemiologie der Tierärztlichen Hochschule Hannover in Bakum durchgeführt. Die Probenaufarbeitung erfolgte am Tag der Probennahme.

3.3.1 Nicht selektive Voranreicherung

Herstellung des gepufferten Peptonwassers (nach Vorschrift des Herstellers)

Es wurden 20 g des vorgefertigten Pulvers (Fa. Merck, Art. Nr. 7228) in einem Liter demineralisierten Wasser mit Hilfe eines Magnetstabrührers gelöst. Dann wurden unter Verwendung einer Dispensette jeweils 90 ml der Lösung in 250 ml Kunststoffflaschen gefüllt, die Flaschen mit einem Schraubdeckel verschlossen und 15 min bei 121°C und 1,5 bar autoklaviert.

3.3.1.1 Verarbeitung des Probenmaterials

Tupferproben

Die Tupferstäbe wurden in die Kunststoffflaschen verbracht, bei Poolproben jeweils fünf Stück.
Tonsillenproben

Die Tonsillen wurden abgeflammt um äußere Kontamination auszuschließen. Anschließend wurden sie mehrmals eingeschnitten und dann in die Kunststoffflaschen gefüllt. Bei Poolproben wurden die Tonsillen fünf verschiedener Tiere in eine Flasche gegeben, bei Einzelproben nur die eines einzigen Tieres.

Wischproben

Zu dem angefeuchteten Schlauchverband in den Kunststoffbeuteln wurde zusätzlich 70 ml gepuffertes Peptonwasser gegeben.

Haut-Stanzproben

Die Haut-Stanzproben wurden sofort bei Probennahme in die Kunststoffflaschen verbracht, so dass keine weitere Überführung zur Voranreicherung notwendig war.

Brühwasserproben

Mit einer sterilen Spritze wurden 10 ml Brühwasser zu 90 ml gepuffertem Peptonwasser gegeben.

3.3.2 Selektivanreicherung in Rappaport-Vassiliadisbouillon (RV)

0,1 ml der Voranreicherung wurden mit Hilfe einer Pasteurpipette für den Einmalgebrauch (Fa. Plastibrand) in 9 ml RV pipettiert. Die Bebrütung erfolgte 18 bis 24 Stunden bei 42°C. Die Selektivanreicherung fördert das Wachstum von Salmonellen und unterdrückt die Begleitflora.
Herstellung des RV (nach Vorschrift des Herstellers)

Es wurden 30 g des vorgefertigten Pulvers (Fa. Merck, Art. Nr. 7700) in einem Liter demineralisierten Wasser mit Hilfe eines Magnetstabührers gelöst und anschließend jeweils 9 ml mit einer Dispensette in Reagenzgläser gefüllt. Die Reagenzgläser wurden mit einem Deckel verschlossen und 15 min bei 115°C und 1,5 bar autoklaviert.

3.3.3 Ausstrich auf selektiven Nährböden

3.3.4 Eisen-Zweizucker-Agar nach Kligler

3.3.5 Agglutination mit Seren

3.3.6 Kryokonservierung

3.3.7 Weitere Identifizierung

3.4 Resistenztest

Um einen explorativen Überblick über die Resistenzsituation der in der Schlachtumgebung vorkommenden Salmonellen zu bekommen, wurden sämtliche Reinkulturen einem Resistenztest im Agardiffusionsverfahren unterzogen. Die Einzelkolonien wurden in 1 ml Peptonwasser gelöst und mit einem sterilen Tupfer auf zwei Iso-Sensitestplatten (Fa. Heipha
Die Sensibilität der Erreger wurde gegenüber folgenden Substanzen ausgewertet:

3.5 Vergleichende Untersuchungen zur Umsetzung der Salmonellenbekämpfung in Deutschland und in Dänemark

Im Diskussionsteil dieser Dissertation wird ein kritischer Vergleich erarbeitet, welcher sich mit den Maßnahmen der Salmonellenbekämpfung auf dem Schlachthof in Deutschland und in Dänemark befasst. Als Grundlage dieses Vergleichs werden die im Handbuch der Danske Slagterier sowie die in den QS-Leitlinien genannten Maßnahmen herangezogen. Des Weiteren wird, nach beispielhaftem Besuch eines Schlachthofs in Dänemark, die Umsetzung der theoretisch aufgeführten Maßnahmen in der Praxis diskutiert.
Abbildung 10: kultureller Salmonellennachweis (Schema)

Voranreicherung:
18-24h, 36°C

Selektivanreicherung:
18-24h, 42°C

Selektivagar
18-24h, 36°C
(bei negativem Befund weitere 24h)

Selektivagar:
18-24h, 36°C

Dann Agglutination mit Seren bis zur Ermittlung der Gruppenzugehörigkeit;
Einsendung zur weiteren Spezifizierung ins Robert-Koch-Institut Wernigerode;
Kryokonservierung der isolierten Stämme
4 Ergebnisse

4.1 Untersuchungen zum allgemeinen Risiko der Salmonellenkontamination auf dem Schlachthof (Versuch 1)

Die zunächst an das HACCP-Konzept angelehnten, theoretisch ermittelten Gefährdungspunkte für potentielle Salmonellenkontamination waren: der Wartestall (inklusive Abladerampe, Wartebuchten und Tränken), der Brühtank (inklusive Brühwasser), die Darmschalen, der Hacker, Oberflächen mit direktem Kontakt zu den Karkassen, Schutzkleidung des Personals (insbesondere die Stiefel), ein Durchgang zwischen Schlachthaus und Kantine, Darmreste in den Karkassen sowie die Tonsillen der Schweine.

Entsprechend dieser theoretisch ermittelten Bereiche für welche ein höheres Kontaminationsrisiko angenommen wurde, wurde ein Probenplan erarbeitet, welcher auf die genannten Punkte besondere Rücksicht nahm.

Tabelle 6: Ergebnisse der Untersuchungen zum allgemeinen Risiko der Salmonellenkontamination

<table>
<thead>
<tr>
<th>Datum: 12.5.2003</th>
<th>13 Poolproben Stall und Treibgang vormittags</th>
<th>1 positiv</th>
<th>Salmonella Subspez.1 serolog. rauh</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Poolproben Stall und Treibgang nachmittags</td>
<td>0 positiv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Tonsillenproben</td>
<td>0 positiv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Samples and Times</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>19.5.2003</td>
<td>20 Tonsillenproben</td>
<td>4 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3x Salmonella Typhimurium DT 104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 120</td>
<td></td>
</tr>
<tr>
<td>20.5.2003</td>
<td>11 Poolproben Stall und Treibgang vormittags</td>
<td>5 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 193</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x Salmonella Typhimurium DT 120</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Derby</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 Poolproben Stall und Treibgang nachmittags</td>
<td>2 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x Salmonella Typhimurium DT 017</td>
<td></td>
</tr>
<tr>
<td>16.6.03</td>
<td>10 Poolproben Stall und Treibgang sonntags</td>
<td>5 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3x Salmonella Typhimurium DT 104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x Salmonella Typhimurium DT 193</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 Poolproben Stall und Treibgang montags</td>
<td>6 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 120</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 193</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3x Salmonella Derby</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 Tonsillenproben</td>
<td>1 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 120</td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>Art der Proben</td>
<td>Ergebnisse</td>
<td>Befallserreger</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>23.6.2003</td>
<td>8 Poolproben Stall nachmittags</td>
<td>2 positive</td>
<td>2x Salmonella Typhimurium DT104</td>
</tr>
<tr>
<td></td>
<td>16 Tonsillenproben</td>
<td>2 positive</td>
<td>2x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td>24.6.2003</td>
<td>7 Poolproben Stall und Treibgang nachmittags</td>
<td>4 positive</td>
<td>4x Salmonella Typhimurium DT 193</td>
</tr>
<tr>
<td>30.6.2003</td>
<td>13 Poolproben Stall und Treibgang vormittags</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 Poolproben Stall und Treibgang nachmittags</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Proben Brühwasser</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 Tonsillenproben</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td>7.7.2003</td>
<td>1 Poolprobe Darmreste im Tierkörper</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td></td>
<td>4 Tränkentupfer aus dem Wartestall</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 120</td>
</tr>
<tr>
<td></td>
<td>2 Wischproben Luftfilterkrümel im Stall</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Wischproben Schlachtlinie Umgebung</td>
<td>1 positive (Umgebung Hacker)</td>
<td>1x Salmonella Typhimurium DT 120</td>
</tr>
</tbody>
</table>
28.7.2003

<table>
<thead>
<tr>
<th>11 Wischproben Schlachtlinie Umgebung</th>
<th>2 positive (Darmschüssel nach R+D)</th>
<th>2x Salmonella Typhimurium DT 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Poolprobe Kotkontamination Tierkörper</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>2 Poolproben Darmreste im Tierkörper</td>
<td>0 positive</td>
<td></td>
</tr>
</tbody>
</table>

13.8.2003

<table>
<thead>
<tr>
<th>7 Wischproben Umkleidebereich</th>
<th>0 positive</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Wischproben Schlachtlinie vor Schlachtung</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>3 Wischproben Schlachtlinie während Schlachtung</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>1 Wischprobe Boden Durchgang Schlachthaus/Kantine</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td>1 Wischprobe Handwaschbecken am Durchgang</td>
<td>0 positive</td>
<td></td>
</tr>
</tbody>
</table>

Proben insg.: 241 positiv: 39 (16,2%)

Von insgesamt 98 Proben aus dem Stallbereich (vor und während Schlachtung, sonntags, Tränkentupfer) wurden in 26 Salmonellen nachgewiesen (26,5%). Zehn Proben wurden an einem Sonntag genommen, von diesen waren fünf positiv. Von den vier beproben Tränken erwies sich eine als positiv.

Von 95 Tonsillenproben (da die Tonsillen bestandsweise gepoolt untersucht wurden heißt das, dass 95 Bestände untersucht wurden) erwiesen sich acht Proben als positiv (8,4%). Von den restlichen 48 untersuchten Proben waren fünf positiv (10,4%).

Insgesamt konnte 15 mal *S. Typhimurium* DT 104 nachgewiesen werden, davon sieben Proben im Stallbereich und sechs Tonsillenproben.
S. Typhimurium DT 120 wurde insgesamt neunmal nachgewiesen (viermal Stallproben, zweimal Tonsillenproben), S. Typhimurium DT 193 achtmal (alles Stallproben), S. Typhimurium DT 017 zweimal (beides Stallproben) und S. Derby viermal (alles Stallproben). Der prozentuale Anteil der Serovare an den positiven Proben kann der Abbildung 11 entnommen werden.

