Pharmakologische Beeinflussung
muriner dendritischer Zellen durch
cichtsteroidale und steroidale Antiphlogistika

INAUGURAL-DISSESSATION
zur Erlangung des Grades einer
DOKTORIN DER VETERINÄRMEDIZIN
(Dr. med. vet.)
Stiftung Tierärztliche Hochschule Hannover

Vorgelegt von
Stefanie Claudia Krekeler
aus Starnberg

Hannover 2005
Wissenschaftliche Betreuung: Univ.-Prof. Dr. M. Kietzmann

1. Gutachter: Prof. Dr. M. Kietzmann
2. Gutachter: Prof. Dr. M. Hewicker-Trautwein

Tag der mündlichen Prüfung: 21.11.2005

Die Arbeit wurde durch ein Promotionsstipendium der Wilhelm Schaumann-Stiftung gefördert.
Meinen lieben Eltern
gewidmet
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Einleitung</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Literaturübersicht</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Dendritische Zellen</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Herkunft und Entwicklung immaturer DC und DC-Vorläufer</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Langerhans-Zellen und interstitielle dendritische Zellen</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Murine DC aus dem Knochenmark</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Allergische Kontaktdermatitis</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Haptene</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Sensibilisierung</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Antigenaufnahme und Migration der DC</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Antigenpräsentation und Aktivierung von T-Zellen</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>TH-1-/TH-2-Differenzierung</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Challenge</td>
<td>25</td>
</tr>
<tr>
<td>2.4.4</td>
<td>TDI-Kontaktallergie</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Arachidonsäurekaskade</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Testsubstanzen</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Acetylsalicylsäure</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1.1</td>
<td>Wirkung von Acetylsalicylsäure auf Immunzellen in vitro</td>
<td>33</td>
</tr>
<tr>
<td>2.6.1.2</td>
<td>Wirkung von ASS auf Immunzellen in vivo</td>
<td>34</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Indometacin</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Wirkung von Indometacin auf DC in vitro</td>
<td>36</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Tepoxalin</td>
<td>38</td>
</tr>
<tr>
<td>2.6.3.1</td>
<td>Wirkung von Tepoxalin auf Immunzellen</td>
<td>39</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Diflorason 17,21-diacetat</td>
<td>40</td>
</tr>
<tr>
<td>2.6.4.1</td>
<td>Wirkung der Glukokortikoide auf Immunzellen in vitro</td>
<td>41</td>
</tr>
<tr>
<td>2.6.4.2</td>
<td>Wirkung von Glukokortikoide auf Immunzellen in vivo</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Material und Methoden</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Geräte und Reagenzien</td>
<td>44</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Geräte für Versuche in der Zellkultur</td>
<td>44</td>
</tr>
</tbody>
</table>
3.1.2 Reagenzien für Versuche in der Zellkultur .. 44
3.1.3 Testsubstanzen .. 45
3.1.4 TNF-α-ELISA/PGE₂-ELISA .. 45
3.1.5 MTT-Test ... 45

3.2 Geräte für In-vivo-Versuche .. 45
3.2.1 Geräte für FACS-Analyse ... 46
3.2.2 Geräte für Zymographie .. 46
3.2.3 Reagenzien für Zymographie .. 47
3.2.4 Immunhistochemie .. 47
3.2.5 Franz-Zelle ... 48
3.2.6 Bedingungen der Hochleistungsflüssigkeitschromatographie 48
3.2.7 Reagenzien für Hochleistungsflüssigkeitschromatographie 49
3.2.8 Hergestellte Puffer und Lösungen .. 49
3.2.9 Versuchstiere ... 50

3.3 Versuchsübersicht ... 51

3.4 In-vitro-Versuche ... 53
3.4.1 Gewinnung dendritischer Zellen ... 53
3.4.2 MTT-Test ... 55
3.4.3 Messung der PGE₂- und TNF-α-Konzentration 56
3.4.4 Franz-Zelle ... 56
3.4.5 Hochleistungs-Flüssigkeitschromatographie 57

3.5 In-vivo-Versuche ... 58
3.5.1 TDI-Kontaktallergiemodell ... 58
3.5.2 Untersuchungen zur Migration dendritischer Zellen im TDI-Kontaktallergiemodell ... 59
3.5.2.1 Sensibilisierung .. 59
3.5.2.2 Challenge .. 59
3.5.3 Mouse-Ear-Swelling-Test (MEST) .. 61
3.5.3.1 Local-Lymph-Node-Assay (LLNA) .. 62
3.5.3.2 Skin-DC-Migration-Assay ... 62
3.5.4 Fluorescence Activated Cell Sorting (FACS) 63
3.5.5 Zymographie ... 65
3.5.5.1 Aufbereitung der Proben .. 65
3.5.5.2 Protein-Assay .. 65
3.5.5.3 Zymographie .. 65
3.5.6 Immunhistochemische Darstellung von MHC-II⁺-Zellen 66
3.6 Statistische Auswertung ... 68
4 Ergebnisse ... 69
4.1 In-vitro-Versuche ... 69
4.1.1 Einfluss der Testsubstanzen auf die TNF-α-Sekretion ... 69
4.1.2 Einfluss der Testsubstanzen auf die PGE₂-Sekretion ... 72
4.2 Ergebnisse der In-vivo-Versuche ... 75
4.2.1 Einfluss der Testsubstanzen in der Sensibilisierungphase 75
4.2.2 Ergebnis des LLNA ... 77
4.2.2.1 Lymphknotengewicht und Gesamtzellzahl .. 77
4.2.2.2 Einfluss der Pharmaka auf den Anteil CD11c⁺-Zellen im Lymphknoten 78
4.2.3 Ergebnis des Skin-DC-Migration-Assay ... 79
4.2.4 Einfluss der Testsubstanzen auf die MMP-9-Aktivität .. 80
4.2.5 Einfluss der Testsubstanzen in der Challenge-Phase ... 81
4.2.6 Ergebnis des MEST ... 81
4.2.7 Resorption von ASS in der Franz-Zelle .. 83
4.2.8 Ergebnis des Local-Lymph-Node-Assay ... 84
4.2.8.1 Einfluss der Pharmaka auf die Lymphknotengewichte und Gesamtzellzahl 84
4.2.8.2 Einfluss der Pharmaka auf die Migration CD11c⁺-Zellen 86
4.2.8.3 CD11c⁺-und CD40⁺-Zellen im Lymphknoten .. 88
4.2.9 Ergebnis des Skin-DC-Migration-Assay ... 90
4.2.10 Einfluss der Pharmaka auf die MMP-9-Aktivität ... 91
4.2.11 MHC-II⁺-Zellen in der Epidermis ... 93
4.2.12 PGE₂-Konzentration im Ohrgewebe .. 95
4.3 Zusammenfassung der Ergebnisse .. 96
Diskussion ... 97
5.1 Einfluss der Testsubstanzen auf die LPS-induzierte TNF-\(\alpha\)- und PGE\(_2\)-Sekretion dendritischer Zellen .. 97
5.1.1 Wirkung auf die TNF-\(\alpha\)-Sekretion \textit{in vitro} 97
5.1.2 Beeinflussung der PGE\(_2\)-Produktion \textit{in vitro} 98
5.2 Einfluss der Testsubstanzen auf DC in der Sensibilisierung 99
5.2.1 Einfluss von ASS und Diflorasondiacetat im MEST 99
5.2.2 Einfluss von ASS und Diflorasondiacetat auf die Migration der DC 100
5.2.3 Einfluss von ASS und Diflorasondiacetat im LLNA 101
5.2.4 Einfluss von ASS und Diflorasondiacetat auf die MMP-9 102
5.3 Einfluss der Testsubstanzen auf DC in der Challenge 103
5.3.1 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat im MEST .. 104
5.3.2 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat auf die Migration der DC.. 105
5.3.3 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat im LLNA .. 107
5.3.4 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat auf die MMP-9 .. 108
5.3.5 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat auf MHC-II\(^+\)-Zellen in der Epidermis .. 109
5.3.6 PGE\(_2\)-Konzentration in den Ohrhomogenaten 110

Zusammenfassung ... 112

Summary .. 114

Literaturverzeichnis .. 116

Anhang .. 147

Anhangstabellen ... 147

Veröffentlichungen .. 161
Abkürzungsverzeichnis:

APC Antigen presenting cell
ASS Acetylsalicylsäure
DC Dendritic cell
DMSO Dimethylsulfoxid
ELISA Enzyme Linked Immunoabsorbent Assay
FCS Fetal calf serum
g Gramm
GM-CSF Granulocyte macrophage-colony stimulating factor
LC Langerhans cell
IFN Interferon
IgE Immunglobulin E
IL Interleukin
LLNA Local-Lymph-Node-Assay
Ln. Lymphonodus
LPS Lipopolysaccaride
mg Milligramm
MHC Major-Histocompatibility-Complex
ml Millilitter
nmol Nanomol
NSAID Nichtsteroidale Antiphlogistika
PBS Phosphate Buffered Saline
PGE Prostaglandin E2
SAIDs Steroidale Antiphlogistika
Tab. Tabelle
TDI Toluen-2,4-diisocyanat
Trance R TNF- related activation-induced cytokine
µl Mikroliter
µmol Mikromol
1 Einleitung

Ziel dieser Arbeit ist es, die Beeinflussung dendritischer Zellen durch nichtsteroidale und steroidale Antiphlogistika zu untersuchen. Als nichtsteroidale Antiphlogistika (NSAIDs) werden Acetylsalicylsäure, Indometacin und Tepoxalin verwendet. Diflorason-17,21-diacetat kommt als steroidales Antiphlogistikum zum Einsatz.

2 Literaturübersicht

2.1 Dendritische Zellen

2.1.1 Herkunft und Entwicklung immaturer DC und DC-Vorläufer

Abbildung 2-1 Entwicklung dendritischer Zellen nach LIU (2001)
2.2 Langerhans-Zellen und interstitielle dendritische Zellen

Tabelle 2-1 Phänotypische Unterschiede und Funktion von LC und interstitiellen DC nach LIU (2001)

<table>
<thead>
<tr>
<th>Langerhans-Zellen</th>
<th>Interstitielle DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Cadherin Birbeck-Granula/ Lag-antigen Langerin</td>
<td>CD2a CD9 CD68 Factor XIIIa</td>
</tr>
<tr>
<td>Aktivierung von B-Zellen +/- CD8-T-Zell Priming +++</td>
<td>Makropinozytose Bildung von IL-10 Aktivierung von B-Zellen + CD8-T-Zell Priming +</td>
</tr>
</tbody>
</table>

2.3 Murine DC aus dem Knochenmark

2.4 Allergische Kontaktdermatitis

2.4.1 Haptene

2.4.2 Sensibilisierung

Die Sensibilisierung eines Organismus gegenüber einem Allergen erfolgt mit dem ersten Antigenkontakt und ist beim Menschen nach 8-15 Tagen, bei der Maus nach 5-7 Tagen abgeschlossen (KRASTEVA et al. 1999).

2.4.2.1 Antigenaufnahme und Migration der DC

PGE2 entsteht durch Cyclooxygenasen aus freigesetzter Arachidonsäure und kann an 4 verschiedene G-Protein gekoppelte Rezeptoren (EP1-4) binden. Obwohl alle 4 Rezeptoren auf der Oberfläche von LC nachweisbar sind, spielen hauptsächlich der

2.4.2.2 Antigenpräsentation und Aktivierung von T-Zellen

2.4.2.3 TH-1-/TH-2-Differenzierung

Die Kontaktallergie und Überempfindlichkeitsreaktionen vom Typ IV unterscheiden sich insoweit, dass die Entzündungsreaktion bei Typ IV-Allergien über MHC-II geprimte CD4-T-Zellen vermittelt wird, während bei der Kontaktallergie sowohl CD4+- als auch CD8+-T-Zellen involviert sind (CHER und MOSMANN 1987).

Eine TH-2-Immunantwort wird dagegen ausgelöst, wenn CD4⁺-Lymphozyten über den Peptid-MHC-II-Komplex geprüft werden und sich in TH1- (T1-Helferzellen) oder TH2-Zellen (T2-Helferzellen) weiterdifferenzieren. Helferzellen sind verantwortlich für humorale Abwehr und produzieren IFN-γ, IL-4, IL-5 und IL-13 (ROMAGNANI 1994; ABBAS et al. 1996). CD4⁺-Helferzellen sind in der Lage, B-Zellen zu aktivieren, die das Antigen über IgM-Rezeptoren aufnehmen und als Peptid-MHC-II-Komplex präsentieren, indem sie mittels CD40 L an sie binden und unter IL-4-Einfluss zur IgE-Produktion anregen (JANEWAY und TRAVERS 1997). Während IL-4 für die Antikörperproduktion unerlässlich ist, wird die IgE-Produktion durch IFN-γ gehemmt (DELPRETE et al. 1988; PENE et al. 1988).

2.4.3 Challenge

wird, durch Freisetzung von IL-4 und IL-10 entgegen (XU et al. 1996). Bei IL-10
handelt es sich um ein immunsuppressives Zytokin, welches von verschiedenen
Zellen, einschließlich Keratinozyten, gebildet wird. Seine immunsuppressive Wirkung
ist auf eine Hemmung der Antigenpräsentation und damit der Entzündungsreaktion
sowohl bei Kontaktallergien als auch Überempfindlichkeiten vom Spättyp
zurückzuführen (SCHWARZ et al. 1994; LEE und BURCKART 1998). Desweiteren
wird das in der TH-1-Antwort vorherrschende Zytokin IFN-γ durch IL-10 gehemmt
(FIORENTINO et al. 1991). Die Wirkung von IL-4 ist bislang nicht vollständig geklärt.
In der Literatur werden sowohl proinflammatorische Effekte von IL-4 beschrieben, als
auch eine Hemmung der Entzündungsreaktion (GAUTAM et al. 1992; ASHERSON et
al. 1996). Für letzteres spräche auch die relative späte Nachweisbarkeit (9-24
Stunden nach Challenge) der IL-4-mRNA im Entzündungsgeschehen (ASADA et al.
1997).