Abbildung 11: Anteile der Serovare an den positiven Proben

Von sämtlichen positiven Proben wurde ein Resistenzschema angefertigt, welches einen explorativen Überblick über die Resistenzzsitation der in der Schlachtungsgewinnung zu findenden Salmonellen geben soll.

Generell noch wirksam waren Enrofloxacin und Apramycin.

Bei S. Typhimurium DT 104 konnte eine generelle Resistenz gegenüber den sechs oben genannten Substanzen sowie gegenüber drei weiteren (Ampicillin, Amoxycillin und Tetracyclin) festgestellt werden.
Auch *S. Typhimurium* DT 193 zeigte sich zusätzlich gegenüber diesen drei Stoffen resistent, war jedoch auch zusätzlich zu den oben genannten noch generell sensibel gegenüber Ceftriaxone und Co-Trimoxazol.

S. Derby erwies sich ebenfalls generell sensibel gegenüber Ceftriaxone und Co-Trimoxazol.

Bei der Erstellung der Tabelle 7 wurden folgende Abkürzungen verwendet:

S. subsp. I = Salmonella Subspezies I
S. ty. = Salmonella Typhimurium
r = resistant
s = sensibel
i = intermediär

Verwendete Antibiotika (Abkürzung Konzentration):

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin (E 15)</td>
<td>Enrofloxacin (ENR 5)</td>
</tr>
<tr>
<td>Tylosin (TY 30)</td>
<td>Co-Trimoxazol (SXT 25)</td>
</tr>
<tr>
<td>Lincomycin (MY 15)</td>
<td>Gentamycin (CN 10)</td>
</tr>
<tr>
<td>Penicillin G (P 10)</td>
<td>Neomycin (N 30)</td>
</tr>
<tr>
<td>Oxacillin (OX 5)</td>
<td>Spectinomycin (SH 10)</td>
</tr>
<tr>
<td>Ampicillin (AMP 10)</td>
<td>Apramycin (APR 30)</td>
</tr>
<tr>
<td>Amoxicillin (AML 10)</td>
<td>Colistinsulfat (CT 10)</td>
</tr>
<tr>
<td>Tetracyclin (TE 30)</td>
<td>Ceftriaxone (EFT 30)</td>
</tr>
</tbody>
</table>
Tabelle 7: Resistenzschema der Serovare (1)

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>TY</th>
<th>MY</th>
<th>P</th>
<th>OX</th>
<th>AMP</th>
<th>AML</th>
<th>TE</th>
<th>ENR</th>
<th>SXT</th>
<th>CN</th>
<th>N</th>
<th>SH</th>
<th>APR</th>
<th>CT</th>
<th>EFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2003 Stall</td>
<td></td>
</tr>
<tr>
<td>S. subsp. I</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>19.5.2003 Tonsillen</td>
<td></td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
</tr>
<tr>
<td>20.5.2003 Stall</td>
<td></td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT193</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT017</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT017</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. derby</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>16.6.2003 Stall Sonntag</td>
<td></td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>i</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT193</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT193</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>E</td>
<td>TY</td>
<td>MY</td>
<td>P</td>
<td>OX</td>
<td>AMP</td>
<td>AML</td>
<td>TE</td>
<td>ENR</td>
<td>SXT</td>
<td>CN</td>
<td>N</td>
<td>SH</td>
<td>APR</td>
<td>CT</td>
<td>EFT</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Stall Montag</td>
<td></td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>S. ty. DT193</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>S. derby</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. derby</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Tonsillen</td>
<td></td>
</tr>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
</tbody>
</table>

23.6.2003

| Tonsillen |
| S. ty. DT104 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |
| S. ty. DT104 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |

| Stall |
| S. ty. DT104 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |
| S. ty. DT104 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |

24.6.2003

<p>| Stall |
| S. ty. DT193 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |
| S. ty. DT193 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |
| S. ty. DT193 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |
| S. ty. DT193 | r | r | r | r | r | r | r | s | s | i | s | r | s | s | s |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>E</th>
<th>TY</th>
<th>MY</th>
<th>P</th>
<th>OX</th>
<th>AMP</th>
<th>AML</th>
<th>TE</th>
<th>ENR</th>
<th>SXT</th>
<th>CN</th>
<th>N</th>
<th>SH</th>
<th>APR</th>
<th>CT</th>
<th>EFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.6.2003</td>
<td>Tonsillen</td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7.2003</td>
<td>Darmrest im Tierkörper</td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tränke Stall</td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Umgebungsproben</td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>28.7.2003</td>
<td>Darmschüsseln nach R+D</td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.8.2003</td>
<td>Durchgang Schlachthaus/ Kantine</td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Untersuchungen zur Beeinflussung der Salmonellenkontamination und Salmonellenkreuzkontamination bei getrennter Schlachtung von Tieren aus Betrieben der Kategorie I und Kategorie III (Versuch 2)

Die folgende Tabelle gibt eine Übersicht über die vor der Schlachtung genommenen Proben sowie über die gefundenen Serovare.

Tabelle 8: Ergebnisse der Proben vor der Schlachtung

<table>
<thead>
<tr>
<th></th>
<th>Kat. III</th>
<th>Kat. III</th>
<th>Kat. III</th>
<th>Kat. I</th>
<th>Kat. I</th>
<th>Kat. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probennahme</td>
<td>4.12.03</td>
<td>9.12.03</td>
<td>16.12.03</td>
<td>28.1.04</td>
<td>5.2.04</td>
<td>11.2.04</td>
</tr>
<tr>
<td>Eviszeration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handschuh</td>
<td>Salmonella Typhimurium DT 104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schürze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eviszeration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messer</td>
<td>Salmonella Typhimurium DT 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlinge-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>entnahme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handschuh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salmonella Typhimurium DT 120</td>
<td></td>
</tr>
<tr>
<td>Geschlingeentn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schürze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von insgesamt 102 Proben sind vier positiv.

Die folgende Tabelle gibt eine Übersicht über die nach der Schlachtung an denselben Orten gewonnenen Proben sowie die gefundenen Serovare.

Tabelle 9: Ergebnisse der Proben nach der Schlachtung

<table>
<thead>
<tr>
<th>Kat. III</th>
<th>Kat. III</th>
<th>Kat. III</th>
<th>Kat. I</th>
<th>Kat. I</th>
<th>Kat. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probennahme</td>
<td>4.12.03</td>
<td>9.12.03</td>
<td>16.12.03</td>
<td>28.1.04</td>
<td>5.2.04</td>
</tr>
<tr>
<td>Eviszeration Handschuh</td>
<td>Salmonella Typhimurium DT 104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eviszeration Schürze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eviszeration Messer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlinge-entnahme Handschuh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlinge-entnahme Schürze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschlinge-entnahme Messer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hacker Umgebung</td>
<td></td>
<td>Salmonella Typhimurium DT 017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entfernen Tonsillen Handschuh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entfernen Tonsillen Messer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hallenmeister Handschuh</td>
<td>Salmonella Typhimurium DT 018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hallenmeister Schürze</td>
<td>Salmonella Typhimurium DT 018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hallenmeister Messer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmschale 1+2</td>
<td>Salmonella Typhimurium DT 104</td>
<td>Salmonella Subspez.1 serol.: rauh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmschale 3+4</td>
<td>Salmonella Typhimurium DT 104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmschale 5+6</td>
<td>Salmonella Typhimurium DT 120</td>
<td>Salmonella Typhimurium DT 104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmschale 7+8</td>
<td>Salmonella Typhimurium DT 120</td>
<td>Salmonella Typhimurium DT 104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmschale 9+10</td>
<td>Salmonella Typhimurium DT 120</td>
<td>Salmonella Typhimurium DT 104</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von insgesamt 102 Proben sind hier 15 positiv.

Diese Tabelle gibt einen Überblick über die in den Tonsillenproben gefundenen Salmonellen.

Tabelle 10: Ergebnisse der Tonsillenproben

<table>
<thead>
<tr>
<th>Kat. III</th>
<th>Kat. III</th>
<th>Kat. III</th>
<th>Kat. I</th>
<th>Kat. I</th>
<th>Kat. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenannahme</td>
<td>4.12.03</td>
<td>9.12.03</td>
<td>16.12.03</td>
<td>28.1.04</td>
<td>5.2.04</td>
</tr>
<tr>
<td>Tonsilten Schwein 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 3</td>
<td>Salmonella Typhimurium DT 120</td>
<td></td>
<td></td>
<td></td>
<td>Salmonella Typhimurium DT 017</td>
</tr>
<tr>
<td>Tonsilten Schwein 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilten Schwein 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* *Salmonella Typhimurium DT 017*
Von insgesamt 60 Tonsillenproben sind vier positiv.

Fasst man die Ergebnisse der Untersuchungen vor und nach der Schlachtung, sowie der Untersuchungen der Tonsillen- und Hautproben zusammen, so erwiesen sich von 324 Proben 23 als positiv (7,1%).

S. Typhimurium DT 104 wurde insgesamt achtmal nachgewiesen, davon einmal schon vor Schlachtbeginn und sechsmal nach der Schlachtung in den Darmschüsseln, wobei beachtet werden sollte, dass die Darmschüsseln grundsätzlich nur nach erfolgter Reinigung und Desinfektion beprobt wurden.

S. Typhimurium DT 120 wurde ebenfalls achtmal nachgewiesen, davon einmal in den Tonsillen eines Schweins, dreimal vor Beginn der Schlachtung und dreimal in Darmschüsseln nach der Schlachtung aber, wie oben schon erwähnt, nach erfolgter Reinigung und Desinfektion.

S. Typhimurium DT 017 wurde insgesamt dreimal gefunden, alle drei Befunde stammen aus Tonsillenproben.

S. Typhimurium DT 018 wurde zweimal nachgewiesen und einmal *Salmonella* Subspez.. I serologisch rauh.

Von den hier gefundenen Serovaren wurden ebenfalls Resistenzschemata angefertigt, welche in Tabelle 11 wiedergegeben werden.

Auch hier sind sämtliche Serovare resistent gegenüber Erythromycin, Tylosin, Lincomycin, Penicillin, Oxacillin und Spectinomycin.

S. Typhimurium DT 104 ist wiederum zusätzlich noch resistent gegenüber Ampicillin, Amoxycillin und Tetracyclin.

Als generell wirksam erweisen sich Enrofloxacin, Neomycin, Colistinsulfat und Ceftiofur.
Tabelle 11: Resistenzschema der Serovare (2)

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>TY</th>
<th>MY</th>
<th>P</th>
<th>OX</th>
<th>AMP</th>
<th>AML</th>
<th>TE</th>
<th>ENR</th>
<th>SXT</th>
<th>CN</th>
<th>N</th>
<th>SH</th>
<th>APR</th>
<th>CT</th>
<th>EFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

4.12.2003

Vor Schlachtung

- S. ty. DT104: r r r r r r r r r s s s i s r s s s s
- S. ty. DT120: r r r r r s s s s s s s r s s s s

Tonsillen

- S. ty. DT120: r r r r r s s r s s i s r s s s s

Nach Schlachtung

- S. ty. DT104: r r r r r r r r r s s i s r s s s s

16.12.2003

Darmschale nach Schlachtung (und R+D)

- S. ty. DT120: r r r r r s s s s s i s r s s s s
- S. ty. DT120: r r r r r s s s s s i s r s s s s
- S. ty. DT120: r r r r r s s s s i s r s s s s

5.2.2004

Nach Schlachtung

- S. ty. DT018: r r r r r s s s s s i s r s s s s
- S. ty. DT018: r r r r r s s s s s i s r s s s s

Darmschale nach Schlachtung (und R+D)

- S. ty. DT104: r r r r r r r r r s s i s r s s s s
- S. ty. DT104: r r r r r r r r r s s i s r s s s s
- S. ty. DT104: r r r r r r r r r s s i s r s s s s
- S. ty. DT104: r r r r r r r r r s s i s r s s s s
- S. ty. DT104: r r r r r r r r r s s i s r s s s s
| E | TY | MY | P | OX | AMP | AML | TE | ENR | SXT | CN | N | SH | APR | CT | EFT | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | | | | |

11.2.2004

Vor Schlachtung

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>r</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>r</td>
<td>r</td>
<td>s</td>
</tr>
</tbody>
</table>

Tonsillen

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S. ty. DT017</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT017</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT017</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

Nach Schlachtung

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S. ty. DT120</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT017</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

Darmschale nach Schlachtung (und R+D)

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S. subsp.I</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>S. ty. DT104</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>r</td>
<td>s</td>
</tr>
</tbody>
</table>

Erklärung der Abkürzungen:

- r= resistant
- s= sensibel
- i= intermediär

Verwendete Antibiotika (Abkürzung Konzentration):

- Erythromycin (E 15) = Co-Trimoxazol (SXT 25)
- Tylosin (TY 30) = Gentamycin (CN 10)
- Lincomycin (MY 15) = Neomycin (N 30)
- Penicillin G (P 10) = Spectinomycin (SH 10)
- Oxacillin (OX 5) = Apramycin (APR 30)
- Ampicillin (AMP 10) = Colistinulfat (CT 10)
- Amoxycillin (AML 10) = Ceftiofur (EFT 30)
- Tetracyclin (TE 30)
- Enrofloxazin (ENR 5)
Zusammenfassung der Ergebnisse aus Versuch 1 und Versuch 2

Fasst man die Ergebnisse zusammen, so sind von 565 Proben 62 positiv (11%).
S. Typhimurium DT 104 wurde mit einem Anteil von 37,1% am häufigsten nachgewiesen.
Das zweithäufigste Serovar mit 27,4% ist S. Typhimurium DT 120. Danach folgen: S.
Typhimurium DT 193 (13%), S. Typhimurium DT 017 (9,7%), S. Derby (6,5%), S.
Typhimurium DT 018 (3,2%) und Salmonella Subspez. I serologisch rauh (3,2%).
Sämtliche gefundenen Serovare erweisen sich resistent gegenüber Erythromycin, Tylosin,
Lincomycin, Penicillin, Oxacillin und Spectinomycin.
Generell sensibel verhalten sich die Serovare gegenüber Enrofloxacin. Bei Colistinsulfat liegt
eine intermediär resistente Ausnahme vor, alle anderen Serovare erscheinen sensibel.
Sämtliche DT 104 Isolate sind zusätzlich zu den sechs aufgeführten Substanzen noch resistent
gegenüber Ampicillin, Amoxycillin und Tetracyclin. Auch die nachgewiesenen DT 193
Isolate zeigen ein solches Verhalten. Diese sind jedoch noch generell sensibel gegenüber
Ceftiofur und Co-Trimoxazol.

Abbildung 12: Prozentualer Anteil der resistenten, intermediär resistenten und sensiblen
Serovare
4.3 Anmerkung zur statistischen Auswertung

Weiterhin ist davon auszugehen, dass der erwartete Unterschied zwischen Kategorie I und III (Salmonelleninfektion/-kontamination Kat. I < Kat. III) aus verschiedenen Gründen nicht immer durchgängig, das heißt nur über längere Zeiträume nachweisbar ist (ROSTAGNO 2004), so dass die hier mit einer relativ geringen Probenzahl ermittelten Werte zwar Trendaussagen zulassen, aber keinesfalls im Detail zu verallgemeinern sind.
5 Diskussion

Salmonella-Spezies gehören zu den wichtigsten Zoonoseerreger der Enteritis Infectiosa beim Menschen. Innerhalb der Spezies *Salmonella* spielen die nicht wirtsadaptierten Serovare *S. Enteritidis* und *S. Typhimurium*, hier insbesondere der Phagentyp DT 104 durch seine Multiresistenz gegen Chemotherapeutika eine bedeutende Rolle. Da ein nicht unbeträchtlicher Anteil menschlicher Salmonellosen auf kontaminierte Schweinefleischprodukte zurückgeht, forderte BLAHA (1993b) schon Anfang der 90er Jahre unter anderem die Schlachtunternehmen auf, sich auf die Bekämpfung von Salmonellen beim Schwein vorzubereiten. Um Bekämpfungs- und Präventionsmaßnahmen einleiten zu können, muss zunächst einmal herausgefunden werden, wo sinnvolle Angriffs- oder Interventionspunkte während des Schlachtprozesses zu finden sind.

5.1 Untersuchungen zum allgemeinen Risiko der Salmonellenkontamination auf dem Schlachthof

5.1.1 Stall

Die bei den eigenen Untersuchungen festgestellte, wiederholt hohe Nachweisrate im Stall (26,5%) deckt sich mit den Aussagen anderer Arbeiten. Teilweise werden extrem hohe Nachweisraten von bis zu 100% angeführt (ROSTAGNO et al. 2001, BOTTELDOORN et al. 2003), in anderen Untersuchungen werden, wie in der vorliegenden Arbeit, Werte um 25% gefunden (BOES et al. 2001, SWANENBURG et al. 2001c). In den eigenen Untersuchungen
wurden sogar sonntags, nachdem der Stall zwei Tage leer stand und abgetrocknet war, positive Proben gefunden (fünf von zehn beprobten Stellen).

Um die Nachweisraten zu senken müsste eine Verbesserung der Reinigungsmaßnahmen stattfinden. Statt der alleinigen Reinigung mit Wasser müsste eine gründliche Reinigung und Desinfektion eingeführt werden. Im Rahmen der Vermeidung von Kreuzkontamination zwischen Tieren von verschiedenen Betrieben müsste die Reinigung und Desinfektion auch zwischen der Einstellung von Tieren verschiedener Anlieferer stattfinden.

Im Sinne einer einfachen, gründlichen und effizienten Reinigung wäre ein glatter Boden ideal. Ein solcher Boden müsste aber aus Gründen des Tierschutzes zusätzlich rutschsicher sein, wofür es noch keine kommerziell erhältliche technische Lösung gibt. HURD et al. (2003a) fanden heraus, dass Vollspaltenböden im Wartebereich in der Lage sind, die Salmonellenbelastung der Schlachtschweine zu senken.

Stunden bis zu 30 Tagen von Salmonellen in Wasser nach. Das bedeutet, dass unter für Salmonellen günstigen Umständen diese durchaus eine Nacht oder ein Wochenende in den Tränken überdauern können und so zur Kontamination der Schweine in beiden angrenzenden Buchten sogar an den folgenden Schlachttagen beitragen können.

5.1.2 Schlachtlinie

Sämtliche, nach dem Entborsten genommenen Proben (Rutsche aus dem Entborster, Plattenband, Tür vor dem Abflammen) erwiesen sich als negativ, so dass davon ausgegangen werden kann, dass es nicht zur Etablierung einer so genannten „Hausflora“ in dem Entborster gekommen ist.

Vergleichende Untersuchungen dieser beiden Prozeduren sollten durchgeführt werden, um Schlachtunternehmen Entscheidungshilfen anzubieten, wenn diese Maßnahmen zur Reduzierung der Salmonellenkontamination umsetzen wollen.
5.1.3 Schlachtumgebung

Es wurden verschiedene, gereinigte Stiefel beprobt. Diese brachten allesamt ein negatives Ergebnis.

Einen positiven Salmonellenbefund erbrachte jedoch die Probe des Bodens zwischen Schlachthaus und Kantine (Kreuzung mehrerer Personalwege). Die Stiefelreinigung ist erst hinter dieser beprobten Kreuzung möglich, so dass eine Beprobung der Stiefel vor der Reinigung ein positives Ergebnis hätte ergeben können.

Weiterhin ist die beprobte „Kreuzung“ auch ein Durchgangspunkt für das Personal aus der angrenzenden Kuttelei (Verarbeitung der Därme), diese Leute sollten allerdings, bevor sie zu der besagten Stelle gelangen, eine Schleuse passieren. Nach der Schleuse führt der Weg wiederum durch einen Abflussbereich, wo eine erneute Kontamination der Schuhe erfolgen kann. Weiterhin gibt es die Möglichkeit die Schleuse zu umgehen.

Außerdem können die Salmonellen auch auf dem umgekehrten Wege an die beprobte Stelle gelangt sein, nämlich aus der Kantine in Richtung Schlachthaus.

Sicherlich stellen Salmonellen auf dem Boden in diesem Bereich keine direkte Gefährdung für die Karkassen dar. Es ist allerdings ein allgemeiner Hinweis auf Hygienemängel, darüber hinaus ist es ein hochfrequenter Bereich von dem aus eine weitere Verbreitung der Salmonellen in alle Bereiche des Schlachtprozesses möglich ist.