Abbildung 2-3 Legende nach KRASTEVA et al. (1999)
2.4.4 TDI-Kontaktallergie

2.5 Arachidonsäurekaskade

Tabelle 2-2 Wirkung von PGE₂ auf DC nach (GUALDE und HARIZI 2004)

<table>
<thead>
<tr>
<th>PGE₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>- IL 10 ↑</td>
</tr>
<tr>
<td>- IL-12; IL-6, ↓</td>
</tr>
<tr>
<td>- IL-1β, TNF-α ↓;</td>
</tr>
<tr>
<td>- MHC-II ↓</td>
</tr>
<tr>
<td>- DC-Migration über CCR7/ CCL21, CCL19 ↑</td>
</tr>
</tbody>
</table>
Abbildung 2-4 Arachidonsäurezyklus nach (GUALDE und HARIZI 2004)

PGE = Prostaglandine
LT = Leukotriene
TX = Thromboxan
2.6 Testsubstanzen

2.6.1 Acetylsalicylsäure

![Abbildung 2-5 Strukturformel von Acetylsalicylsäure](image)

Pharmakologisch zählt ASS zu den NSAID, die als Gruppe aromatischer organischer Säuren (ohne Steroidgerüst) mit antiinflammatorischer, analgetischer und antipyretischer Wirksamkeit definiert werden. Es werden 2 Gruppen unterschieden:

1. Wirkstoffe mit einer deutlich zentralen analgetischen und antipyretischen, jedoch geringen entzündungshemmenden Wirkung. z. B. Paracetamol
2. Wirkstoffe, die vorwiegend peripher wirken und ausgeprägt inflammatorisch aber nur geringgradig antipyretische wirken. z. B. Salicylate (KIETZMANN et al. 2002)

2.6.1.1 Wirkung von Acetylsalicylsäure auf Immunzellen \textit{in vitro}

Die Maturation der DC spielt eine wichtige Rolle für das Auswandern der Zellen und die Antigenpräsentation. So untersuchten HACKSTEIN \textit{et al.} (2001) \textit{in vitro} DC hinsichtlich ihrer Oberflächenmoleküle, ihrer Zytokinproduktion und Fähigkeit zur T-Zell-Stimulation. Dazu wurde aus dem Knochenmark von B10-Mäusen DC generiert und ab dem zweiten Tag mit ASS in unterschiedlichen Konzentrationen (0,5 mmol/l, 1 mmol/l, 2,5 mmol/l) behandelt. Am siebten Tag wurden die CD11c$^+$-Zellen gewonnen und hinsichtlich ihrer Expression der Oberflächenmoleküle CD40, CD80, CD86 und MHC-II nach LPS-Gabe am sechsten Tag untersucht. Die Ergebnisse zeigten, dass schon 0,5 mmol/l ASS zu einer Reduzierung der Oberflächenmoleküle führen. Die beobachtete Wirkung von ASS war dosisabhängig und betraf vor allem...

Auch MATASIC et al. (2000) beschrieben in ihren Versuchen die verminderte T-Zell-Stimulation ASS behandelter immatuerer humaner monocyte derived DC, sowie die Hemmung der p40 Untereinheit von IL-12. Die Behandlung der DC mit ASS hemmt in vitro sowohl ihre Maturation als auch ihre Fähigkeit naive T-Zellen zur Proliferation anzuregen.

2.6.1.2 Wirkung von ASS auf Immunzellen in vivo

Aufschluss über die In-vivo-Effekte von ASS auf DC gibt eine Studie von HACKSTEIN et al. (2001). In einem Allergiemodell wurden DC mit Trinitrobenzolsulfonsäure (TNBS) „gepulst“, also DC mit TNBS beladen und subkutan jeweils in die dorsale Ohrhälfte von Mäusen einer Gruppe injiziert. Eine andere Mäusegruppe erhielt mit ASS präinkubiert, aber mit TNBS gepulste DC. Nach erfolgter Challenge sieben Tage später wurden die Effekte der ASS behandelten DC anhand der Ohrdicke der Tiere ermittelt. Während die TNBS behandelten Zellen eine starke T-Zell vermittelte Immunantwort hervorriefen, konnte
bei den Tieren, die mit ASS vorbehandelte DC erhielten, keine Überempfindlichkeitsreaktion anhand einer Ohrschwellung gezeigt werden. Da Negativkontrollen mitgeführt wurden, kann davon ausgegangen werden, dass die TNBS ausgelöste Überempfindlichkeitsreaktion antigenspezifisch ist. Um sicherzustellen, dass die Behandlung mit ASS nicht die Migration der DC hemmt und dadurch die Reaktion ausbleibt, wurden die DC mit grünem Fluoreszenzfarbstoff markiert und mittels konfokaler Lasermikroskopie in den parakorticalen Bereichen der Lymphknoten nachgewiesen.

2.6.2 Indometacin

Das Indolessigsäurederivat Indometacin (s. Abbildung 2-7) gehört zu den am stärksten wirksamen nichtsteroidalen Antiphlogistika. Es zeichnet sich durch ein hohes analgetisches und antiphlogistisches Potential aus.

![Strukturformel von Indometacin](image)

Abb 2-7 Strukturformel von Indometacin

2.6.2.1 Wirkung von Indometacin auf DC in vitro

HARIZI et al. (2002) untersuchten die Wirkung von Indometacin auf die Maturation dendritischer Zellen. Im Hinblick auf die Expression der Oberflächenmoleküle CD80, CD86, CD40, MHC-II und CD11c hatte Indometacin keinen Einfluss. Damit stimmen sie mit den Ergebnissen von (HACKSTEIN et al. 2001) überein, der bei Konzentrationen von 5 µmol/l Indometacin auch keine Hemmung der Maturation feststellen konnte, obwohl in diesen Konzentrationen sowohl die COX-1 als auch COX-2 gehemmt wurden. In diesen Konzentrationen hat Indometacin in der Zellkultur auch keinerlei Wirkung auf die IL-12-, TNF-α- oder IL-6-Freisetzung der DC nach LPS-Stimulation. Erst bei höheren Konzentrationen im mikromolaren Bereich hemmt Indometacin die TNF-α-Produktion (JÖZEFOWSKI et al. 2002). Da die Zellreifung dendritischer Zellen durch Indometacin nicht beeinträchtigt wird, sind die Zellen in der MLR zur Allostimulation fähig (HACKSTEIN et al. 2001). Die wichtigsten
unterschiedlichen Wirkungen von ASS und Indometacin sind in Tabelle 2-3 dargestellt.
Tabelle 2-3 Wirkung von ASS und Indometacin auf DC

<table>
<thead>
<tr>
<th>DC</th>
<th>ASS</th>
<th>Indometacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD80, CD86, CD40, MHC-II</td>
<td>Hemmung der Expression</td>
<td>Keine Hemmung der Expression</td>
</tr>
<tr>
<td>IL10</td>
<td>Hemmung der Sekretion</td>
<td>Keine Wirkung auf IL-12</td>
</tr>
<tr>
<td>IL12p40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allostimulation von T-Zellen</td>
<td>Hemmung</td>
<td>Keine Hemmung</td>
</tr>
<tr>
<td>durch DC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.6.3 Tepoxalin

Tepoxalin (s. Abbildung 2-8) gehört ebenfalls zu den NSAID und ist analgetisch wie antiphlogistisch wirksam. Tepoxalin hemmt dual sowohl die Cyclooxygenase als auch die 5-Lipoxygenase und damit die Bildung von Prostaglandinen und Leukotrienen (RITCHIE et al. 1995).

Abbildung 2-8 Strukturformel von Tepoxalin

Leukotriene entstehen aus dem Arachidonsäurezyklus (s. Abbildung 2-4) über das Enzym 5-Lipoxygenase. Leukotriene wirken chemotaktisch auf Entzündungszellen und steigern die Gefäßpermeabilität bei Entzündungen und allergischen Reaktionen, insbesondere bei Asthma bronchiale und anderen Hypersensibilitätsreaktionen vom Soforttyp (BERTOLINI et al. 2001). Dabei scheint Leukotrien B₄ als stark wirksamer chemotaktischer Mediator eine Schlüsselrolle einzunehmen. Ein weiterer Wirkungsmechanismus von Tepoxalin ist die Inhibition von NF-κB (KAZMI et al. 1995). Es wurde früher angenommen, dass Leukotriene wichtige Faktoren für die IL-2-Synthese sind, und somit die Tepoxalin bedingte Inhibition von IL-2 auf die

Bislang ist Tepoxalin als Zubrin® nur für Hunde zur Behandlung von entzündlichen und schmerzhaften Skelett- und Muskelserkrankungen zugelassen. Die empfohlene Dosierung liegt 10 mg/kg.

2.6.3.1 Wirkung von Tepoxalin auf Immunzellen

Aufgrund der immunsuppressiven Wirkung verglichen ZHOU et al. (1994) die Wirkung von Tepoxalin mit Cyclosporin A anhand der Proliferation von T-Zellen, die
entweder mit OKT-3, TPA, IL-2 oder TPA mit Ionomycin stimuliert wurden. Dabei
stellen sie fest, dass Tepoxalin in den OKT-3-stimulierten Zellen zwar die
Proliferation hemmte, aber nicht, wie Cyclosporin, über eine Inhibition der IL-2-
Produktion, sondern durch Unterdrückung der Signalweiterleitung von IL-2.

2.6.4 Diflorason 17,21-diacetat

Aufgrund ihrer antiinflammatorischen und immunsuppressiven Wirkung werden
Kortikosteroide schon seit Jahrzehnten bei Autoimmunkrankheiten und allergischen
Erkrankungen, wie zum Beispiel bei Asthma und atopischer Dermatitis eingesetzt
(MATYSZAK et al. 2000; SIDBURY und HANIFIN 2000). Die Anwendung von
Kortikosteroiden ist beschränkt aufgrund der Nebenwirkungen, wie Striae,
Verdünnung der Epidermis und Dermis sowie Akne (MEINGASSNER et al. 2003).

Abbildung 2-9 Diflorason 17,21-diacetat

Topische Kortikosteroide lassen sich anhand ihrer Wirksamkeit in schwach
wirksame, mittelstarke, starke und sehr starke Kortisone einteilen (LUBACH und
KIETZMANN 1992). Diflorasondiacetat (s. Abbildung 2-9) gehört zu den stark
wirksamen Dermatokortikoiden und findet seine klinische Anwendung in der
Dermatologie zur Behandlung von Psoriasis, chronischen Ekzemen und
seborrhoischem Ekzem des Kopfes (Florone®) in einer 0,05% Konzentration
(PACKMAN 1992).

2.6.4.1 Wirkung der Glukokortikoide auf Immunzellen in vitro

MATYSZAK et al. (2000) zeigten, dass immature, aus dem Knochenmark von Mäusen generierte DC nach einer Behandlung mit Dexamethason (10⁻⁶ mol/l) im Vergleich zu unbehandelten DC deutlich weniger MHC-II- und B7-2-Oberflächenmoleküle aufweisen. Auf die Expression der B7-1- und CD40-Moleküle hatte Dexamethason keinen Einfluss. Insgesamt war die Reifung der Zellen nach

2.6.4.2 Wirkung von Glukokortikoiden auf Immunzellen in vivo

Bereits BURROWS und STOUGHTON (1976) konnten eine Verhinderung der Sensibilisierung durch Kortikosteroide zeigen. CUMBERBATCH et al. (1999) untersuchten in einem Oxazolon Kontaktallergiemodell die Wirkungen von Dexamethason auf die Migration von LC. Die Anzahl der LC in den regionalen Lymphknoten konnte durch intraperitoneale Gabe von Dexamethason [0,1 µg, 1 µg, 25 µg jeweils pro Maus (20 g)] und anschließender Sensibilisierung mit Oxazolon (Ohrhaut) dosisabhängig um bis zu 80% reduziert werden. Die Migration von LC wird in der Sensibilisierungsphase maßgeblich von den Zytokinen TNF-α und IL-1β induziert. Da Dexamethason in dem Oxazolon-Kontaktallergiemodell keinen Einfluss auf eine durch TNF-α-induzierte Migration hatte, aber eine durch IL-1β-Gabe induzierte Ansammlung der DC in den Lymphknoten hemmte, kamen CUMBERBATCH et al. (1999) zu dem Schluss, dass LC durch Dexamethason nicht direkt beeinflusst werden, sondern indirekt durch Hemmung der Zytokine TNF-α und IL-1β, die sowohl auf transkriptionaler als auch auf posttranskriptionaler Ebene stattfindet. Von der Hemmung sind auch die Zytokine IL-6, IL-10, IL-12 betroffen (KERN et al. 1988; WAAGE und BAKKE 1988; KUNICKA et al. 1993). Eine Erklärung für die Hemmung der IL-1β-induzierten Migration ist der Umstand, dass IL-1β ein weiteres Signal, nämlich TNF-α, benötigt, um die Migration auszulösen. IL-1β wird bei entzündlichen Vorgängen verstärkt von LC gebildet, wodurch parakrin die TNF-α-Produktion in Keratinozyten und folglich die Migration der LC angeregt wird (ENK und KATZ 1992; HEUFLER et al. 1992; ENK et al. 1993). Weiterhin wurde mittels immunhistochemischer Färbung die Anzahl der LC in der Epidermis bestimmt. Durch Oxazolonbehandlung wird die Anzahl der LC deutlich reduziert. Keine Veränderung in der Anzahl der LC konnte durch intraperitoneal verabreichtes Dexamethason gezeigt werden. Allerdings bewirkt die topische Applikation von Kortikosteroiden bei Meerschweinchen und Mäusen eine Abnahme der LC in der Epidermis (BELISTO et al. 1982; MEINGASSNER et al. 2003). Die Abnahme der LC in der Epidermis ist auf Apoptose und nicht auf eine Auswanderung der Zellen zurückzuführen (MEINGASSNER et al. 2003).
3 Material und Methoden