Diese Untersuchungsergebnisse unterstreichen die unbedingte Notwendigkeit der lückenlosen Umsetzung des „Schwarz-Weiβ-Prinzips“ und der allgemeinen Hygienevorschriften.

5.1.4 Tierkörper

Von den 95 Tonsillenproben erwiesen sich acht als positiv. Da immer fünf Tonsillen pro Bestand gepoolt untersucht wurden heißt das, dass im schlimmsten Fall, nämlich wenn alle Tiere im Pool infizierte Tonsillen hätten (insgesamt 40 Tiere mit Salmonellen-positiven Tonsillen), 8,4% positiv wären. Wäre nur ein Tier pro Pool betroffen, wären es acht Tiere mit infizierten Tonsillen (1,7%). Der wahre Wert ist sicherlich in der Mitte dieser beiden Werte anzusiedeln. Andere Autoren fanden eine höhere Anzahl positiver Tonsillen (SWANENBURG et al. 2001d: 19,6%, CHAUNOMS 2003: 10,8%).

Eventuell sind generelle Überlegungen zu drastischen Änderungen des traditionellen Schlachtprozesses, wie zum Beispiel die frühe Trennung des Kopfes vom Schlachtkörper, anzustellen.

5.2 Untersuchungen zur Beeinflussung der Salmonellenkontamination und Kreuzzkontamination bei getrennter Schlachtung von Tieren aus Betrieben der Kategorie I und Kategorie III

An sämtlichen Probentagen wurde vor der Schlachtung das Schlachtband und das Personal beprobt. An zwei Tagen wurden bereits vor der Schlachtung positive Proben gefunden (Eviszeration Handschuh und Messer, Geschlingeentnahme Handschuh und Messer). Dies deckt sich mit anderen Untersuchungen, die teilweise sogar sehr hohe Werte vor der Schlachtung ermittelten (BOTTELDOORN et al. 2003: 25% positive Proben vor der Schlachtung).
Im für die vorliegende Arbeit untersuchten Schlachthof werden teilweise vor der Schweineschlachtung von dem Personal noch Arbeiten im Rinderschlachthaus durchgeführt, so dass es dann durch Anfassen der zu beprobenden Gegenstände zu einer Kontamination derselben gekommen sein könnte. Die Positionen, an denen vor der Schlachtung Salmonellen gefunden wurden, stellen Bereiche dar, in denen ein häufiger Kontakt mit Salmonellen sehr wahrscheinlich ist, so dass eine weitere Erklärung in der nicht ausreichenden Reinigung des Equipments am Vortag gefunden werden kann.

Abbildung 13: Waschanlage der Darmschüsseln

Da die Proben am laufenden Schlachtband genommen wurden, war eine gewisse Eile geboten. Es kann somit nicht vorausgesetzt werden, dass vor und nach der Schlachtung zu 100% die gleichen Areale beprobt wurden (z. B. auf den Schürzen). Wurden vor der Schlachtung Flächen als negativ beprobt, kann es im Zweifelsfall nach der Schlachtung zu positiv bewerteten Ergebnissen kommen, die dann den Anschein erwecken, dass durch den Schlachtprozess eine Kontamination stattgefunden hat, welche jedoch schon vor der Schlachtung vorhanden war.

Ebenso sind die negativen Proben nach der Schlachtung sowie die durchweg negativen Hautstanzproben mit einer gewissen Unsicherheit verbunden, das heißt nicht beweisend für einen salmonellenfreien Schlachtprozess, da nur die Salmonellenfreiheit der beproben Stelle und nicht eine Salmonellenfreiheit der gesamten Fläche nachgewiesen wurde.
In anderen Untersuchungen, in denen Bestände mit hohem und geringem Risiko der Salmonellenkontamination während der Schlachtung verglichen wurden, ließen sich deutliche Unterschiede betreffend der Salmonellenprävalenz auf der Karkassenoberfläche zwischen den verschiedenen Risikostufen feststellen (QUIRKE et al. 2001). Allerdings ist ein Vergleich hier nicht vollständig möglich, da bei diesen Untersuchungen keine destruktiven Stanzproben sondern größerflächige Wischproben mit einem Schwamm genommen wurden.
Zur weiteren Abklärung dieser Frage kann somit empfohlen werden, bei späteren Untersuchungen das großflächigere Wischverfahren einzusetzen.

5.3 Resistenzztest

Insgesamt wurden zwar nur 62 positive Proben gefunden, es erwiesen sich jedoch 100% der Isolate resistent gegenüber Erythromycin, Tylosin, Lincomycin, Penicillin, Oxacillin und Spectinomycin. Somit liegt hier eine Multiresistenz bei 100% der Serovare vor.
S. Typhimurium DT 104-Isolate wiesen zusätzlich noch eine Resistenz gegenüber Ampicillin, Amoxicillin und Tetrazyclin auf, sind in diesem Fall also neunfach resistent. In anderen Untersuchungen wurden S. Typhimurium DT 104 Isolate gefunden, die sogar gegenüber bis zu 16 verschiedenen antimikrobiellen Substanzen resistent reagierten (HELMUTH et al. 2004b).

5.4 Vergleichende Untersuchungen zur Umsetzung der Salmonellenbekämpfung in Deutschland und in Dänemark

Der Vergleich beider Systeme ist etwas schwierig, da sich das deutsche System noch im Aufbau befindet, das Dänische dagegen seit Jahren erfolgreich läuft und mittlerweile sogar schon Verbesserungen vorgenommen wurden.
Generell ist in Deutschland die Teilnahme an einem Salmonellenmonitoring freiwillig, für Teilnehmer des QS-Systems ist sie nur für Betriebe mit Mastschweinen verpflichtend. In Dänemark ist die gesamte Schweineproduktionskette mit einbezogen (Sauen und Ferkel nur bei Bedarf).
5.4.1 Umfang der Beprobung

Hier muss zunächst auf die unterschiedlichen Strukturen der deutschen und dänischen Landwirtschaft in Bezug auf die Betriebsgrößen (Anzahl gehaltener Mastschweine pro Bestand) eingegangen werden.

Auch wenn die Anzahl gehaltener Tiere pro Betrieb in Deutschland seit Jahren stetig steigt, bleibt Deutschland im internationalen Vergleich nach wie vor hinter Ländern wie den USA, Kanada und eben Dänemark zurück (ANONYMUS 2002c). So lag der Anteil der Betriebe mit 1000 und mehr Mastschweinen in Deutschland im Jahr 2003 bei nur 2% (ANONYMUS 2004e), während es in Dänemark 38,7% Betriebe mit mehr als 1000 Mastschweinen gab. 3% aller Betriebe verfügen sogar über mehr als 5000 Mastschweine (ANONYMUS 2004c). Über die Hälfte aller Betriebe in Deutschland (64%) liegen im Bereich „bis 49 Mastschweine“ während das Gros (84,9%) der Betriebe in Dänemark im Bereich „50 und mehr Mastschweine“ liegt (siehe Tabelle 12).

Tabelle 12: Durchschnittlicher Größenvergleich der Betriebe mit Mastschweinen in Deutschland und Dänemark im Jahre 2003 (nach ANONYMUS 2004c, e)

<table>
<thead>
<tr>
<th></th>
<th>Dänemark</th>
<th>Deutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betriebe</td>
<td>Schweine</td>
</tr>
<tr>
<td>bis 49 Mastschweine</td>
<td>15,1%</td>
<td>0,3%</td>
</tr>
<tr>
<td>50 und mehr</td>
<td>84,9%</td>
<td>99,7%</td>
</tr>
<tr>
<td>davon 1000 und mehr</td>
<td>38,7%</td>
<td>83,5%</td>
</tr>
</tbody>
</table>
Laut NIELSEN et al. (2001) und ALBAN et al. (2002) liegen in Dänemark nur 1,6% der Schlachtschweine außerhalb der Beprobung (ca. 317.000 Schweine), da nur Betriebe mit über 200 abgelieferten Schlachtschweinen jährlich eingeschlossen sind. Die Beprobung in Deutschland soll sämtliche Betriebe umfassen, die Schlachtschweine liefern. Dieses vom dänischen Programm abweichende Vorgehen ist unter Berücksichtigung der sehr großen Zahl kleiner und kleinster Bestände in Deutschland absolut zwingend, da ansonsten eine nicht akzeptable große Anzahl von Mastschweinen nicht in das Programm aufgenommen würde (geht man von einer Beprobung nur von Betrieben mit mehr als 200 abgelieferten Schweinen jährlich aus wären weit mehr als 2 Millionen Mastschweine in Deutschland außerhalb der Beprobung- alleine in Bayern werden über eine Million Mastschweine in Beständen mit weniger als 100 produzierten Tieren pro Jahr gehalten)\(^2\).

\section*{5.4.2 Probenzahl}

OSTERKORN et al. (2001) kritisierten schon 2001 die Stichprobenplanung der damals diskutierten, vom BMVEL vorgeschlagenen „Leitlinien für ein Programm zur Reduzierung des Eintrags von Salmonellen durch Schlachtschweine in die Fleischgewinnung“. Nun liegt eine erneute Bewertung der Stichprobenplanung vor (OSTERKORN u. HUBER 2004). Leider werden zur Berechnung erneut die alten Werte dieser BMVEL-Leitlinien genutzt und nicht die

\(^2\) laut persönlicher Mitteilung von Prof. BLAHA am 9.8.2004
Weiterhin wird gesagt, dass die Größenzuordnung eines Betriebes von vornherein nicht immer eindeutig sein dürfte und somit der nach der Jahresproduktion gestaffelte Umfang der Proben sich als problematisch erweisen würde. Dieser, auf die Leitlinien bezogene Kritikpunkt, ist sicher auch für das neue System noch aktuell, da sich die Staffelung noch immer an der Jahresproduktion orientiert. Hier bleibt abzuwarten, ob die Staffelung sich als durchführbar und aussagekräftig erweist.

5.4.3 Bezahlung der Beprobung

In Deutschland ist die Bezahlung der Fleischsaftproben (oder Blutproben) von Anfang an von den Landwirten vorzunehmen.