3.1 Geräte und Reagenzien

3.1.1 Geräte für Versuche in der Zellkultur

Polypropylen-Röhrchen 15 ml/50 ml Greiner, Frickenhausen
Polystyrol-Petrischalen, 100 mm x 20 mm tissue culture dish cell+, Sarstedt
Sterilfilter Minisart, Sartorius, Göttingen
Kühlzentrifuge Centrifuge 5804 R, Eppendorf, Hamburg
Brutschrank US AutoFlow, Zapf, Sarstedt
Mikroskop Axiovert 25, Zeiss, Jena
6-, 12-, 24-, 96-Well-Platten Greiner, Frickenhausen
Feinwaage Sartorius 2002 MP1, Sartorius, Göttingen
Neubauer-Zählkammer Albert Sass
Photometer MicoplateReader MRX, Dynatech

3.1.2 Reagenzien für Versuche in der Zellkultur

RPMI-1640-Medium Biochrom, Berlin
Penicillin Invitrogen GmbH, Karlsruhe
Streptomycin Invitrogen GmbH, Karlsruhe
Fetales Kälberserum (10 %) Biochrom, Berlin
β-Mercaptoethanol Sigma, Steinheim
Granulocyte macrophage-colony stimulating factor R&D System, Minneapolis, USA
Natrium-Ethylendiamintetraessigsäure Merck, Darmstadt
Natriumhydrogencarbonat Merck, Darmstadt
Lipopolysaccarid (LPS) Merck, Darmstadt
Ammoniumchlorid
Ethylendiamintetraessigsäure
Kaliumhydrogencarbonat
Polyvidon-Iod-Lösung
Trypan-Blau
Ethanol
Natriumhydroxid
Hepes-Puffer

3.1.3 Testsubstanzen
Acetylsalicylsäure
Salicylsäure
Indometacin
Diflorasondiacetat
Reinsubstanz
Tepoxalin

3.1.4 TNF-α-ELISA/PGE₂-ELISA
DuoSet Mouse PGE₂-ELISA
Polystyrol-Nunc-Immuno-Platte

3.1.5 MTT-Test
CellTiter 96 AQuesos

3.2 Geräte für In-vivo-Versuche
Ethanol
DMSO
Hydroxyethylcellulose
TDI
Aceton
Pipette 20 µl
Pipettenspitzen 20 µl Eppendorf, Frickenhausen
Kutimeter Mitutoyo, Neuss
Enthaarungscreme AS Schlecker, Maxim, Pulheim
Tesafilm Beiersdorf, Hamburg
Homogenisator, Duall Omnilab, Gehrden
Mit Glaspistill, 1 ml

3.2.1 Geräte für FACS-Analyse

CellQuest flow cytometer Becton Dickinson, Mountain View, CA, USA
CellQuest Software
Phycoerythrin (R-PE)-
Conjugated Hamster Anti-
Mouse CD11c Monoclonal Antibody BD Bioscience, Pharmingen, Hamburg
FITC anti-mouse CD40 Antibody BD Bioscience, Pharmingen, Hamburg
Red 670-Streptavidin Gibco, Gaitherburg, MD, USA

3.2.2 Geräte für Zymographie

Netzanschlussgerät PowerSupplyUnit 1200, Desaga, Heidelberg
Elektrophoresekammer Penguin™ Water-Cooled Dual-Gel Electrophoresis System, Peqlab, Erlangen
Elektrophorese-Kühlung Multiwash, Eheim
Gelgießstand Multiple Gradient Caster, Peqlab, Erlangen
Zellfolie EinmachFix, Fila Paper Bringman, Wendelstein
3.2.3 Reagenzien für Zymographie

Biorad-Protein-Assay
Biorad, München

tCoomassie Brilliant Blau g 250
Merck, Darmstadt

ProSieve 50 gel solution
BMA, Rockland, USA

Ammoniumperoxidsulfat (APOS)
Merck, Darmstadt

Gelatine, Typ A, Schweinehaut
Sigma, Steinheim

N,N,N’,N’-Tetramethylethylenediamine (Temed)
Sigma, Steinheim

Tris-(hydromethyl)-aminomethan
Merck, Darmstadt

Tris-Base
Merck, Darmstadt

Tris-(hydroxymethyl)aminomethan-hydrochlorid, Tris-HCL
Merck, Darmstadt

Natriumhydrogencarbonat
Merck, Darmstadt

Natriumchlorid
Merck, Darmstadt

Calciumchlorid-dihydrat
Merck, Darmstadt

Glycerin
Merck, Darmstadt

1-Butanol
Merck, Darmstadt

Methanol
LAB Scan Ltd., Dublin, Ireland

Ethanol absolut
Riedel de Haen, Hannover

Essigsäure 100%
Appli Chem., Darmstadt

Elekrophorese kD-Marker
Precision Plus Protein, Dual Color Standards, Biorad, München

3.2.4 Immunhistochemie

Adhäsionsobjektträger

75 x 25 x 1 mm
Histobond Superior, Marienfeld

Deckgläser 24 x 60 mm
Roth, Karlsruhe

Fluoreszenz mikroskop
Axioskop, Zeiss, Jena

Tischschüttler
Vibra, Ika, Staufen

Pasteurpipette
Brand GmbH, Wertheim
3.2.5 Franz-Zelle

Magnettrührer Ika, Staufen
Wasserbad Büchi Laboratoriumstechnik, Flawil, Schweiz
Wasserpumpe Type 2013 Eheim, Deizisau
Franz Diffusionszelle Permgear, Bethlehem, USA
Vials, 8 mm Wilcom, Heppenheim
Gewindeflaschen

3.2.6 Bedingungen der Hochleistungsflüssigkeitschromatographie

Pumpe, System Gold Model 125 Beckman, Fullerton, CA, USA
Fluß: 1 ml/min
Druck: ca 1.8 Kpsi = 12.5 MPa
Detektor, System Gold Model 166 Beckman, Fullerton, CA, USA
Detektion: 237 nm Spark, Emmen, Niederlande
Autosampler, Modell 816 Spark, Emmen, Niederlande
Software, 32 Karat Spark, Emmen, Niederlande
Säulenofen, SPH 99 Spark, Emmen, Niederlande
Säule LiChrospher 100 Merck, Darmstadt
RP18, 250-4, Korngröße 5 μm
3.2.7 Reagenzien für Hochleistungsflüssigkeitschromatographie

Acetonitril LabScan, Dublin, Ireland
Benzoësäure Sigma, Deisenhofen
Phosphorsäure Merck, Darmstadt
Natriumhydrogenphosphat Merck, Darmstadt
Eluent Phosphatpuffer:ACN (70:30

3.2.8 Hergestellte Puffer und Lösungen

DC-Medium
RPMI 1640
10 % FKS
50 µmol/l β-Mercaptoethanol

Hämolyse Puffer pH 7,3
8,29 g NH₄CL
0,037 g Na₂ EDTA
0,839 g NaHCO₃
Aqua bidest ad 1000 ml

PBS Puffer
8 g NaCl
0,2 g KCL
1,44 g Na₂PO₄
0,2 g KH₂PO₄
Aqua bidest ad 1000 ml, Einstellung von pH 7,2 mit 1 mol/l HCL

TBS Puffer
9 g NaCl
6,057 g Tris Base
Einstellung von pH 7,6 mit 37% HCL
Phosphatpuffer (pH 2,6; 10mmol/l)
0,68 g/l NaH₂PO₄·H₂O
0,34 ml/l Phosphorsäure

3.2.9 Versuchstiere
Der Tierversuch wurde durch die Bezirksregierung Hannover genehmigt (AZ: 509.6-42502-03/711).
Es wurden klinisch gesunde, weibliche Balb/c Mäuse für die Versuche verwendet. Die Tiere waren 8 Wochen alt und wogen ca. 20 g. Die Tiere wurden zu 5 bzw. 6 Tieren auf die Käfige aufgeteilt und in einem 12-Stunden Hell-/Dunkel-Lichtzyklus gehalten.
Altrumin-Standarddiät und Wasser standen zur freien Verfügung.
3.3 Versuchsübersicht

In den nachfolgend aufgeführten Versuchen wurde die Wirkung nichtsteroidaler und
eroidaler Antiphlogistika auf DC sowohl in vitro als auch in vivo untersucht. Als
ichtsteroidale Antiphlogistika wurden die Substanzen ASS, Indometacin und
epoxalin, als steroidales Antiphlogistikum Diflorasondiacetat verwendet. In vitro
wurden DC-Zellkulturen aus dem Knochenmark von Balb/c-Mäusen gewonnen und
für 11 Tage mit GM-CSF im Brutschrank kultiviert. Die DC wurden am 9. Tag mit den
Testsubstanzen in unterschiedlichen Konzentrationen behandelt. Die LPS-induzierte
Zytokin- und Prostaglandinproduktion der DC wurde mittels ELISA gemessen. Ein
Vitalitätstest (MTT-Test) wurde durchgeführt, um eine Beeinträchtigung der
Zellvitalität durch die Testsubstanzen ausschließen zu können.

In vivo wurde in drei Hauptversuchen die Wirkung der Testsubstanzen auf DC
epidermaler und dermaler Herkunft im TDI-Kontaktallergiemodell, während der
Sensibilisierung bzw. der Challenge, hinsichtlich der Migration und T-Zell-Stimulation,
untersucht. Der erste Hauptversuch wurde zur Sensibilisierung mit den Substanzen
ASS, welches einer Gruppe topisch und einer anderen oral verabreicht wurde, und
Diflorasondiacetat durchgeführt. In zwei weiteren Hauptversuchen zur Challenge
wurden die Substanzen ASS, Indometacin, Diflorasondiacetat und Tepoxalin
verwendet. Indometacin wurde nur in der Challenge als Testsubstanz verwendet und
nicht in der Sensibilisierung, da die hohe Dosierung über drei Tage sehr
wahrscheinlich zu einer Arzneimittelverträglichkeit bei den Tieren geführt hätte.
Der dritte Hauptversuch mit Tepoxalin wurde durchgeführt, um eventuell zusätzliche
Effekte durch die 5-Lipoxygenasehemmung im allergischen Entzündungsgeschehen
untersuchen zu können.

Folgende Parameter waren von Interesse: Im MEST (Mouse-Ear-Swelling-Test)
wurde die Ohrschwellung und damit der Grad der Entzündungsreaktion bestimmt.
Über das Lymphknotengewicht und Gesamtzellzahl der Lymphknoten konnte im
Local-Lymph-Node-Assay (LLNA) auf die Proliferation der T-Zellen und damit auf
ihre Stimulation durch DC rückgeschlossen werden. Die Zellen der Lymphknoten
wurden in der FACS-Analyse auf die Oberflächenmoleküle CD11c+ und in der
Challenge auch auf CD11c+ und CD40+ untersucht. Die Analyse auf CD11c+-Zellen

Die FACS-Analysen wurden in Zusammenarbeit mit der Arbeitsgruppe von PD. Dr. Tschernig in der Anatomie der Medizinischen Hochschule Hannover durchgeführt.
3.4 *In-vitro-Versuche*

3.4.1 Gewinnung dendritischer Zellen

\[
\text{Anzahl der gezählte Zellen} \times 2 \times 3 \times 10000 \div 4 = \text{Zellen/ml}
\]

Die Gesamtzellzahl wird durch 4 (4 Felder werden ausgezählt) geteilt und mit 2 und 3, aufgrund der Verdünnungen mit Schwintzer-Lyse und Trypanblau, sowie mit dem Faktor 10000 multipliziert. Pro DC-Ansatz wurden \(2 \times 10^6\) Zellen in 10 ml Medium (5 ml RPMI mit FKS, Pen/Strep, 5 ml steriles DC-Medium und 200 ng GM-CSF) aufgenommen und in einer Petrischale angesetzt. Die Kultur wurde im Brutschrank für insgesamt 11 Tage inkubiert (s. Tabelle 3-1).
Tabelle 3-1 DC-Kultivierung nach LUTZ et al. (1999)

<table>
<thead>
<tr>
<th>Tag der Zellkultur</th>
<th>Behandlung der Zellkultur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag 0</td>
<td>Ansatz der murinen Knochenmarkszellen</td>
</tr>
<tr>
<td>Tag 3</td>
<td>10 ml Mediumzugabe + GM-CSF</td>
</tr>
<tr>
<td>Tag 6</td>
<td>Mediumwechsel, d.h. Abnahme von 10 ml Kulturmedium, Zentrifugation und Resuspension mit 10 ml frischem Medium + GM-CSF</td>
</tr>
<tr>
<td>Tag 8</td>
<td>Mediumwechsel</td>
</tr>
<tr>
<td>Tag 9</td>
<td>Abnahme des gesamten Mediums, Zentrifugation und Resuspension in 24 ml Medium (18 ml GM-CSF angereichertes Medium vom Vortag + 6 ml frisches Medium), Aufteilung: je 2 ml in 12-Well-Platte, Behandlung der Zellen mit den Testsubstanzen</td>
</tr>
<tr>
<td>Tag 10</td>
<td>Zugabe von LPS 1 µg/ml, Aufteilung der Zellkultur in eine 96-Well-Platte</td>
</tr>
<tr>
<td>Tag 11</td>
<td>Zentrifugation der Well-Platte (1000g, 4°C, 10 Minuten), Abnahme der Überstände</td>
</tr>
<tr>
<td></td>
<td>Messung der Zellvitalität</td>
</tr>
</tbody>
</table>