5.4.4 Wichtung der Probenergebnisse

Im dänischen Salmonellenprogramm werden die Ergebnisse der letzten drei Monate gewichtet (1:1:3) für die Kategoriebestimmung herangezogen. Der deutsche QS-Leitfaden sieht die quartalsweise Bildung des Durchschnitts der Ergebnisse der jeweils letzten 12 Monate vor (rollendes Mittel). Durch die Wichtung ist bei Änderungen der Seroprävalenz (mehr positiv/
mehr negativ) ein schnellerer Kategoriewechsel möglich. Es sollte überlegt werden, ob nicht auch in Deutschland eine Wichtung der Ergebnisse von Vorteil wäre, da dann angepasster bzw. schneller auf die Salmonellendynamik reagierte werden könnte.

5.4.5 Cut-off

5.4.6 Frischfleischüberwachung

In Dänemark findet routinemäßig eine tägliche Beprobung der Karkassen statt. Wie im Literaturteil schon erwähnt wurde, werden die Maßnahmen für Schlachtbetriebe von QS zurzeit überarbeitet. In der Version des QS-Salmonellenmonitoring-und-reduzierungsprogramms für die Schweinefleischerzeugung vom 1.1.2004 sind noch keine Routineüberprüfungen für Frischfleisch vorgesehen.

Somit finden zurzeit in Deutschland keine routinemäßigen Überprüfungen statt, die belegen könnten, dass alle eingesetzten Maßnahmen (auch die auf Bestandsebene) wirklich greifen und das Ziel, den Salmonelleneintrag durch Schlachtschweine in die Lebensmittelkette zu senken, auch wirklich erreicht wird.
Es sollte eine Methode erarbeitet werden, die die routinemäßige Frischfleischüberprüfung ermöglicht, eventuell könnte auch hier wieder in Anlehnung an das dänische Konzept gearbeitet werden.

5.4.7 Einführung und Weiterführung

Abbildung 14: Aufbau der dänischen Schweinefleischindustrie (ANONYMUS 2004a)

Derzeit ist immer noch eine wirtschaftlich erfolgreiche Vermarktung auch für landwirtschaftliche Betriebe möglich, die nicht am QS-System teilnehmen (WINDHORST 2004). Einerseits ist es für QS-zertifizierte Schlachtbetriebe noch keine Pflicht, ausschließlich QS-Schweine zu akquirieren, weiterhin sind auch noch nicht flächendeckend sämtliche Schlachthöfe Teilnehmer, so dass es für Landwirte, welche noch nicht am QS-System teilnehmen, ein Leichtes ist, ihre Tiere zu vermarkten.

Hier stellt sich dann auch die Frage der weiteren Vermarktung der Schweine von Betrieben der Kategorie III. Sollten die neu erarbeiteten Maßnahmen für Schlachtbetriebe in Anlehnung an die dänische Strategie tatsächlich die alleinige Verwertung in erhitzten Produkten vorsehen, wird es sicherlich schwer werden einen Schlachthof zu finden, der sich bereit erklärt diese

6 Schlußfolgerungen

Die Untersuchungen zu der vorliegenden Arbeit belegen, dass es durch eine auf Salmonellen orientierte Analyse entlang des Produktionsprozesses in einem Schlachthof möglich ist Schwachstellen, die die Kreuzkontamination mit Salmonellen fördern, aufzudecken und gezielte Verbesserungsmaßnahmen zu empfehlen. Übereinstimmend mit einer Vielzahl von Literaturangaben wurde auch bei dem für diese Arbeit untersuchten Schlachthof der Wartestall als der größte potentielle Risikofaktor für die Salmonellenkreuzkontamination ermittelt.

Da die Reinigung und Desinfektion von Warteställen mit planbefestigten Betonböden während des Schlachtprozesses als Werkzeug zur Senkung der Prävalenz von Salmonellen offensichtlich nicht überzeugend ist (SCHMIDT et al. 2004), sollte überlegt werden, ob in Warteställen von Schlachthöfen nicht wenigstens generell Vollspaltenböden implementiert werden, welche nach Untersuchungen in den USA (HURD et al. 2003a) zur Senkung der Salmonellenprävalenz bei Schlachtschweinen beitragen.

In Schlachthöfen, in denen dies nicht praktizierbar ist, wäre es erforderlich, wenigstens eine gründliche Reinigung und Desinfektion nach jedem Schlachttag einzuführen. Auch wenn durch diese Maßnahme keine Salmonellenfreiheit zu erreichen ist, so sollte sie durchgeführt werden, um jeden Tag zumindest mit einer geringeren Salmonellenbelastung zu beginnen, als sie am Vorabend war.

![Graph A](attachment:graph_a.png) ![Graph B](attachment:graph_b.png)

X-Achse: Zeitachse Y-Achse: Salmonellenbelastung

Abbildung 15: Theoretisches Vorkommen von Salmonellen im Wartestall ohne tägliche Reinigung und Desinfektion (A) und mit täglicher Reinigung und Desinfektion (B)
Im Rahmen des logistischen Schlachttens sollte der Kontakt von Schweinen zwischen den Buchten, insbesondere von Schweinen aus Betrieben verschiedener Kategorien, vermieden werden. Falls möglich sollten Schweine aus Betrieben der Kategorie III sogar am letzten Tag der Woche geschlachtet werden, um komplett den Kontakt zu anderen Schweinen auszuschließen. In Dänemark ist es üblich, dass diese Schweine sogar nur an wenigen ausgewählten Schlachthöfen geschlachtet werden. In diesen „Sonder-Schlachterbetrieben“ ist die
Heißwasser-Dekontamination am Ende der Schlachtung üblich, so dass die Karkassen auch für Frischfleisch vermarktet werden können. Ob es in Deutschland gelingen kann, nur einige, wenige Schlachthöfe zur Schlachtung von Schweinen aus Betrieben der Kategorie III einzusetzen, ist fraglich, da die diversifizierte Struktur der deutschen Schlachthöfe mit starker Konkurrenz zwischen den Betrieben eine solche Lösung undenkbar macht. Der Einsatz eines Dekontaminationsschrittes am Ende der Schlachtung von Schweinen aus Betrieben der Kategorie III und die daraufhin möglicherweise besseren Vermarktungschancen stellen aber sicherlich eine auch in Deutschland umsetzbare Maßnahme dar. Weiterführende Untersuchungen zur Wärmebehandlung unter deutschen Bedingungen sollten umgehend durchgeführt werden.

Insgesamt kann gesagt werden, dass eine Vielzahl von Möglichkeiten der Senkung der Kreuzkontamination während des gesamten Schlachtprozesses existieren. Die dafür erforderlichen Maßnahmen sollten kompromisslos umgesetzt werden und alle durch die Schwachstellenanalyse aufgedeckten Risikofaktoren umfassen, da sie einerseits zur Senkung der Salmonellenbelastung von Schweinefleisch beitragen, und andererseits dringend erforderlich sind, um den Erfolg bereits auf Bestandsebene durchgeführter Maßnahmen nicht zu gefährden, sondern weiter zu verbessern. Diese letzte Aussage ist ein Plädoyer für die immer wieder zu erläuternde Tatsache, dass für eine effiziente Salmonellenbekämpfung nicht
einzige Maßnahmen an dieser oder jener Stelle, sondern die Umsetzung ALLER möglichen Interventionsmaßnahmen im Sinne eines „Lebensmittelsicherheitskontinuums“ auf allen Prozessebenen das wirksamste Instrument darstellt.
7 Zusammenfassung

Katharina Kühnel

Semiquantitative Untersuchungen zu der Möglichkeit der Senkung von Kreuzkontamination mit Salmonellen bei der Schlachtung von Schweinen

8 Summary

Katharina Kühnel

Semi-quantitative investigations into the possibility of reducing Salmonella cross-contamination during the slaughter of swine

The objective of this doctoral thesis was to identify, via semi-quantitative investigations, at which stages of the slaughter process salmonella-associated weak points can be found. Furthermore, the aim was to develop and evaluate measures that minimise and/or contribute to minimise the salmonella contamination and cross-contamination during the slaughter process.

First, an HACCP concept-like list of potential risk areas was generated along the slaughter process from unloading the animals, through their lairage to the individual processes at the slaughter line. By means of bacteriological testing, the theoretically determined risk areas were to be verified. Additionally, comparative bacteriological testing of plant personnel, contact areas for carcasses, and of carcasses themselves were carried out during slaughter of pigs from high-risk and low-risk farms.

The results of this doctoral thesis permit the conclusion that it is possible, to generate a salmonella-specific weak point list for any slaughter house. Concluding from this list, targeted measures for minimising the contamination of carcasses and the cross-contamination between carcasses can be developed and implemented.

The specific measures developed for the study slaughter house are are described in detail.

Additionally to the findings resulting from the analysis of the study slaughter house, for validating and generalising the own results, a comparative critique of the salmonella-specific hygiene measures used in Denmark and those used in the framework of the German quality assurance system “QS” was carried out and discussed. Finally, conclusions for optimising the salmonella-specific HACCP-like measures for german slaughter houses are drawn.
9 Literaturverzeichnis

The new classification system for slaughterpig herds in the Danish Salmonella surveillance- and-control program

ANONYMUS (1997):
Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin: Fragen und Antworten zum Hazard Analysis and Critical Control Point (HACCP) –Konzept
Rundschau für Fleischhygiene und Lebensmittelüberwachung 49, Nr. 4, 86-9

ANONYMUS (1998):
Bekanntmachung der Leitlinien für ein Programm zur Reduzierung des Eintrags von Salmonellen durch Schlachtschweine in die Fleischgewinnung
Bundesanzeiger vom 5. März 1998, 44, 2905-6

ANONYMUS (2001a):
Danish Information August 2001: Salmonellenüberwachung in der dänischen Schweineproduktion
www.danskeslagterier.dk/smmedia/DS_Nyhedsbrev_0801_pdf?mb_GUID=F4C87318-7D4F-4A23-B1F0-7B4DF646AB70.pdf

ANONYMUS (2001b):
Effektiver Handlungsplan gegen Salmonellen
www.danskeslagterier.dk/smmedia/DS_Salmonella_0102_pdf?mb_GUID=8B9981A5-257C-42CB-9955-E79CD5C8909B.pdf
ANONYMUS (2002 a):
Handbuch der Danske Slagterier
www.danskeslagterier.dk

ANONYMUS (2002 b):
Merkblatt für Ärzte: Salmonellose
Robert Koch Institut, Bundesinstitut für gesundheitlichen Verbraucherschutz und
Veterinärmedizin
www.rki.de/INFEKT/INFEKT.HTM

ANONYMUS (2002 c):
ZDS-Geschäftsbericht 2001
Zentralverband der deutschen Schweineproduktion E. V.
www.zds-bonn.de

ANONYMUS (2002 d):
Zur Situation bei wichtigen Infektionskrankheiten: Bakterielle Gastroenteriden in Deutschland
2001
Epidemiologisches Bulletin, Robert Koch Institut Nr. 50, 417-22

ANONYMUS (2003 a):
Danish Information April 2003: Salmonellenhandlungsplan mit Wirkung
www.danskeslagterier.dk/smmmedia/DS_NyhedsbrevTY0303_pdf?mb_GUID=2FAE7DDC-1FA2-4325-AE01-C60DE1417905.pdf

ANONYMUS (2003 b):
Zur Situation bei wichtigen Infektionskrankheiten in Deutschland: Ausgewählte bakterielle
Gastroenteriden im Jahr 2002: Salmonellose
Epidemiologisches Bulletin, Robert Koch Institut Nr. 46, 373-4
ANONYMUS (2004 a):
Danske Slagterier: Struktur
www.danskestagterier.dk/view.asp?ID=326

ANONYMUS (2004 b):
Danske Slagterier: Ziel
www.danskestagterier.dk/view.asp?ID=2667

ANONYMUS (2004 c):
Die Struktur der dänischen Bestände
www.danskestagterier.dk/view.asp?ID=4681

ANONYMUS (2004 d):
Homepage der QS-Qualität-und Sicherheits-GmbH
www.q-s.info

ANONYMUS (2004 e):
Rasanter Strukturwandel bei den Vieh haltenden Betrieben
Zentralverband der deutschen Schweineproduktion E. V.
www.zds-bonn.de/index.php?load=page_nr_1162&sel=48&lang=0&print=1

ANONYMUS (2004 f):
Zu einer Häufung von Salmonella Enteritidis mit erfolgreichem Nachweis des Erregers im Lebensmittel
Epidemiologisches Bulletin, Robert Koch Institut Nr. 18, 149-51

Salmonella spp. on pork at cutting plants and at the retail level and the influence of particular risk factors
Int J. Food Microbiol. 44, 207-17
Identification and quantification of risk factors regarding *Salmonella* spp. on pork carcasses

Identification and quantification of risk factors in animal management and transport regarding
Salmonella spp. in pigs

BLAHA, Th. (1993 a):
Die Ausbreitungs dynamik von Salmonellen in Tierbeständen
Dtsch. Tierärztl. Wschr. *100*, 278-80

BLAHA, Th. (1993 b):
Epidemiologie und Bekämpfung von Salmonelleninfektionen des Schweins
Colleg. Veterinarium XXIV, 84-6

BLAHA, Th. (1996):
Untersuchungen zum Eintrag von Salmonellen aus Schweinemastbeständen in die
Lebensmittelkette
Der praktische Tierarzt *3*, 229-30

BLAHA, Th. (2001 a):
Die Bekämpfung von Salmonellen starten
Fleischwirtschaft Nr. 10, 15-8

BLAHA, Th. (2001 b):
Salmonellenbekämpfung beim Schwein
Der praktische Tierarzt *82*, 964-7
BLAHA, Th. (2003 a):
Das Salmonellenmonitoring- und –reduzierungsprogramm
Vet-MedReport, 27, Sonderausgabe V1, 2-3

BLAHA, Th. (2003 b):
Implementing a Salmonella Monitoring Programme for Pork in Germany
Proceedings of the 5th international Symposium of foodborne pathogens in pork, Creta,
Greece, 1-4 Oktober 2003, 200-2

BLAHA, Th., G. SOLANO u. C. PIJOAN (1996):
The Early Colonization Patterns of S. Typhimurium in Pigs after Oral Intake
USAHA Salmonella Committee Abstracts, Little Rock, October 14, 1996

Verhalten ausgewählter Salmonellen in der Umwelt
Dtsch. Tierärztl. Wschr. 100, 275-78

Effect of separate transport, lairage, and slaughter on occurrence of Salmonella Typhimurium
on slaughter carcasses

HARRINGTON (2002):
Washing and chilling as critical control points in pork slaughter hazard analysis and critical
control point (HACCP) systems
J. Appl. Microbiol. 92, 893-902
J. Appl. Microbiol. 94, 1036-42

BORCH, E., T. NESBAKKEN u. H. CHRISTENSEN (1996): Hazard identification in swine slaughter with respect to foodborne bacteria
Int. J. Food Microbiol. 30, 9-25

J. Appl. Microbiol. 95, 891-903

Rev. Inf. Dis. 6, Nr. 3, 345-56

CHAUNOMS, S. (2003): Assessment of Salmonella contamination using an antibody-ELISA test and a PCR technique in pigs at slaughter and on farm level Hannover, Tierärztliche Hochschule, Diss.

The Lancet 363, Nr. 9417, 1285-6
Prevalence of *Salmonella enterica* in pigs before the start of the Danish Salmonella Control
Programm (1993/94) and four years later (1998)
Proceedings of the 3rd international Symposium on the Epidemiology and Control of

CLARKE, R. C., u. C. L. GYLES (1993):
Salmonella.
Pathogenesis of bacterial infections in animals.
2nd ed., Iowa State University Press, S. 133 - 53

DAVIES, P. R., W. A. GEBEYES, J. A. FUNK u. P. TURKSON (2004):
Observational evidence for differential translocation of *Salmonella* serovars to mesenteric
lymph nodes of swine
Proceedings of the 18th international Pig Veterinary Society Congress, Hamburg, June 27-July 1,
2004, 652

DAVIES, R. H., I. M. MCLAREN u. S. BEDFORD (1999):
Distribution of *Salmonella* contamination in two pig abattoirs
Proceedings of the 3rd international Symposium on the Epidemiology and Control of

Bakterielle Zoonosen bei Tier und Mensch
Verlag Enke, Stuttgart, 295-329

Bericht über die im Jahr 1999 an das Deutsche Nationale Veterinärmedizinische Referenzlabor
für Salmonellen eingesandten *Salmonella*-Isolate
Berl. Münch. Tierärztl. Wochenschr. 115, 252-8
DORN, C., A. SCHROETER u. R. HELMUTH (2004):
Stagnation auf hohem Niveau
Fleischwirtschaft Nr. 4, 75-80

Zur Einschätzung des Salmonellenrisikos bei Fleisch
Amtstierärztlicher Dienst und Lebensmittelkontrolle 1, 28-34

Microbial food borne pathogens. *Salmonella*

Verfahrensentwurf für die mikrobiologische Kontrolle der allgemeinen Hygiene in
Fleischlieferbetrieben gemäß Artikel 10(2) der Richtlinie 64/433/EWG

How Salmonella survive against the odds
Annu. Rev. Microbiol. 49, 145-74

Elicitation of expert knowledge on dynamics of *Salmonella* infections and contamination in
the pork chain
Proceedings of the 4th International Symposium on the Epidemiology and
Control of *Salmonella* and other foodborne pathogens in Pork, Leipzig, Germany, 2-5
September 2001, 259-61

Bund sagt Salmonellen den Kampf an
Landwirtschaftsblatt Weser-Eme Nr. 31, 28-30
Tracing of Salmonella spp. in two pork slaughter and cutting plants using serotyping and macrorestriction genotyping
J. Appl. Microbiol. 90, 131-47

Keimvermehrung in Lebensmitteln
Dtsch. TierärztL Wschr. 100, 280-2

Peracute infection of swine with Salmonella
Proceedings of the 5th international Symposium of foodborne pathogens in pork, Creta, Greece, 1-4 Oktober 2003, 321-2

Harvest epidemiology of Salmonella contamination in EU pig slaughterhouses

The occurrence and epidemiology of Salmonella in European pig slaughterhouses
Epidemiol. Infect. 131, 1187-203

Effect of pre-slaughter handling and serology on Salmonella in pigs
Proceedings of the 5th international Symposium of foodborne pathogens in pork, Creta, Greece, 1-4 Oktober 2003, 180-3
Vorkommen von Enteritis-Salmonellen in Lebensmitteln und bei Nutztieren 1991
(Kurzmitteilung)
Dtsch. Tierärzt. Wschr. 100, 259-60

Mitteilungen der Länder über Salmonella- Nachweise in Deutschland
in: M. HARTUNG (Hrsg.):
Bericht über die epidemiologische Situation der Zoonosen in Deutschland für 2002
BfR- Heft x/2003, 23-132

HELMUTH, R., GUERRA, B., MALorny, B., MIKO, A. u.
SCHROETER, A. (2004 a):
Erfassung phänotypischer und genotypischer Resistenz Eigenschaften bei
Salmonella- und E. coli-Isolaten vom Tier, Lebensmitteln, Futtermitteln und der
Umwelt. Abschlußbericht zum Forschungsvorhaben
Bundesinstitut für Risikobewertung, 2004
www.bfr.bund.de/cm/220/erfassungphaenotypischer_und_genotypischer_resistenzeigenschaften_bei_salmonella_und_e_coli_isolaten_vom_tier_abschlussbericht.pdf

HELMUTH, R., GUERRA, B., MALorny, B., MIKO, A. u.
SCHROETER, A. (2004 b):
Zweiter Zwischenbericht zum Forschungsvorhaben:
Erfassung phänotypischer und genotypischer Resistenz Eigenschaften bei
Salmonella- und E. coli-Isolaten vom Tier, Lebensmitteln, Futtermitteln und der
Umwelt.
Bundesinstitut für Risikobewertung, 2004
www.bfr.bund.de/cm/222/zweiter_zwischenbericht_zum_forschungsvorhaben.pdf
HILSE, G. (1998):
Leitlinien zur Reduzierung des Salmonelleneintrages
Fleischwirtschaft Nr. 7, 768-9

Pathogen Reduction and Hazard Analysis and Critical Control Point (HACCP) systems for
meat and poultry. USDA

Salmonella Typhimurium definitive type 104. A multi-resistant Salmonella
Int. J. Food Microbiol. 67, 173-86

HURD, H. S., J. K. GAILEY, J. D. MCKEAN u. M. H. ROSTAGNO (2001 a):
Experimental rapid infection in market swine following exposure to a Salmonella
contaminated environment
Berl. Münch. Tierärztl. Wochenschr. 114, 382-4

Rapid infection in market-weight swine following exposure to a Salmonella Typhimurium-
contaminated environment
Am. J. Vet. Res. 62, 1194-7