Tabelle 3-2 Konzentrationen der Testsubstanzen

<table>
<thead>
<tr>
<th>Testsubstanz</th>
<th>Konzentrationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylsäure</td>
<td>0,1 mmol/l; 1 mmol/ml; 2,5 mmol/ml; 5 mmol/l</td>
</tr>
<tr>
<td>Indometacin</td>
<td>0,5 µmol/l; 1 µmol/l; 5 µmol/l</td>
</tr>
<tr>
<td>Diflorasondiacetat</td>
<td>2 nmol/l; 20 nmol/l; 200 nmol/l</td>
</tr>
<tr>
<td>Tepoxalin</td>
<td>0,1 µmol/l; 1 µmol/l; 5 µmol/l; 10 µmol/l</td>
</tr>
</tbody>
</table>

3.4.2 MTT-Test

3.4.3 Messung der PGE$_2$- und TNF-α-Konzentration

3.4.4 Franz-Zelle

Rezeptorkammer ist von einem Schaumstoffmantel umhüllt und wird bis zur Membran luftblasenfrei mit Rezeptorflüssigkeit gefüllt. Die Rezeptorflüssigkeit wird mit Hilfe einer Heizplatte und ständigem Rühren auf Hautoberflächen temperatur (32°C) temperiert. Eine auf das Stratum corneum aufgetragene Substanz diffundiert durch die Schichten der Haut in die Rezeptorflüssigkeit. In der vorliegenden Arbeit wurde die geschorene Bauchhaut von Mäusen verwendet. Nach Einspannen der Haut in die Franz-Zelle wurde die Rezeptorkammer bis zur Membran mit 12 ml PBS gefüllt. Analog zum In-vivo-Hauptversuch II (s. 3.5.2.2) wurde 2 x im Abstand von 8 Stunden 20 µl ASS (8 mg gelöst in DMSO/Aceton 9:1) auf die Membran aufgetragen.

Insgesamt wurde je Probenentnahme 400 µl entnommen und in Probengefäß pipettiert. Da das entnommene Probenvolumen wieder ersetzt werden muss, wird die gleiche Menge PBS in die Rezeptorkammer injiziert. Nach Entnahme aller Proben, wurden sie auf die Konzentration von Acetylsalicyl- und Salicylsäure untersucht. Die ermittelten Konzentrationen wurden auf die resorbierten Mengen/Applikationsfläche umgerechnet und gegen die Zeit dargestellt (s. Abbildung 4-9).

Tabelle 3-3 Behandlungs- und Probenentnahmeprotokoll Franz-Zelle

<table>
<thead>
<tr>
<th></th>
<th>Zelle 1</th>
<th>Zelle 2</th>
<th>Zelle 3</th>
<th>Zelle 4</th>
<th>Zelle 5</th>
<th>Zelle 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunde 0</td>
<td>Erstmalige Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Erstmalige Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Erstmalige Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Erstmalige Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Erstmalige Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Erstmalige Applikation von ASS auf die Oberfläche der Membranen</td>
</tr>
<tr>
<td>Stunde 8</td>
<td>Zweite Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Zweite Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Zweite Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Zweite Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Zweite Applikation von ASS auf die Oberfläche der Membranen</td>
<td>Zweite Applikation von ASS auf die Oberfläche der Membranen</td>
</tr>
<tr>
<td>Stunde 9</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
</tr>
<tr>
<td>Stunde 11,5</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
<td>Probenentnahme</td>
</tr>
<tr>
<td>Stunde 22-30</td>
<td>Probenentnahme erfolgt alle 2 Stunden</td>
</tr>
</tbody>
</table>

3.4.5 Hochleistungs-Flüssigkeitschromatographie

3.5 *In-vivo-Versuche*

3.5.1 TDI-Kontaktallergiemodell

Zur Vorbereitung der Tiere wurde den Balb/c Mäusen (8 Wochen alt) Veet®-Enthaarungsserie auf die Bauchhaut aufgetragen und nach 10 Minuten vorsichtig mit einem feuchten Tuch wieder entfernt. Am folgenden Tag wurde die Bauchhaut mit 10 Tesafilmabrissen behandelt und anschließend durch topische Applikation mit 5% igem TDI (in Aceton gelöst) sensibilisiert. Die Sensibilisierung wurde an den drei folgenden Tagen wiederholt, mit dem Unterschied, dass am ersten Tag 100 µl der TDI-Lösung appliziert wurde und an den Tagen 2, 3 und 4 nur noch 50 µl. Das Abreißen der Hornschicht mit Tesafilm an den ersten drei Tagen führt zu einer Störung der Barrierefunktion, womit eine bessere Penetration des Kontaktallergens ermöglicht wird. An Tag 21 wurden die Ohrdicken der Tiere auf einer Seite gemessen und anschließend wurde 20 µl TDI (0,5%) auf die Innen- und Außenseite des Ohres aufgetragen. Durch die Applikation von TDI wurde eine allergische Reaktion hervorgerufen, die sogenannte Challenge, die sich als Ohrschwellung manifestierte. Da die Tiere unterschiedlich stark auf das Kontaktallergen reagierten wurden sie in high- and low-responder unterteilt. Unter high-responder versteht man die Tiere, bei denen die Applikation von TDI eine starke Ohrschwellung hervorrief, während bei den low-respondern die Ohrschwellung weniger stark ausgeprägt war. Die Tiere wurden entsprechend ihrer allergischen Reaktion in den verschiedenen Gruppen so aufgeteilt, dass in jeder Gruppe die Anzahl der high- and low-responder Tiere gleich war. Die Behandlung der Tiere und eine erneute Challenge des kontralateralen Ohres mit TDI erfolgte an Tag 28.
3.5.2 Untersuchungen zur Migration dendritischer Zellen im TDI-Kontaktallergiemodell

3.5.2.1 Sensibilisierung

3.5.2.2 Challenge

Im Hauptversuch II wurden ASS, Indometacin und Diflorasondiacetat jeweils in einem DMSO-Aceton-Gemisch (Verhältnis 9:1) gelöst und jeweils 20 µl der Lösung auf die Mausohren topisch mit einer Pipette aufgetragen. Einer Mäusegruppe wurde ASS oral mit einer Magenschlundsonde verabreicht (s. Tabelle 3-4 und 3-6). Zum Vergleich wurde eine Vehikelkontrolle mitgeführt, aber keine unbehandelte Kontrolle. Die Tiere wurden in 5 Gruppen zu 6 Tieren eingeteilt. Im 3. Hauptversuch wurden jeweils 6 Mäuse in 3 verschiedenen Gruppen mit Tepoxalin bzw. Vehikel behandelt. Eine Gruppe erhielt Tepoxalin, gelöst in DMSO:Ethanol (3:1), topisch auf das Ohr, die andere ebenfalls Tepoxalin topisch auf das Ohr und zusätzlich, mit einer

Tabelle 3-4: Übersicht zu den verwendeten Formulierungen

<table>
<thead>
<tr>
<th></th>
<th>ASS</th>
<th>Indometacin</th>
<th>Tepoxalin</th>
<th>Diflorasondiacetat</th>
</tr>
</thead>
<tbody>
<tr>
<td>systemisch</td>
<td>0,5% Methylcellulose</td>
<td>1% Methylcellulose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 3-5: Hauptversuch I: Dosierungen und Behandlungsschema

<table>
<thead>
<tr>
<th></th>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Tag 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehikel</td>
<td>20 µl Vehikel</td>
<td>20 µl Vehikel</td>
<td>20 µl Vehikel</td>
</tr>
<tr>
<td>ASS topisch</td>
<td>8 mg</td>
<td>8 mg</td>
<td>8 mg</td>
</tr>
<tr>
<td>ASS systemisch</td>
<td>150 mg/kg</td>
<td>150 mg/kg</td>
<td>150 mg/kg</td>
</tr>
<tr>
<td>Diflorasondiacetat</td>
<td>0,05%</td>
<td>0,05%</td>
<td>0,05%</td>
</tr>
</tbody>
</table>

Tabelle 3-6: Hauptversuch II: Dosierungen und Behandlungsschema

<table>
<thead>
<tr>
<th></th>
<th>Tag 27</th>
<th>Tag 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehikel</td>
<td>2 x 20 µl im Abstand von 8 h</td>
<td></td>
</tr>
<tr>
<td>ASS topisch</td>
<td>2 x 8 mg im Abstand von 8 h</td>
<td></td>
</tr>
<tr>
<td>ASS systemisch</td>
<td>150 mg/kg</td>
<td>2 x 150 mg/kg im Abstand von 8 h</td>
</tr>
<tr>
<td>Indometacin</td>
<td>2 x 1 mg im Abstand von 8 h</td>
<td></td>
</tr>
<tr>
<td>Diflorasondiacetat</td>
<td>2 x 0,05% im Abstand von 8 h</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3-7: Hauptversuch III: Dosierungen und Behandlungsschema

<table>
<thead>
<tr>
<th></th>
<th>Tag 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehikel</td>
<td>2 x 20 µl (DMSO: Ethanol) topisch und 150 ml Methylcellulose (1%) im Abstand von 8 h</td>
</tr>
<tr>
<td>Tepoxalin topisch</td>
<td>2 x 3 mg im Abstand von 8 h</td>
</tr>
<tr>
<td>Tepoxalin topisch und systemisch</td>
<td>2 x 3 mg topisch und 2 x 50 mg/kg oral in 150 µl Methylcellulose (1%) im Abstand von 8 h</td>
</tr>
</tbody>
</table>

3.5.3 Mouse-Ear-Swelling-Test (MEST)

3.5.3.1 **Local-Lymph-Node-Assay (LLNA)**

3.5.3.2 **Skin-DC-Migration-Assay**

überführt. Die Medien der Kulturen von Tag 2 und 3 wurden am dritten Tag in ein 15 ml Polypropylen-Röhren pipettiert und bei 1000 g und 4°C, 10 Minuten zentrifugiert. Der Überstand wurde dekantiert, das Zellpellet in dem verbleibenden Medium resuspendiert und die Zellen in der Neubauerkammer ausgezählt. Zur Bestimmung der Anzahl ausgewandter DC wurde das Volumen jeder einzelnen Suspension in den Polypropylen-Röhren bestimmt. Die ausgewanderten Zellen berechnen sich anhand folgender Formel:

\[
\frac{{\text{Gezählte Zellen} \times 3 \times 10000 \times \text{Restvolumen} \times 4}}{{\text{4}}} = \text{ausgewanderte epidermale und dermale Zellen}
\]

3.5.4 Fluorescence Activated Cell Sorting (FACS)

Gleichzeitige Messung mit verschiedenen Fluoreszenzfarbstoffen ist möglich, da die eingesetzten Farbstoffe sich zwar bei einer gemeinsamen Wellenlänge anregen lassen, aber über unterschiedliche Emissionsspektren verfügen.
Mittels der FACS-Analyse wurde in dieser Arbeit der Einfluss der verwendeten Pharmaka auf die Anzahl der CD11c⁺-Zellen und der CD11c-CD40- doppelpositiven Zellen in der mittels Local-Lymphnode-Assay gewonnenen Zellensuspension ermittelt. Die Zellen wurden hierfür in Mikrotiterplatten mit PBS (enthält 1% Bovines Serum Albumin und 0,1% Natriumnitrit) überführt. Anschließend wurde die Mikrotiterplatte zentrifugiert (300g, 10 Minuten, 4°C) und die Überstände abgenommen. Der Waschvorgang wurde ein zweites Mal wiederholt, bevor die Zellen mit den Antikörpern (Verdünnung 1:50) für 50 Minuten bei 4°C inkubiert wurden. Bevor die FACS-Analyse durchgeführt wurde, wurden die Zellen ein letztes mal wie oben beschrieben gewaschen. Die Auswertung der Daten erfolgte mit der CellQuest Research Software, die Ergebnisse wurden als Säulendiagramme dargestellt.
3.5.5 Zymographie

3.5.5.1 Aufbereitung der Proben

3.5.5.2 Protein-Assay

3.5.5.3 Zymographie
Die Zymographie dient der Bestimmung der proteolytischen Aktivität der Matrix-Metalloproteinase-9 in den Überständen der Ohrhomogenate. Die Durchführung erfolgte in einem 7,5% igen SDS-Polyacrylamidgel mit Zusatz von 1 mg/ml Gelatine in Anlehnung an KLEINER und STETLER-STEVENSON (1994). Die Zymographie entspricht einer Elektrophorese unter nicht-reduzierenden Bedingungen. Das SDS-

3.5.6 Immunhistochemische Darstellung von MHC-II⁺-Zellen

Nach Trennung der Mausohren in die ventrale und dorsale Hälfte wurden die ventralen Hälfte für ein paar Tage in Eppendorfgefäßen bei –20°C eingefroren. Nach Wiederauffäßen der Ohrhälften wurden sie in einer 3,8% igen Ammoniumthiocyanatlösungen (mit PBS) für 10 Minuten bei 37°C inkubiert. Nachdem sie für kurze Zeit in TBS geschwenkt wurden, wurde die Epidermis von der
3.6 Statistische Auswertung

4 Ergebnisse

4.1 *In-vitro*-Versuche

In vitro wurde der Einfluss der Testsubstanzen auf die TNF-α- und PGE₂-Sekretion dendritischer Zellen untersucht. Dazu wurden die DC-Kulturen mit ASS, Indometacin (Indo.), Diflorasondiacetat (Diflo.) und Tepoxalin (Tep.) in unterschiedlichen Konzentrationen behandelt (Konzentrationen der Testsubstanzen siehe Tabelle 3-2). Am folgenden Tag wurden die Zellen durch 24-stündige Inkubation mit LPS zur Zytokin- und PGE₂-Produktion angeregt. Die Zellkulturüberstände wurden mittels ELISA auf eine Hemmung der TNF-α- und PGE₂-Produktion untersucht.