Slatted pen floors reduce Salmonella in market swine held in abattoirs
Proceedings of the 5th international Symposium of foodborne pathogens in pork, Creta,
Greece, 1-4 Oktober 2003, 203-4
Estimation of the Salmonella enterica prevalence in finishing swine
Epidemiol. Infect. 132, 127-35

HURD, H. S., J. D. MCKEAN, R. W. GRIFFITH, I. V. WESLEY u. M. H. ROSTAGNO
(2002):
Salmonella enterica infections in market swine with and without transport and holding
Appl. Environ. Microbiol. 68, 2376-81

HURD, H. S., M. H. ROSTAGNO u. J. D. MCKEAN (2004):
Effect of pre-slaughter holding in abattoir pen or transport trailer on Salmonella prevalence
Proceedings of the 18th international Pig Veterinary Society Congress, Hamburg, June 27-July 1, 2004, 684

ISAACSON, R. E., L. D. Firkins, R. M. WEIGEL, F. A. ZUCKERMANN u. J. A. DIPIETRO
(1999 a):
Effect of transportation and feed withdrawal on shedding of Salmonella typhimurium among experimentally infected pigs
Am. J. Vet. Res. 60, 1155-8

The Effect Of Feed Withdrawal On The Shedding Of Salmonella Typhimurium By Swine

KÄSBOHRER, A., D. PROTZ, R. HELMUTH, K. NÖCKLER, Th. BLAHA, F. J.
CONRATHS u. L. GEUE (2000):
Salmonella in slaughter pigs of German origin: an epidemiological study
Eur. J. Epidemiol. 16, 141-6
KIESEWALTER, J. (1992):
Enterobacteriaceae - Salmonellen
In: SEIDEL, G., u. KIESEWALTER (Hrsg.):
Bakterielle Lebensmittelinfektionen und -intoxikationen
3. Auflage, Akademie-Verlags GmbH, Berlin
S. 116-147

Bakterielle Gastroenteriden und Zoonosen beim Menschen 2001
in: M. HARTUNG (Hrsg.):
Bericht über die epidemiologische Situation der Zoonosen in Deutschland für 2001
BgVV- Heft 6/2002, 19-22

KÖHLER, B. (1993):
Beispiele für die Anreicherung von Salmonellen in der Umwelt
Dtsch. Tierärztl. Wschr. 100, 264-74

Vorkommen von Enteritis-Salmonellen beim Menschen
Dtsch. Tierärztl. Wschr. 100, 255-58

Aufbau von Qualitätsmanagement-Systemen in landwirtschaftlichen Betrieben am Beispiel
der Fleischproduktion
FCL-Schriftenreihe Bd. 6 (Hrsg.)
Bonn, Rhein, Univ., Fachber. Agrarwiss., Diss.
Landwirtschaftsverlag, Münster
LE MINOR, L. (1984):
Salmonella

Influence of long-time transportation stress on re-activation of *Salmonella* Typhimurium DT104 in experimentally infected pigs

Tiere als Infektionsquelle für den Menschen- Salmonellosen
Dtsch. Tierärztl. Wschr. 106, 344-51

Reduction of multiresistant *Salmonella* Typhimurium DT 104 in Danish swineherds- new strategy

Eradication of multi-resistant *Salmonella* Typhimurium DT 104 infections in 15 Danish swine herds

Effect of time in lairage on caecal and carcass salmonella contamination of slaughter pigs
Epidemiol. Infect. 98, 323-30
Effect of withdrawing feed from hogs prior to slaughter on the prevalence of gastrointestinal
lacerations at slaughter
Proceedings of the 3rd international Symposium on the Epidemiology and Control of
Salmonella in Pork, Washington D.C., August 5-7, 1999, 326-8

Effect of withdrawing feed from swine on meat quality and prevalence of Salmonella
colonization at slaughter

NIELSEN, B. (2002):
Kontrolle über Tier und Fleisch
Fleischwirtschaft Nr. 4, 33-4

NIELSEN, B., L. ALBAN, H. STEGE, L. L. SORENSEN, V. MOGELMOSE, J. BAGGER,
A new Salmonella surveillance and control programme in Danish pig herds and
slaughterhouses

Experimental aerogenic transmission of Salmonella Agona in weaned pigs
Proceedings of the 18th international Pig Veterinary Society Congress, Hamburg, June 27-July
1, 2004, 653

Cross-contamination with Salmonella on a broiler slaughterhouse line demonstrated by use of
epidemiological markers
J. Appl. Microbiol. 94, 826-35
Reduction in level of *Salmonella* on swine carcasses after slaughter without splitting the head
Proceedings of the 4th International Symposium on the Epidemiology and
Control of *Salmonella* and other foodborne pathogens in Pork, Leipzig, Germany, 2-5
September 2001, 124-6

Stichprobenplanung für die Etablierung eines serologischen Salmonellen-
Monitoringprogramms bei Mastschweinen mittels Fleischsaft-ELISA
Berl. Münch. Tierärztl. Wochenschr. 114, 30-4

OSTERKORN, K., u. M. HUBER (2004):
Bewertung der Stichprobenplanung für ein Salmonellen-Monitoringprogramm bei
Mastschweinen
Dtsch. Tierärztl. Wschr. 111, 212-4

Getrennte Schlachtung von *Salmonella*-positiven und *Salmonella*-negativen Broilerherden als
Bestandteil eines Gütezeichenprogramms
Fleischwirtschaft 78, 187-9

POKORNY, J. (1988):
Survival and Virulence of Salmonellae in water

German guidelines for the reduction of *Salmonella* prevalence in fattening pigs
Proceedings of the 3rd international Symposium on the Epidemiology and Control of
Supplement 2001 (no. 45) to the Kauffmann-White scheme
Res. Microbiol. 154, 173-4

Prevalence of Salmonella serotypes on pig carcasses from high- and low-risk herds slaughtered in three abattoirs

RHEAULT, N., u. S. QUESSY (1999):
Sampling of environment and carcasses for the detection of Salmonella in swine abattoirs

ROLLE, M., u. A. MAYR (Hrsg.) (2002):
Medizinische Mikrobiologie, Infektions- und Seuchenlehre 7. Auflage S. 462-78
Verlag Enke, Stuttgart

ROSTAGNO, M. H., H. S. HURD u. J. D. MCKEAN (2004):
Bacteriological and serological Salmonella prevalence in finishing pigs
Proceedings of the 18th international Pig Veterinary Society Congress, Hamburg, June 27-July 1, 2004, 649

Abattoir holding pens as a source of Salmonella for swine
Proceedings of the 4th International Symposium on the Epidemiology and Control of Salmonella and other foodborne pathogens in Pork, Leipzig, Germany, 2-5 September 2001,298-300
Preslaughter holding environment in pork plants is highly contaminated with *Salmonella enterica*
Appl. Environ. Microbiol. 69, 4489-94

Vorkommen von Salmonellen in der Produktionslinie Schweinefleisch: Bekämpfungskonzept in einem integrierten Verbundsystem
BAFF Kulmbach, Institut für Mikrobiologie und Toxikologie
www.bfa-fleisch.de/JBBAFF98FORM/DDD/JAHRESBERICHTBAFF1998MIKROBIOLOGIE.pdf

SANDER, J. (1993):
Pathogenese der Salmonella-Infektionen des Menschen
Dtsch. Tierärztl. Wschr. 100, 283-5

The association between cleaning and disinfection of lairage pens and the prevalence of *Salmonella enterica* in swine at harvest
J. Food Prot. 67, 1384-8

SCHNIPPE, F. (2003):
Warum QS auf der Stelle tritt
Top Agrar 10, 4-6

SCHOOS, J. (2001):
Die Salmonelleninfektion von Schweinen in der Fleischhygiene
Bericht des Nationalen Veterinärmedizinischen Referenzlabors für Salmonellen
im Jahr 2002
in: M. HARTUNG (Hrsg.):
Bericht über die epidemiologische Situation der Zoonosen in Deutschland für 2002
BFör- Heft x/2003,133-40

SCHWARTZ, K. J. (1991):
Salmonellosis in Swine
Compend. Contin. Educ. 13, Nr. 1, 139-47

SCHWARTZ, K. J. (1999):
Salmonellosis
In: STRAW, B. E., D’ALLAIRE, S., MENGELING, W. L. u. TAYLOR, D. J. (Hrsg.):
Diseases of swine 8th edition
Iowa State University Press

Transport stress- consequences for bacterial translocation, endogenous contamination and
bactericidal activity of serum of slaughter pigs

Das Salmonellen-Problem
Gustav Fischer Verlag, Jena, Stuttgart
SOERENSEN, L. L. (2003):
The intensified control programme for Salmonella at Danish swine slaughterhouses
Proceedings of the 5th international Symposium of foodborne pathogens in pork, Creta,
Greece, 1-4 Oktober 2003, 169-70

SOERENSEN, L. L., R. SOERENSEN, K. KLINGT u. B. NIELSEN (1999 a):
Persistent environmental strains of Salmonella Infantis at two Danish slaughterhouses, two
case-stories
Proceedings of the 3rd international Symposium on the Epidemiology and Control of

Different ways of handling the bung (rectum) during pig slaughter dressing related to
Salmonella sero-positivity in slaughtered pigs and the number of Salmonella positive meat
samples
Proceedings of the 3rd international Symposium on the Epidemiology and Control of

The new Danish Salmonella surveillance on fresh pig carcasses based on pooled swab samples
including compatibility with levels of the former system
Proceedings of the 4th International Symposium on the Epidemiology and
Control of Salmonella and other foodborne pathogens in Pork, Leipzig, Germany, 2-5
September 2001, 30-2

STEINBACH, G. u. M. HARTUNG (1999):
Schätzung des Anteils menschlicher Salmonellaerkrankungen, die auf vom Schwein
stammende Salmonellen zurückzuführen sind
Berl. Münch. Tierärztl. Wschr. 112, 296-300
STEINBACH, G., u. U. KROELL (1999):
Salmonelleninfektionen in Schweinebeständen- Zu ihrer Epidemiologie und Bedeutung für
Erkrankungen des Menschen
Dtsch. Tierärztl. Wochenschr. 106, 282-8

Survival of pathogenic micro-organisms and parasites in excreta, manure and sewage sludge

SWANENBURG, M., B. R. BERENDS, H. A. P. URLINGS, J. M. A. SNIJDERS u. F. VAN
Knapen (2001 a):
Epidemiological investigations into the sources of Salmonella contamination of pork