4.1.1 Einfluss der Testsubstanzen auf die TNF-α-Sekretion

Wie aus Abbildungen 4-1a.-d. ersichtlich, wurde die TNF-α-Produktion der Zellen im Vergleich zu den unbehandelten Zellen durch LPS signifikant gesteigert. Die Inkubation mit ASS (5 mmol/l) und Diflorasondiacetat (2 nmol/l, 20 nmol/l, 200 nmol/l) bewirkt eine signifikante, ASS (2,5 mmol/l) nur eine schwach signifikante Inhibition der LPS-induzierten Zytokinproduktion (s. Abbildung 4-1a. und c.). Indometacin dagegen hat keinen Effekt auf die TNF-α-Sekretion (s. Abbildung 4-1b.). Auch die Behandlung der Zellen mit hohen Dosen von Tepoxalin (10 µmol/l) übt nur moderate Effekte auf die TNF-α-Konzentration aus (s. Abbildung 4-1d.) Wie aus den Werten des MTT-Test ersichtlich, ist die Hemmung durch die Testsubstanzen ist nicht auf eine verminderte Vitalität der Zellen zurückzuführen (s. Anhangstabelle 9-1a. und b.)
Abbildung 4-1 a. TNF-α-Sekretion in vitro generierter DC nach LPS-Stimulation

Die Inkubation der Zellen führt zu einem deutlichen Anstieg der TNF-α-Konzentration, die durch Behandlung der Zellen mit hohen Dosen ASS (2,5 mmol/l und 5 mmol/l) gehemmt wird. Niedrigere Dosierungen von ASS (0,5 mmol/l und 1 mmol/l) haben keinen Effekt auf die TNF-α-Konzentration. Darstellung der MW ± S.D.; n=6; *p<0,05; **p<0,01; Einzelwerte siehe Anhangstabelle 9-2 a.

Abbildung 4-1 b. TNF-α-Sekretion in vitro generierter DC nach LPS-Stimulation

Die signifikante Induktion der TNF-α-Sekretion wird durch Inkubation der Zellen mit Indometacin bis zu einer Dosis von 5 µmol/l nicht beeinflusst. Darstellung der MW ± S.D.; n=6; **p<0,01; Einzelwerte s. Anhangstabelle 9-2 a.
Abbildung 4-1 c. TNF-α-Sekretion in vitro generierter DC nach LPS-Stimulation

Diflorasoneacetat hemmt dosisabhängig und signifikant die LPS-induzierte TNF-α-Sekretion der DC. Einzelwerte s. Anhangstabelle 9-2 a; Darstellung der MW ± S.D.; n=6; **p<0,01

Abbildung 4-1 d. TNF-α-Sekretion in vitro generierter DC nach LPS-Stimulation

Die mittels LPS-stimulierte TNF-α-Sekretion wird nur moderat durch Tepoxalin (10µmol/l) in hohen Dosen gehemmt. Niedrigere Dosierungen haben keinen Effekt. Einzelwerte s. Anhangstabelle 9-3; Darstellung der MW ± S.D.; n=6, **p<0,01
4.1.2 Einfluss der Testsubstanzen auf die PGE₂-Sekretion

Die in Abbildung 4-2a.-d. dargestellten Säulendiagramme veranschaulichen den Efekt der Testsubstanzen auf die LPS-induzierte PGE₂-Sekretion der DC. Die Inkubation der Zellen mit LPS für 24 Stunden steigerte signifikant die PGE₂-Synthese, welche durch ASS und Indometacin signifikant gehemmt wird. Diflorasondiacetat hemmt die PGE₂-Sekretion konzentrationsabhängig und in den eingesetzten Konzentrationen von 20 und 200 nmol/l signifikant (s. Abbildung 4-2 a.-c.). Tepoxalin hemmt ebenfalls signifikant die PGE₂-Sekretion, aber unabhängig von der applizierten Konzentration (s. Abbildung 4-2d.).

Abbildung 4-2a. PGE₂-Sekretion in vitro generierter DC nach LPS-Stimulation

Die LPS-induzierte PGE₂-Konzentration wird signifikant durch ASS, unabhängig von der Konzentration, gehemmt. Einzelwerte s. Anhangstabelle 9-4; Darstellung der MW ± S.D.; n=6; **p<0,01
Abbildung 4-2b. PGE₂-Sekretion in vitro generierter DC nach LPS-Stimulation

Signifikante dosisunabhängige Inhibition der PGE₂-Sekretion durch Indometacin. Darstellung der MW ± S.D.; n=6; **p<0,01; Einzelwerte s. Anhangstabelle 9-4

Abbildung 4-2c. PGE₂-Sekretion in vitro generierter DC nach LPS-Stimulation

Diflorasondiacetat inhibiert dosisabhängig (20 nmol/l und 200 nmol/l) die Produktion von PGE₂ nach LPS-Stimulation. Einzelwerte s. Anhangstabelle 9-4. Darstellung der MW ± S.D.; n=6, **p<0,01
Abbildung 4-2 d. PGE₂-Sekretion in vitro generierter DC nach LPS-Stimulation

Signifikante Hemmung der LPS-stimulierten PGE₂-Konzentration durch Tepoxalin. Einzelwerte s. Anhangstabelle 9-5; Darstellung der MW ± S.D.; n=4; **p<0,01
4.2 Ergebnisse der *In-vivo*-Versuche

4.2.1 Einfluss der Testsubstanzen in der Sensibilisierungphase

Im Sensibilisierungsversuch (Hauptversuch I) wurden der Einfluss der Testsubstanzen ASS und Diflorasondiacetat im TDI-Kontaktallergiemodell während der Sensibilisierung untersucht. Die Tiere wurden an 3 aufeinanderfolgenden Tagen mit den Testsubstanzen Vehikel, ASS topisch (ASS top.), ASS systemisch (ASS syst.) und Diflorasondiacetat topisch (Diflo. top.) (s. Tab. 3-5) behandelt. Jeweils eine Stunde nach Applikation der Pharmaka wurden die Tiere mit 0,5% igem TDI sensibilisiert. Eine unbehandelte Kontrollgruppe wurde mitgeführt.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>24</td>
<td>27</td>
<td>28</td>
<td>24</td>
<td>42</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>29</td>
<td>25</td>
<td>37</td>
<td>27</td>
<td>27</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>25</td>
<td>28</td>
<td>30</td>
<td>25</td>
<td>34</td>
<td>25</td>
<td>27</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>27</td>
<td>25</td>
<td>28</td>
<td>27</td>
<td>39</td>
<td>24</td>
<td>28</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>25</td>
<td>33</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>MW</td>
<td>23,8</td>
<td>25</td>
<td>26,2</td>
<td>28,8</td>
<td>25,2</td>
<td>37</td>
<td>25,4</td>
<td>26,6</td>
<td>24,8</td>
<td>23,4</td>
</tr>
<tr>
<td>S. D.</td>
<td>1,30</td>
<td>1,22</td>
<td>1,30</td>
<td>0,83</td>
<td>1,09</td>
<td>3,67</td>
<td>1,51</td>
<td>1,51</td>
<td>0,83</td>
<td>1,67</td>
</tr>
</tbody>
</table>

Tabelle 4-1 Ohrdicken vor Behandlung und nach TDI-Sensibilisierung [µm]

Einzelwerte der Ohrdicken, die Messung erfolgte an jeweils 5 Ohren pro Gruppe. Die erste Messung wurde vor der Behandlung der Tiere und die zweite 24 Stunden nach der letzten TDI Applikation durchgeführt. MW = Mittelwert; S. D. = Standardabweichung
4.2.2 Ergebnis des LLNA

4.2.2.1 Lymphknotengewicht und Gesamtzellzahl

Abbildung 4-3 zeigt die Gewichte und die Zellanzahl der einzelnen drainierenden Lymphknoten der TDI-sensibilisierten Tiere. Die Applikation von TDI an drei aufeinanderfolgenden Tagen bewirkte eine signifikante Zunahme des Lymphknotengewichtes und der Gesamtzellzahl, im Vergleich zur unbehandelten Kontrollgruppe, die durch die Proliferation der T-Zellen im Lymphknoten zustande kommt. Allein Diflorasondiacetat führte zu einer signifikanten Inhibition des Lymphknotengewichtes und der Gesamtzellzahl. Weder die topische noch die systemische Verabreichung von ASS übte einen signifikanten Effekt auf das Lymphknotengewicht oder die Gesamtzellzahl aus.

Abbildung 4-3 Lymphknotengewicht [mg] und Zellzahl [Mio]

Die mittels TDI-induzierte T-Zellproliferation wird nur durch Diflorasondiacetat signifikant gehemmt. Einzelwerte siehe Anhangstabelle 9-6 und 9-7; Darstellung der MW ± S.D.; n=5; **p<0,01
4.2.2.2 **Einfluss der Pharmaka auf den Anteil CD11c⁺-Zellen im Lymphknoten**

In der Sensibilisierung wurde die Anzahl CD11c⁺-Zellen im Lymphknoten mittels TDI-Applikation, im Vergleich zur unbehandelten Kontrollgruppe, signifikant erhöht. Sowohl ASS als auch Diflorasondiacetat bewirken nach topischer Gabe eine signifikante Inhibition der CD11c⁺-Zellen in der Lymphknotensuspension. Systemische Gabe von ASS wirkte sich dagegen nicht auf die Anzahl CD11c⁺-Zellen aus (s. Abbildung 4-4).

Abbildung 4-4 CD11c⁺ Zellen in den Lnn. auriculares

Signifikante Inhibition der CD11c⁺-Zellpopulation in den Lymphknoten durch ASS (topisch) und Diflorasondiacetat (topisch). Einzelwerte siehe Anhang 9-8; Darstellung der MW ± S.D.; n=5; **p<0,01
4.2.3 Ergebnis des Skin-DC-Migration-Assay

Die mit den Testsubstanzen behandelten und TDI-sensibilisierten Ohren wurden nach zervikaler Dislokation der Tiere abgetrennt und anschließend in Kultur genommen. Die innerhalb von 3 Tagen aus den Hautexplanaten in das Medium ausgewanderten DC wurden mittels Zellzählung ermittelt und pro mg Ohrgewicht dargestellt. In der Sensibilisierungsphase der Kontaktallergie wurde, wie in Abbildung 4-5 ersichtlich, die Migration dendritischer Zellen aus der Haut durch systemische Verabreichung von ASS, sowie durch die topische Applikation von Diflorasondiacetat schwach signifikant (p<0,05) im Vergleich zur Vehikelgruppe gehemmt. Die topische Verabreichung hatte keinen signifikanten hemmenden Effekt auf die Migration.

Abbildung 4-5 TDI-induzierte Migration dendritischer Zellen

Signifikante Hemmung der Migration dendritischer Zellen in das Medium durch ASS (oral) und Diflorasondiacetat (topisch). Darstellung der MW ± S.D.; n=5; *p<0,05; **p<0,01 Einzelwerte siehe Anhangstabelle 9-9
4.2.4 Einfluss der Testsubstanzen auf die MMP-9-Aktivität

Abbildung 4-6 Einfluss der Pharmaka auf die MMP-9 Aktivität

Die Aktivität der MMP-9 wird durch systemische Verabreichung von ASS und Diflorasondiacetat tendenziell inhibiert. Einzelwerte s. Anhangstabelle 9-10; Darstellung als Medianboxen, mit Angabe des Median, 1. und 3. Quartils sowie der oberen und unteren Extremwerte; n=5
4.2.5 Einfluss der Testsubstanzen in der Challenge-Phase

4.2.6 Ergebnis des MEST

Abbildung 4-7 zeigt den Einfluss von ASS, Indometacin und Diflorasondiacetat auf die TDI-induzierte Ohrschwellung [µm], welche sich aus der Differenz der Ohrdickenmessung vor der ersten Behandlung und 16 Stunden nach der TDI-Challenge errechnet. Eine Aussage über die Ohrschwellung der Tiere die topisch mit ASS behandelt wurden, kann nicht getroffen werden, da ASS aufgrund der hohen Dosierung auf der Hautoberfläche auskristallisierte und somit die Werte verfälschte. Die systemische Verabreichung von ASS wirkt sich nicht auf die Ohrschwellung aus. Indometacin hemmt die entzündungsbedingte Ohrschwellung schwach signifikant und Diflorasondiacetat signifikant im Vergleich mit der Vehikelgruppe. Wie aus Abbildung 4-8 ersichtlich, wurde die Ohrschwellung der Tiere durch Tepoxalin nur moderat beeinflusst.
Abbildung 4-7 TDI-induzierte Ohrschwellung [µm] Hauptversuch II
Schwach signifikante bzw. signifikante Inhibition der Ohrschwellung durch Indometacin und Diflorasondiacetat; keine Hemmung der Ohrschwellung nach systemischer Verabreichung von ASS. Einzelwerte siehe Anhangstabelle 9-11; Darstellung der MW ± S.D.; n=6; *p<0,05; **p<0,01

Abbildung 4-8 Ohrschwellung [µm] Hauptversuch III
Nur tendenzielle Inhibition der Ohrschwellung durch topische Behandlung mit Tepoxalin. Etwas stärkere Hemmung bei zusätzlicher systemischer Gabe. Einzelwerte siehe Anhangstabelle 9-12; Darstellung der MW ± S.D.; n=6
4.2.7 Resorption von ASS in der Franz-Zelle

Da nach topischer Applikation von ASS die Substanz auf der Hautoberfläche auskristallisierte, wurde in der Franz-Zelle die Permeation von ASS nach topischer Applikation ermittelt.