SWANENBURG, M., P. J. VAN DER WOLF, H. A. P. URLINGS u. J. M. A. SNIJDERS
(2003):
Pilot experiment with the aim to reduce salmonella prevalence in pork by logistic slaughter of
pigs
Proceedings of the 5th international Symposium of foodborne pathogens in pork, Creta,
Greece, 1-4 Oktober 2003, 161-3

SWANENBURG, M., P. J. VAN DER WOLF, H. A. P. URLINGS, J. M. A. SNIJDERS u. F.
VAN Knapen (2001 b):
Salmonella in slaughter pigs: the effect of logistic slaughter procedures of pigs on the
prevalence of Salmonella in pork
Int. J. Food Microbiol. 70, 231-42
Tonsils of slaughtered pigs as marker sample for salmonella positive pork
Proceedings of the 3rd international Symposium on the Epidemiology and Control of

SWANENBURG, M., H. A. P. URLINGS, D. A. KEUZENKAMP u. J. M. A. SNIJDERS
(2001 c):
Salmonella in the lairage of pig slaughterhouses
J. Food Prot. 64, 12-6

SWANENBURG, M., H. A. P. URLINGS, J. M. A. SNIJDERS, D. A. KEUZENKAMP u. F.
VAN KNAPEN (2001 d):
Salmonella in slaughter pigs: prevalence, serotypes and critical control points during slaughter
in two slaughterhouses
Int. J. Food. Microbiol. 70, 243-54

VIELITZ, E. (1993)
Salmonella enteritidis: Auftreten, Bedeutung und Kontrollmaßnahmen
Archiv Geflügelkunde 1993, 57, Nr. 5, 193-8

WALDMANN, K.-H., u. M. WENDT (Hrsg.) (2001):
Lehrbuch der Schweinekrankheiten
3. Auflage, Verlag Parey, 344-8

WEGENER, H. C., T. HALD, D. L. WONG, M. MADSEN, H. KORSgaard, F. BAGER,
Salmonella control programs in Denmark
Emerg. Infect. Dis. 9, 774-80
WIELER, L. H., u. R. BAUERNFEIND (1999):
Salmonella-Infektionen beim Tier und deren Bedeutung für die Human- und Tiergesundheit
VetMedLabor-Fortbildungsveranstaltung „Zoonosen“ im Oktober 1999
www.animal-health-online.de/drms/klein/salmonella.htm

Der Schweinenmarkt der Zukunft
Vortrag am 10.02.1999 in Österreich
www.ispa.uni-vechta.de/staff/windhorst/lectures/vorweltx.html

Anmerkungen aus der Stufe der Landwirtschaft
In: Ansatzpunkte zur Optimierung des QS-Systems – Eine kritische Analyse –
www.q-s.info/de/presse/de/pdfdocuments/organisation/AnsatzpunkteOptimierung.pdf , S. 15-7

Selection of finishing pig herds with a low Salmonella prevalence for logistic slaughtering
Proceedings of the 5th international Symposium of foodborne pathogens in pork, Creta,
Greece, 1-4 Oktober 2003, 144-6

Distribution of persistent Salmonella typhimurium infection in internal organs of swine
Am. J. Vet. Res. 50, Nr. 7, 1015-21

Populations of Salmonella typhimurium in internal organs of experimentally infected carrier
swine
Am. J. Vet. Res. 53, Nr. 5, 653-8
WRAY, C. W., u. W. J. SOJKA (1977):
Reviews of the progress of dairy science: Bovine salmonellosis
J. Dairy Sci. 44, 383-425

YU, S. L., u. C. BOLTON (1999):
Effect of Dehairing Operations on Microbiological Quality of Swine Carcasses
J. Food Protect. 62, 1478-81

Zschaler, R., u. M. REVERMANN (2003):
Durchführung eines HACCP-Konzeptes
www.haccp.de/ihaccpdv.htm

Gesetze

Verordnung über die hygienischen Anforderungen und amtlichen Untersuchungen beim
Verkehr mit Fleisch (Fleischhygiene- Verordnung- FlHV) vom 29. Juni 2001 BGBl. I S. 1366
i. d. F. vom 15.1.2003
10 Anhang

10.1 Detaillierte Auflistung der Proben für Versuch 1

<table>
<thead>
<tr>
<th>Datum</th>
<th>Proben</th>
<th>Ergebnis</th>
<th>Befunde</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2003</td>
<td>13 Poolproben Stall und Treibgang vormittags</td>
<td>1 positiv</td>
<td>Salmonella Subspez.I serolog. rauh</td>
</tr>
<tr>
<td></td>
<td>9 Poolproben Stall und Treibgang nachmittags</td>
<td>0 positiv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 Mandelproben</td>
<td>0 positiv</td>
<td></td>
</tr>
<tr>
<td>19.5.2003</td>
<td>20 Mandelproben</td>
<td>4 positive</td>
<td>3x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 120</td>
</tr>
<tr>
<td>20.5.2003</td>
<td>11 Poolproben Stall und Treibgang vormittags</td>
<td>5 positive</td>
<td>1x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1x Salmonella Typhimurium DT 193</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2x Salmonella Typhimurium DT 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1x Salmonella Derby</td>
</tr>
<tr>
<td></td>
<td>8 Poolproben Stall und Treibgang nachmittags</td>
<td>2 positive</td>
<td>2x Salmonella Typhimurium DT 017</td>
</tr>
<tr>
<td>Datum</td>
<td>Probenarten und Anzahl</td>
<td>Resultat</td>
<td>Erreger</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>16.6.03</td>
<td>10 Poolproben Stall und Treibgang sonntags</td>
<td>5 positive</td>
<td>3x Salmonella Typhimurium DT 104 2x Salmonella Typhimurium DT 193</td>
</tr>
<tr>
<td></td>
<td>9 Poolproben Stall und Treibgang montags</td>
<td>6 positive</td>
<td>1x Salmonella Typhimurium DT 104 1x Salmonella Typhimurium DT 120 1x Salmonella Typhimurium DT 193 3x Salmonella Derby</td>
</tr>
<tr>
<td></td>
<td>20 Mandelproben</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 120</td>
</tr>
<tr>
<td>23.6.03</td>
<td>8 Poolproben Stall nachmittags</td>
<td>2 positive</td>
<td>2x Salmonella Typhimurium DT104</td>
</tr>
<tr>
<td></td>
<td>16 Mandelproben</td>
<td>2 positive</td>
<td>2x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td>24.6.03</td>
<td>7 Poolproben Stall und Treibgang nachmittags</td>
<td>4 positive</td>
<td>4x Salmonella Typhimurium DT 193</td>
</tr>
<tr>
<td>30.6.03</td>
<td>13 Poolproben Stall und Treibgang vormittags</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 Poolproben Stall und Treibgang nachmittags</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Proben Brühwasser</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 Mandelproben</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td>7.7.2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Poolprobe Darmreste im Tierkörper</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 104</td>
<td></td>
</tr>
<tr>
<td>4 Tränkentupfer aus dem Wartestall</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 120</td>
<td></td>
</tr>
<tr>
<td>2 Wischproben Luftfilterkrümel im Stall</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmutz am Restrainer</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wischprobe Rohr im Brühkessel</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peitschenwässcherlaschen nach Abflammofen</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blut aus Abflussrinne beim Stechen</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eviszeration Kettenhandschuh</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eviszeration Messer</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eviszeration Hand</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmutz unter dem Hacker</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 120</td>
<td></td>
</tr>
<tr>
<td>Entborstemaschine (Dreck unten)</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmschüssel nach R+D</td>
<td>0 positive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28.7.2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entborstemaschine (Dreck unten)</td>
</tr>
<tr>
<td>Plattenband nach Entborsten</td>
</tr>
<tr>
<td>Boden Eviszeration</td>
</tr>
<tr>
<td>Waschkabine Eviszeration</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Darmschüssel nach R+D</td>
</tr>
<tr>
<td>Darmschüssel nach R+D</td>
</tr>
<tr>
<td>Darmschüssel nach R+D</td>
</tr>
<tr>
<td>Schmutz unter dem Hacker</td>
</tr>
<tr>
<td>Wand vor Hacker</td>
</tr>
<tr>
<td>Gitter am Hacker</td>
</tr>
<tr>
<td>Tür des Peitschenwäschers nach dem Abflammofen</td>
</tr>
<tr>
<td>1 Poolprobe</td>
</tr>
<tr>
<td>Kotkontamination Tierkörper</td>
</tr>
<tr>
<td>2 Poolproben Darmreste im Tierkörper</td>
</tr>
</tbody>
</table>

13.8.2003

<table>
<thead>
<tr>
<th></th>
<th>0 positive</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Umkleidebereich Galoschen</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Umkleidebereich Stiefel</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Umkleidebereich Stiefel</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Umkleidebereich Galoschen</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Geländer im Durchgang</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Stufen im Durchgang</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Tisch im Tierärztezimmer</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Metallwand vor Restrainer (vor Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Rutsche nach Entborster (vor Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Darmschale (vor Schlachtung, nach R+D)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Hacker (Klinge, vor Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Sample Description</td>
<td>Result</td>
<td>Bacteria Found</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Hacker (Umggebung, vor Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Hacker (Umggebung vor Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Entborster (Boden, vor Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>1 Wischprobe Boden Durchgang Schlachthaus/ Kantine</td>
<td>1 positive</td>
<td>1x Salmonella Typhimurium DT 104</td>
</tr>
<tr>
<td>1 Wischprobe Handwaschbecken am Durchgang</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Plattenband beim Stechen (während Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Tür des Peitschenwäschers vor Abflammmofen (während Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
<tr>
<td>Tür des Peitschenwäschers nach dem Abflammmofen (während Schlachtung)</td>
<td>0 positive</td>
<td></td>
</tr>
</tbody>
</table>
11 Danksagung

Herrn Prof. Dr. Thomas Blaha danke ich für die freundliche Überlassung des Themas und dafür, dass er auch in schwierigen Zeiten stets ein engagierter und verständnisvoller Ansprechpartner war.

Allen Mitarbeitern der Außenstelle für Epidemiologie der Tierärztlichen Hochschule Hannover in Bakum, insbesondere Frau Tegeler und Frau Busemann, möchte ich für die stets gewährte Unterstützung danken.

Herrn Dr. Paschke möchte ich meinen besonderen Dank aussprechen, da ohne ihn die Realisierung dieser Dissertation nicht möglich gewesen wäre.