Der Franz-Zell-Versuch wurde in Analogie zu Hauptversuch II durchgeführt. Die Applikation von jeweils 8 mg ASS (gelöst in DMSO/Aceton) auf die Maushaut erfolgte erstmals zur Stunde 0 und ein zweites Mal 8 Stunden später. Die in Abbildung 4-9 dargestellte Permeationskurve zeigen die pro Zeit resorbierte Menge ASS und Salicylsäure in µmol/cm². Anhand dieser Abbildung wurde der Bereich der linearen Resorption ermittelt. Dabei entspricht die Steigung des linearen Bereiches dem Flux und der X-Achsenabschnitt der Lag-Zeit. Der mittlere Flux lag bei 0,028 µmol/cm²/h, die mittlere Lag-Zeit betrug 2,04 Stunden. Die durchschnittlich resorbierte Menge von 154 µg ASS und Salicylsäure (entspricht ca. 1% der applizierten Menge) wurde anhand des Fluxes berechnet.

Abbildung 4-9 Permeation von ASS durch die Haut nach topischer Applikation

4.2.8 Ergebnis des Local-Lymph-Node-Assay

Im Local-Lymphnode-Assay wurden post mortem die regionalen Lymphknoten der Tiere entnommen, gewogen, die Gesamtzellzahl, sowie der Gehalt CD11c⁺- und CD11c⁺ CD40⁻-Zellen ermittelt.

4.2.8.1 Einfluss der Pharmaka auf die Lymphknotengewichte und Gesamtzellzahl

Abbildung 4-10 und 4-11 zeigen die Gewichte sowie die Zellzahl der Lymphknoten. Wie aus Abbildung 4-10 ersichtlich, war das Lymphknotengewicht bei allen Tieren, die mit ASS, Indometacin oder Diflorasondiacetat behandelt wurden, schwach signifikant bzw. signifikant leichter im Vergleich mit den Tieren, die nur das Vehikel verabreicht bekommen haben. Die Gesamtzellzahl der Lymphknoten wurde durch systemische Gabe von ASS und die topische Applikation von Indometacin schwach signifikant gehemmt, während Diflorasondiacetat einen signifikanten Hemmeffekt ausübt. Tepoxalin dagegen übte keinen signifikanten Effekt auf das Lymphknotengewicht aus. Nur die Gesamtzellzahl wurde durch kombinierte Verabreichung von Tepoxalin schwach signifikant gehemmt (s. Abbildung 4-10).
Abbildung 4-10 Lymphknotengewicht [mg] und Zellzahl [Mio]

Die Lymphknoten sind nach Behandlung mit ASS (systemisch), Indometacin und Diflorasondiacetat signifikant leichter. Die topische Applikation von ASS hat eine schwach signifikante Wirkung auf das Lymphknotengewicht. ASS (systemisch) und Indometacin reduzieren schwach signifikant, Diflorasondiacetat signifikant die Gesamtzellzahl. Die topische Gabe von ASS hat keine signifikante Wirkung auf die Gesamtzellzahl. s. Anhangstabelle 9-14, 9-15; Darstellung der MW ± S.D.; n=6; *p<0,05; **p<0,01

Abbildung 4-11 Lymphknotengewicht [mg] und Zellzahl [Mio]

Keine signifikante Inhibition der Lymphknotengesamtzellzahl nach topischer Applikation von Tepoxalin, allerdings signifikante Reduktion der Gesamtzellzahl nach topisch und systemisch kombinierte Verabreichung von Tepoxalin. Einzelwerte s. Anhangstabelle 9-16, 9-17; Darstellung der MW ± S.D.; n=6; *p<0,05
4.2.8.2 Einfluss der Pharmaka auf die Migration CD11c⁺-Zellen

Abbildung 4-12 Anzahl der CD11c⁺-Zellen in den Lnn. auriculares

Der Anteil CD11c⁺-Zellen in den Lymphknoten wird durch ASS (systemisch) schwach und durch Diflorasondiacetat signifikant gehemmt. Einzelwerte siehe Anhangstabelle 9-18; Darstellung der MW ± S.D.; n=6; *p<0,05; **p<0,01
Abbildung 4-13 Anzahl CD11c⁺-Zellen in den Lnn. auriculares

4.2.8.3 CD11c⁺- und CD40⁺-Zellen im Lymphknoten

Abbildung 4-14 Repräsentative Darstellung einer Lymphknotenzellsuspension

Im rechten oberen Quadranten zeichnen sich die CD11c⁻ und CD40⁻-doppelpositiven Zellen als einheitliche Zellwolke ab.
Abbildung 4-15 Einfluss der Testsubstanzen auf CD11c⁺- und CD40⁺-Zellen im Lymphknoten
Inhibition der Migration epidermaler und dermaler DC aus der Haut durch ASS (systemisch), und Diflorasondiacetat. Einzelwerte siehe Anhangstabelle 9-20; Darstellung der MW ± S.D.; n=6; *p<0,05; **p<0,01

Abbildung 4-16 Einfluss von Tepoxalin auf die Migration CD11c⁺- und CD40⁺-Zellen
Keine signifikante Hemmung der Migration CD11c⁺-CD40⁺-Zellen aus der Haut in den Lymphknoten. Einzelwerte s. Anhangstabelle 9-21; Darstellung der MW ± S.D.; n=6
4.2.9 Ergebnis des Skin-DC-Migration-Assay

Im Hauptversuch II (s. Abbildung 4-17) und III (s. Abbildung 4-18) wurde der Einfluss der Pharmaka auf die Migration der DC im Skin-DC-Migration-Assay untersucht. Die Ohren wurden hierfür post mortem für 3 Tage kultiviert und die ausgewanderten Zellen ermittelt. Wie aus der Abbildung 4-16 ersichtlich wird die Auswanderung der DC in das Medium durch ASS (topisch) schwach signifikant, durch ASS (systemisch), Indometacin sowie Diflorasondiacetat signifikant gehemmt. Die topische Applikation von Tepoxalin hemmt nur tendenziell die Migration, die kombinierte Verabreichung von Tepoxalin schwach signifikant die Migration der DC (s. Abbildung 4-18)

Abbildung 4-17 Auswanderung dendritischer Zellen nach Challenge

Die topische Applikation führt zur einer schwach signifikanten Hemmung der Migration. Während die systemische Verabreichung von ASS als auch die topische Applikation von Indometacin und Diflorasondiacetat signifikant die Auswanderung der DC aus den Hautexplanaten in das Medium hemmen. Einzelwerte s. 9-22; Darstellung der MW ± S.D.; n=6; *p<0,05; **p<0,01
4.2.10 Einfluss der Pharmaka auf die MMP-9-Aktivität

Abbildung 4-19 Einfluss auf die MMP-9-Aktivität

Signifikante Inhibition durch ASS (systemisch) und Diflorasondiacetat. Indometacin und ASS (topisch) üben keinen Einfluss auf die MMP-9-Aktivität aus. Einzelwerte s. Anhangstabelle 9-24; Darstellung als Medianboxen, mit Angabe des Median, 1. und 3. Quartils sowie der oberen und unteren Extremwerte. n=6; *p<0,05, **p<0,01

Abbildung 4-20 Einfluss von Tepoxalin auf die MMP-9-Aktivität

Signifikante Inhibition der Proteinaseaktivität durch kombinierte Verabreichung von Tepoxalin (topisch und oral). Keine signifikante Hemmung nach topischer Applikation von Tepoxalin. s. Anhangstabelle 9-25; Darstellung als Medianboxen, mit Angabe des Median, 1. und 3. Quartils sowie der oberen und unteren Extremwerte. n=6; **p<0,01
4.2.11 MHC-II⁺-Zellen in der Epidermis

Mittels immunhistochemischer Färbung MHC-II⁺-Zellen wurden LC der Epidermis dargestellt (s. Abbildung 4-21). Wie aus dem Säulendiagramm 4-22 ersichtlich, hemmten alle im 2. Hauptversuch eingesetzten Pharmaka (ASS, Indometacin, Diflorasondiacetat) signifikant die TDI-induzierte Migration der LC aus der Haut. Nach topischer Applikation von Tepoxalin wird die Auswanderung der LC aus der Haut signifikant inhibiert. Die kombinierte Verabreichung bewirkt nur eine tendenzielle Hemmung. (s. Abbildung 4-23)

Abbildung 4-21 MHC-II⁺-Zellen in der Epidermis
Abbildung 4-22 TDI-induzierte Migration der LC aus der Haut

Alle Testsubstanzen hemmen signifikant die Migration der LC aus der Epidermis. Darstellung der MW ± S.D.; Vehikel, ASS topisch und systemisch n=6, Indometacin n=3 und Diflorasondiacetat n=5; **p<0,01; Einzelwerte s. Anhangstabelle 9-26

Abbildung 4-23 TDI-induzierte Migration der LC aus der Haut

Signifikante Hemmung der TDI-induzierten Migration der LC aus der Haut nach topischer Behandlung mit Tepoxalin. n=6; **p<0,01; s. Anhangstabelle 9-27
4.2.12 PGE$_2$-Konzentration im Ohrgewebe

Im 2. Hauptversuch wurde der Einfluss der Testsubstanzen ASS, Indometacin und Diflorasondiacetat auf die PGE$_2$-Konzentration im Ohrhomogenat mittels ELISA ermittelt (s. Abbildung 4-24). Die TDI-induzierte Prostaglandinsynthese wird signifikant nach Applikation von ASS (systemisch), Indometacin (topisch) und Diflorasondiacetat (topisch) gehemmt. Die topische Verabreichung von ASS hat keinen signifikanten Einfluss auf die PGE$_2$-Sekretion.

Abbildung 4-24 PGE$_2$-Konzentration [pg/ml] im Ohrhomogenat

Signifikante Hemmung der Prostaglandinkonzentration im Gewebe nach systemischer Verabreichung von ASS und topischer Applikation von Indometacin und Diflorasondiacetat. Einzelwerte s. Anhangstabelle 9-28; Darstellung der MW ± S.D.; n=6; **p<0.01
4.3 Zusammenfassung der Ergebnisse

In den nachfolgenden Tabellen sind die signifikanten Effekte der Testsubstanzen in der Sensibilisierung 4-2 und Challenge 4-3, als Pfeil markiert, dargestellt.

<table>
<thead>
<tr>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln. Gewicht</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Ln. Zellzahl</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>CD11c⁺-Zellen</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Skin-DC-Migration</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>MMP-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4-2 Signifikante Effekte der Testsubstanzen in der Sensibilisierungsphase

Signifikante Hemmeffekte der Pharmaka auf die Untersuchungsparametern in der Sensibilisierungsphase.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mest</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln. Gewicht</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Ln. Zellzahl</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>CD11c⁺-Zellen</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>CD11c⁻-CD40⁺-Zellen</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin-DC-Migration</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>MMP-9</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHC-II⁺-Zellen</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>PGE₂</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4-3 Signifikante Effekte der Testsubstanzen in der Challengephase

Die Tabelle gibt einen Überblick über die Wirkung der Testsubstanzen auf die Untersuchungsparameter. Signifikante Hemmeffekte der Substanzen, im Vergleich zur Vehikelgruppe, sind mit einem Pfeil markiert.
5 Diskussion

5.1 Einfluss der Testsubstanzen auf die LPS-induzierte TNF-α- und PGE₂-Sekretion dendritischer Zellen

5.1.1 Wirkung auf die TNF-α-Sekretion in vitro

TNF-α-Sekretion sind nicht auf eine Beeinträchtigung der Zellvitalität zurückzuführen (s. Anhangstabelle 9-1).

5.1.2 Beeinflussung der PGE2-Produktion in vitro

Das Enzym COX-1 wird konstitutiv in den Geweben gebildet, während die Bildung der COX-2 in Folge verschiedener Reize (v. a. TNF-α und IL-1β) in entzündeten Geweben induziert wird (HERSHMAN 1996). Die Induktion der COX-2 wird mittels autokriner und parakriner Sekretion von TNF-α und IL-1β reguliert. Im allergischen Geschehen wird hauptsächlich PGE2 von Keratinozyten gebildet, welches eine Schlüsselrolle bei der Maturation und Migration der Langerhans-Zellen einnimmt (KABASHIMA et al. 2003; KABASHIMA und MIYACHI 2004). Die Effekte von PGE2 auf DC ist abhängig von deren Maturationsstadium. PGE2 fördert sowohl die
Maturation unreifer DC, als auch die Exprimierung des Chemokin-Receptors CCR7
auf der Oberfläche der DC und damit die Migration der DC in die Lymphorgane
(LUFT et al. 2002; SCANDELLA et al. 2002). In den Lymphknoten hingegen wird die
Fähigkeit der DC zur Antigenpräsentation und damit der T-Zell-Aktivierung gehemmt
(HARIZI et al. 2001).

5.2 Einfluss der Testsubstanzen auf DC in der Sensibilisierung

Bei der Kontaktallergie spielt die Sensibilisierung des Organismus gegenüber einem
Allergen eine wichtige Rolle, da in dieser Phase die DC in den Lymphknoten
auswandern und T-Zellen sowohl zur Proliferation als auch zur Differenzierung in
Effektorzellen anregen (KABASHIMA und MIYACHI 2004). Daher wurden in diesem
Modell die Wirkung von ASS und Diflorasondiacetat im Sensibilisierungsstadium der
Kontaktallergie untersucht. Zu den wichtigsten Parametern gehörte dabei die
Migration der Zellen aus der Haut, der LLNA und die MMP-9-Aktivität im Ohrgewebe.
Anhand dieser Untersuchungen kann auf die erfolgte DC-Migration und damit auf die
Sensibilisierung des Organismus zurückgeschlossen werden. Zusätzlich wurde die
Ohrschwellung gemessen, die aber erwartungsgemäß in der Sensibilisierung nicht
induziert wurde, da eine entzündungsbedingte Reaktion erst in der Challengephase
stattfindet. Alle Testsubstanzen wurden topisch appliziert; ASS wurde zusätzlich
einer Mäusegruppe oral verabreicht. Indometacin wurde in diesem Versuch nicht
mitgeführt, da die Gabe in hoher Konzentration über 3 Tage zu einer
Arzneimittelunverträglichkeit (s 2.6.2) geführt hätte.

5.2.1 Einfluss von ASS und Diflorasondiacetat im MEST

Wie aus den Ergebnissen des MEST ersichtlich, induziert TDI in der Sensibilisierung
keine Ohrschwellung. Der erste Antigenkontakt führt zwar zu einer Migration der DC
in den regionalen Lymphknoten und zur Proliferation haptenspezifischer T-Zellen,
aber es kommt zu keinen klinischen Erscheinungen (s. 2.4.2) (KRASTEVA et al.
1999). Während sich die hohen Werte aus der Ohrdickenmessung der Tiere, die
ASS topisch auf das Ohr erhielten, durch die Auskristallisierung von ASS erklären
lassen, basieren die niedrigen Werte bei Diflorasondiacetat wahrscheinlich auf der
hautverdünnende Wirkung der Kortikosteroide (LEHMANN et al. 1983).
5.2.2 Einfluss von ASS und Diflorasondiacetat auf die Migration der DC

Durch die Hemmung von NF-κB wird auch die für die Migration der DC wichtige Freisetzung von TNF-α und IL-1β inhibiert. Auch die mögliche Hemmung der PGE₂-Sekretion führt zu einer Inhibition der Maturation und Migration der DC (s. 5.1.2). Die ausbleibende Wirkung nach topischer Applikation von ASS auf die Migration der DC beruht wahrscheinlich auf zu geringen Wirkstoffspiegeln in den tieferen Gewebeschichten.

5.2.3 Einfluss von ASS und Diflorasondiacetat im LLNA

Nach topischer Applikation von ASS wird die CD11c⁺-Zellpopulation im regionalen Lymphknoten signifikant vermindert, aber ASS hat nach topischer Gabe weder eine Wirkung auf das Lymphknotengewicht, die Gesamtzellzahl des Lymphknotens noch auf die Migration der DC im Skin-DC-Migration-Assay. Eventuell werden nur die DC

5.2.4 Einfluss von ASS und Diflorasondiacetat auf die MMP-9

5.3 Einfluss der Testsubstanzen auf DC in der Challenge

5.3.1 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat im MEST

Über die Ohrschwellung der Tiere, die topisch mit ASS behandelt wurden, kann keine Aussage getroffen werden, da ASS aufgrund der hohen Dosierung auf der Oberfläche der Ohren auskristallisierter und somit die tatsächlichen Ohrdicken verfälscht wurden. Von den anderen verwendeten Testsubstanzen konnte lediglich Indometacin und Diflorasondiacetat eine schwach signifikante bzw. signifikante Hemmung der TDI-induzierten Entzündungsreaktion vermitteln. Der ausbleibende Effekt von ASS nach systemischer Gabe lässt sich eventuell dadurch erklären, dass das systemisch verabreichte ASS die in der Haut befindlichen T-Zellen nicht zu hemmen vermag. Allerdings ist es verwunderlich, dass die entzündungsbedingte Ohrschwellung nicht beeinflusst wird, obwohl die Migration der DC sowie die T-Zellproliferation gehemmt wird. Eine Korrelation der Entzündungsantwort mit der Migration der DC konnten BÄUMER et al. (2005) für Rapamycin und Tacrolimus zeigen, aber nicht für Cilomilast, welches zwar die Ohrschwellung signifikant hemmte, aber keinen signifikanten Einfluss auf das Lymphknotengewicht, die Gesamtzellzahl und die Anzahl CD11c⁺-Zellen im Lymphknoten ausübte. Der Grund für die starke Inhibition der Ohrschwellung durch Diflorasondiacetat ist auf die Migrationshemmung der DC, die Suppression der T-Zellproliferation im Lymphknoten und der T-Zellen in der Haut zurückzuführen. Die topische Applikation von Indometacin unterdrückt ebenfalls die allergische Reaktion, was auf die Beeinträchtigung der DC-T-Zell-Interaktion und der antigenspezifischen T-Lymphozyten in der Haut zurückzuführen ist und im geringen Maße auch auf eine Migrationsinhibition der DC. Die beobachteten Effekte von ASS (systemisch) und Indometacin (topisch) stehen im Einklang mit einer Studie von TARAYRE et al. (1984), der die Wirkung der Substanzen auf die Ohrschwellung in einem Picrylchlorid- und in einem Oxazolon-induziertem Entzündungsmodell untersuchte. Dabei hemmte ASS (300-450 mg/kg) nach systemischer Verabreichung weder die Picrylchlorid- noch die Oxazolon-induzierte Ohrschwellung. Im Gegensatz dazu konnten sie eine Hemmung der Picrylchlorid-induzierten Ohrschwellung, aber nicht

5.3.2 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat auf die Migration der DC

Die Migration der DC wird im Skin-DC-Migration-Assay durch ASS (systemisch), Indometacin und Diflorasondiacetat signifikant gehemmt. Die topische Applikation von ASS und die kombinierte Verabreichung von Tepoxalin inhibieren die DC-Migration in das Medium nur schwach signifikant. Die alleinige topische Gabe von Tepoxalin hat keine Wirkung. Die Hemmung der Migration durch ASS (systemisch) und Diflorasondiacetat kann auf mehrere Faktoren zurückgeführt werden. Dabei spielt die Modulation der MMP-9, ebenso wie die Inhibition von NF-κB und der TNF-
5.3.3 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat im LLNA

5.3.4 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat auf die MMP-9

Die Aktivität der MMP-9 wird von ASS (systemisch), Diflorasondiacetat und Tepoxalin (kombinierte Verabreichung) gehemmt. Wie schon unter 5.2.2. und 5.3.2. diskutiert, wird die MMP-9 Aktivität hauptsächlich durch die Zytokine IL-1β und TNF-α, die von DC und Keratinozyten nach Antigenkontakt gebildet werden, reguliert. Da

5.3.5 Einfluss von ASS, Indometacin, Tepoxalin und Diflorasondiacetat auf MHC-II⁺-Zellen in der Epidermis

Obwohl die topische Applikation von Tepoxalin die LC-Migration aus der Epidermis signifikant hemmt, konnte nach der kombinierten Verabreichung von Tepoxalin trotz der gleichen topischen Dosierung keine Hemmung der LC-Migration beobachtet werden. Dieses Ergebnis ist nur dadurch zu erklären, dass eventuell der Antikörper nicht richtig an die MHC-II-Oberflächenmoleküle gebunden wurde. Denn die kombinierte, also topisch-systemische Behandlung, hemmt signifikant sowohl die In-vitro-Migration der DC, als auch die Expression der MMP-9.

5.3.6 PGE₂-Konzentration in den Ohrhomogenaten

Die PGE₂-Konzentration in den Ohrhomogenaten wurde durch ASS (oral), Indometacin und Diflorasondiacetat im Vergleich zur Vehikelgruppe signifikant inhibiert. Topische Applikation von ASS hemmt nur geringgradig die Prostaglandinkonzentration. Wie schon in 2.4.2.1 beschrieben wird durch IL-1β und
TNF-α die COX-2 in LC und Keratinozyten induziert (KIMBER et al. 2000; KABASHIMA et al. 2003). PGE₂ nimmt eine zentrale Rolle sowohl bei der Maturation als auch der Migration der DC ein. Zum einen fördert PGE₂ zusammen mit IL-1β, TNF-α und IL-6 die Maturation der DC, zudem wird die Expression des CCR7-Rezeptors, welcher für die Migration durch die Lymphgefäße unerlässlich ist, durch PGE₂ hochreguliert (LUFT et al. 2002; SCANDELLA et al. 2002). Eine Hemmung der PGE₂-Spiegel im Gewebe 24 Stunden nach Challenge konnte MEURER et al. (1988) sowohl nach topischer Applikation von Indometacin als auch von Dexamethason zeigen. Dabei wurden maximale PGE₂-Spiegel in diesem Modell 24-48 Stunden nach Challenge erreicht. Es ist davon auszugehen, dass die signifikante Inhibition der PGE₂-Konzentration im Ohrgewebe bei den Indometacin behandelten Tieren eine zentrale Rolle bei der Migrationshemmung spielt und auch bei den mit ASS (oral) und Difloracondiacetat behandelten Tieren zur Hemmung der Migration beiträgt. Die moderate Wirkung von ASS (topisch) kann auch hier nur durch einen zu geringen Wirkstoffspiegel in tieferen Schichten des Ohrgewebe erklärt werden, die für eine Hemmung der COX und damit der PGE₂-Synthese nicht ausreicht.

Die Ergebnisse der In-vivo-Versuche mit ASS und Indometacin verdeutlichen, dass die alleinige Hemmung der COX sowie die Inhibition der DC-Migration für eine Unterdrückung der allergischen Kontaktdermatitis nicht ausreicht. Es müssen daher noch andere COX-unabhängige Faktoren eine Rolle spielen.
6 Zusammenfassung

Stefanie Claudia Krekeler

Pharmakologische Beeinflussung muriner dendritischer Zellen durch nichtsteroidale und steroidale Antiphlogistika

In der vorliegenden Arbeit wurde der Einfluss nichtsteroidaler und steroidaler Antiphlogistika auf dendritische Zellen in vitro und in vivo untersucht. Bei den In-vivo-Untersuchungen war von besonderem Interesse, ob die eingesetzten Testsubstanzen die allergische Immunreaktion sowohl in der Sensibilisierungs-, als auch in der Challenge-Phase hemmen können und somit die Manifestation der Kontaktallergie unterdrückt wird. Als nichtsteroidale Antiphlogistika wurden ASS, Indometacin und Tepoxalin eingesetzt, als steroidales Antiphlogistikum wurde Diflorasondiacetat verwendet.

In vitro wurde die Wirkung der Pharmaka auf die LPS-stimulierte TNF-α- und PGE2-Synthese untersucht. Sowohl TNF-α als auch PGE2 spielen eine wichtige Rolle bei der Maturation und Migration der DC. Dazu wurden aus murinem Knochenmark DC gewonnen, mit den Testsubstanzen inkubiert und die Zytokin bzw. Prostaglandinkonzentration mittels ELISA gemessen. Die LPS-induzierte PGE2-Synthese wurde von allen eingesetzten Substanzen signifikant gehemmt. Auf die TNF-α-Synthese dagegen hatte Indometacin keinen und Tepoxalin (10 µmol/l) nur eine moderaten Effekt. Eine signifikante Inhibition wurde nur durch ASS (2,5 und 5 mmol/l) und Diflorasondiacetat erreicht.

Die In-vivo-Untersuchungen wurden in einem murinen TDI-Kontaktallergiemodell in der Sensibilisierung und in der Challenge durchgeführt. In der Sensibilisierung wurde die Wirkung der Substanzen auf die Migration der DC (Skin-DC-Migration-Assay), auf die DC-T-Zellinteraktion anhand des Lymphknotengewichtes und der Gesamtzellzahl des Lymphknotens, auf die CD11c+-Zellpopulation in den Lymphknoten (LLNA), sowie auf die Expression der MMP-9 untersucht. In der

Aufgrund der moderaten Effekte nach topischer Applikation von ASS, wurde in Analogie zu dem In-vivo-Versuch, die transdermale Resorption von ASS durch die Bauchhaut von Mäusen bestimmt.

Summary

Stefanie Claudia Krekeler

Pharmacological influence of nonsteroidal and steroidal anti inflammatory drugs on dendritic cells

The present study was performed to evaluate the influence of nonsteroidal (NSAIDs) and steroidal anti inflammatory drugs on dendritic cells in vitro and in vivo by using a contact hypersensitivity model. During in vivo test, particular focus was put on whether the test substances may inhibit the allergic reaction in the sensitization phase as well as in the challenge phase thereby decreasing the manifestation of contact dermatitis. As NSAID acetylsalicylic acid (ASA), indomethacin and tepoxalin were used. Diflorasone diacetate was used as steroidal anti inflammatory drug.

The in vitro effect of the test substances was examined on the TNF-α and PGE₂ release of LPS stimulated DC. TNF-α as well as PGE₂ play an important role on DC maturation and migration. First, murine dendritic cells were cultivated from bone marrow, then incubated with the test substances and finally the cytokine- and prostaglandin concentration was measured by ELISA. The LPS induced production of PGE₂ was significantly reduced by all test substances, whereas indomethacin had no effect on TNF-α synthesis. Tepoxalin (10 µmol/l) had only a moderate effect on TNF-α-synthesis. Only ASA (2.5 and 5 mmol/l) and diflorasone diacetate caused significant inhibition.

The in vivo tests were performed in the sensitization phase and challenge phase in a murine TDI induced contact allergy model. During sensitization phase, the drug dependent effect on DC migration (Skin-DC-Migration-Assay), DC-T-cell interaction by the number of lymph nodes cells and their weight as well as the lymph nodes’ CD11c⁺-cell population (LLNA) and MMP-9 expression were evaluated. During the challenge phase additional parameters such as ear swelling (MEST), migrated skin DC (CD11c⁺- and CD40⁺-cells) of the lymph nodes and MHC-II⁺-cells in the
epidermis were used. PGE$_2$-concentration was measured in the ear tissue of mice treated with ASA, indomethacin and diflorasone diacetate.

As only moderate effects of topical applied ASA during sensitization phase and challenge phase was observed, in analogy to the in vivo experiment, transdermal resorption of ASA through the abdominal skin of mice was evaluated using the Franz diffusion cell.

The results of the in vivo experiments as well as the results of the Franz diffusion cell test suggest that sufficient tissue level for inhibiting COX and NF-KB activities is achieved only in superficial areas of the skin after topical application of ASA.

The results of the in vivo experiments demonstrate that inflammation response in contact allergy can not be suppressed only by inhibition of DC migration. There must be other factors involved in providing immune responses. The TDI induced contact-allergy is not impaired by systemic application of ASA. Nevertheless, all other parameters are inhibited compared to the control group. ASA has a direct effect on DC function, whereas, indomethacin seems to have a different mechanism of action. Indomethacin inhibits the T-cell mediated immune response as well the T-cell proliferation but it does neither inhibit migration of dermal DC into the draining lymph node nor does it inhibit MMP-9 activity in vivo. Ex vivo inhibition of the migration (Skin-DC-Migration-Assay), as well as inhibition of LC-migration was proven. Contact allergy and function of DC is only inhibited noticeably by diflorasone diacetate. Treatment with Tepoxalin has no effect on the allergic inflammatory reaction, independent of administration route. During the period of sensitization only diflorasone diacetate did influence migration and DC-T-cell interaction.
8 Literaturverzeichnis

Functional diversity of helper T lymphocytes.
Nature 383, 787-793

Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells.
Hepatology 35, 1117-1124

Tumor necrosis factor alpha causes retention of activated glucocorticoid receptor within the cytoplasm of A459 cells.

AIBA, A. S. und S. I. KATZ (1990)
Phenotypic and functional characteristics of in vivo-activated Langerhans cells.
J. Immunol. 145, 2791-2796

Hydrocortisone suppresses intranuclear activator-protein-1 (AP-1) binding activity in mononuclear cells and plasma matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9).
J. Clin. Endocrinol. Metab. 86, 5988-5991

Anti-inflammatory effects of aspirin and sodium salicylate.
Langerhans cells develop from a lymphoid-committed precursor.
Blood 96, 1633-1637

Activation Pattern of Langerhans Cells in the Afferent and Efferent Phases of Contact Hypersensitivity.

Tepoxalin: a dual cyclooxygenase/5-lipoxygenase inhibitor of arachidonic acid metabolism with potent anti-inflammatory activity and a favorable gastrointestinal profile.
J. Pharmacol. Exp Ther. 271, 1399-1408

Cytokine gene expression during the elicitation phase of contact sensitivity: regulation by endogenous IL-4.

Role of IL-4 in delayed type hypersensitivity.
Clin. Exp. Immunol. 103, 1-4

Immunosuppression by glucocorticoids: Inhibition of NF-kappa B activity through induction of I kappa B synthesis.
Science 270, 286-290
Dendritic cells initiate a two-stage mechanism for T lymphocyte proliferation.
J. exp. Med. 157, 1101-1115

Keratinocytes as initiators of inflammation.
Lancet 337, 211-214

TARC and RANTES, but not CTACK, are induced in two models of allergic contact dermatitis. Effects of cilomilast and diflorasone diacetate on T-cell-attracting chemokines.
Br. J. Dermatol. 151, 823-830

Cilomilast, tacrolimus and rapamycin modulate dendritic cell function in the elicitation phase of allergic contact dermatitis.
Br. J. Dermatol. 153, 136-144

Effects of cilomilast on dendritic cell function in contact sensitivity and dendritic cell migration through skin.
The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis.
N. Engl. J. Med. 329, 1764-1769

BECKER, D., M. MOHAMADZADEH, K. RESKE und J. KNOP (1992a)
Increased levels of intracellular MHC class II molecules in murine Langerhans cells following in vivo and in vitro administration of contact allergens.

Contact allergens modulate the expression of MHC class II molecules on murine epidermal Langerhans cells by endocytotic mechanisms.
J. Invest. Dermatol. 98, 700-705

Effect of glucocorticosteroids on epidermal Langerhans cells.
J. exp. Med. 155, 291-302

Aspirin and salicylate induce apoptosis and activation of caspases in B-cell chronic lymphocytic leukemia cells.
Blood 92, 1406-1414

BERBERICH, I., G. L. SHU und E. A. CLARK (1994)
Cross-linking CD40 on B cells rapidly activates nuclear factor-Kappa B.
J. Immunol. 153, 4357-4366
BERTOLINI, A., A. OTTANI und M. SANDRINI (2001)
Dual acting anti-inflammatory drugs: a reappraisal.
Pharmacol. Res. 44, 437-50

BIRBECK, M. S., A. S. BREATHNACH und J. D. EVERALL (1961)
An electron microscopy study of basal melanocytes and high level clear cells
(Langerhans cells) in vitiligo.
J. Invest. Dermatol. 37, 51-64

BLACKWELL, T. S. und J. W. CHRISTMAN (1997)
The role of nuclear factor-I kappaB in cytokine gene regulation.
Am. J. Respir. Cell Mol. Biol. 17, 3-9

Immunpharmakologie der Kortikosteroide.
Klin. Wochenschau 60, 1373-1384

BRADSHAW, M., M. WACHSTEIN, J. SPENCE und J. M. ELIAS (1963)
Adenosine triphosphatase in melanocytes and epidermal cells of human skin.
J. Histochem. Cytochem. 11, 465-73

BROSTJAN, C., J. ANRATHER, V. CSIZMADIA, CD. STROKA, M. SOARES, F. H.
BACH und H. WINKLER (1996)
Glucocorticoid mediated repression of NF-kB activity in endothelial cells does not
involve induction of IkB synthesis.
J. Biol. Chem. 171, 19612-16

BURROWS, W. M. und R. B. STOUGHTON (1976)
Inhibition of induction of human sensitization by topical glucocorticosteroids.
Arch. Dermatol. 112, 175-178
GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells.
Nature 360, 258-261

Two types of murine helper T cell clone. Delayed-type hypersensitivity is mediated
by TH 1 clones.
Immunology 138, 3688-3694

Epidermal Langerhans cell migration and sensitization to chemical allergens.
APMIS 111, 737-804

CUMBERBATCH, M., R. J. DEARMAN und I. KIMBER (1999)
Inhibition by dexamethasone of Langerhans cell migration: influence of epidermal
cytokine signals.
Immunopharmacol. 41, 235-243

CUMBERBATCH, M. und I. KIMBER (1992)
Dermal tumor necrosis factor-alpha induces dendritic cell migration to draining lymph
nodes, and possibly provides one stimulus for Langerhans cell migration.
Immunology 75, 257-263

Chemokines and cell migration in secondary lymphoid organs.
Science 286, 2098-2102

Inhibition of the Nuclear Factor Kappa B:
An Emerging Theme in Anti-Inflammatory Therapies.
Molecular Interventions 2, 22-35
DEARMAN, R. J., D.A. BASKETTER und I. KIMBER (1996)
Characterization of chemical allergens as a function of divergent cytokine secretion.
Toxicol. appl. pharmacol. 138, 308-316

IL-4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatants.
J. Immunol. 140, 4193-4198

The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases.
J. Biol. Chem. 265, 5192-5198

Inhibition of activator protein I activity and neoplastic transformation by aspirin.
J. Biol. Chem. 272, 9962-9970

Lipoxygenase inhibitors suppress IL-2 synthesis: relationship with rise of [Ca2+], and the events dependent on protein kinase C activation.
Immun. Lett. 16, 101-106

An European inert-laboratory validation of alternative endpoints of the murine local lymph node assay: first round.
Toxicol. 212, 60-68
An essential role for Langerhans cell-derived IL-1 beta in the initiation of primary immune response in skin.
J. Immunol. 150, 3698-3704

ENK, A. H. und S. I. KATZ (1992)
Early molecular events in the induction phase of contact sensitization.
Proc. Natl. Acad. Sci. USA 89, 1398-1402

L-10 acts on the antigen-presenting cell to inhibit cytokine production by Th 1 cells.
J. Immunol. 146, 3444-3451

FLOWER, R. J. und J. R. VANE (1972)
Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol).
Nature 240, 410-411

CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs.
Cell 99, 23-33

FRANZ, T. J. (1975)
Percutaneous absorption on the relevance of in vitro data.
J. Invest. Dermatol. 64, 190-195
Development and validation of an alternative dermal sensitization test: the mouse ear swelling test (MEST).
Toxicol. appl. pharmacol. 84, 93-114

Anti-inflammatory action of IL-4. Negative regulation of contact sensitivity to trinitrochlorobenzene.
J. Immunol. 148, 1411-1415

Identification of DC-Sign, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses.
Cell 100, 575-585

GOEBELER, M., A. TRAUTMANN und A. VOSS (2001)
Differential and sequential expression of multiple chemokines during elicitation of allergic contact hypersensitivity.
Am. J. Pathol. 158, 431-440

Immunoregulatory mechanisms involved in elicitation phase of allergic contact hypersensitivity.
Immunol. today 19, 37-44

Prostanoids and their receptors that modulate dendritic cell-mediated immunity.
Immunol. Cell Biol. 82, 353-360
Antigen presentation in extracellular matrix : interactions of T-cells with dendritic cells are dynamic, short lived, and sequential.
Immunity 13, 323-332

Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells.
J. Immunol. 166, 7053-7062

ATPase and morphologic changes in Langerhans cells induced by epicutaneous application of a sensitizing dose of DNFB.
J. Invest. Dermatol. 92, 689-94

HARIZI, H., M. JUAN, C. GROSSET, M. RASHEDI und N. GUALDE (2001)
Dendritic cells issued in vitro from bone marrow produce PGE2 that contributes to the immunomodulation induced by antigen-presenting cells.
Cellul. Immunol. 209, 19-28

Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions.
J. Immunol. 168, 2255-2263
Dose-dependent immunomodulatory effects of Acetylsalicylic acid and Indomethacin in human whole blood: potential role of cyclooxygenase-2 inhibition.
Scand. J. Immunol. 60, 412-420

Prostaglandin synthase 2.
Biochim. Biophys. Acta 1299, 125

Cytokine gene expression in murine epidermal cell suspensions: interleukin 1 beta and macrophage inflammatory protein 1 alpha are selectively expressed in Langerhans cells but are differentially regulated in culture.
J. Clin. Invest. 176, 1221-1226

Aspirin differentially regulates endotoxin-induced IL-12 and TNF-alpha production in human dendritic cells.
Scand. J. Rheumatol. 30, 346-352

Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte-macrophage colony stimulating factor.
J. exp. Med. 176, 1693
The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro.
J. exp. Med. 180, 1849-1860

Analgesic-antipyretic and antiinflammatory agents and drugs employed in the treatment of gout.
New York, pp 617-643

Antigen presentation to naive CD4 Tcells in the lymph node.
Nat. Immunol. 4, 733-739

A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells.
J. Immunol. 163, 1409-1419

JANEWAY, C. A. und P. TRAVERS (1997)
Die humorale Immunantwort.
In: C. A. JANEWAY und P. TRAVERS: Immunologie.
JÓZEFSWIKI, S., M. BOBEK und J. MARCINKIEWICZ (2002)
Exogenous but not endogenous prostanoids regulate cytokine secretion from murine bone marrow dendritic cells: EP₂, DP, and IP but not EP₁, EP₃, and FP prostanoid receptors are involved.
Int. Immunopharmacol. 3, 865-878

Prostanoids in the cutaneous immune response.
J. Dermatol. Sci. 34, 177-184

Prostaglandin E₂-EP₄ signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells.
Nature Med. 9, 744-749

KAISHO, P. und S. AKIRA (2001)
Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice.
Trends in Immunol. 22, 78-83

KATZ, S. I., K. TAMAKI und D. H. SACHS (1979)
Epidermal Langerhans cells are derived from cells originating in bone marrow.
Nature 282, 324-6

Supression of NF-KappaB activation and NF-KappaB dependent gene expression by tepoxalin, a dual inhibitor of cyclooxygenase and 5-lipoxygenase.
J. Cell Biochem. 57, 299-310
Dexamethasone inhibition of interleukin 1 beta production by human monocytes.
Posttranscriptional mechanisms.
J. Clin. Invest. 81, 237-244

Pharmakologie der Entzündung und Allergie.
Enke, Stuttgart, pp 318-344

KIMBER, I., M. CUMBERBATCH, R. J. DEARMEN, M. BHUSHAN und C. E. GRIFFITHS (2000)
Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilisation.
Br. J. Dermatol. 142, 401-412

Allergic contact dermatitis: the cellular effectors.
Contact dermatitis 46, 1-5

effects of tepoxalin, a dual inhibitor of cyclooxygenase/5-lipoxygenase, on events associated with NSAID-induced gastrointestinal inflammation.
Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating langerhans cells.
Immunity 22, 643-654

Quantitative Zymography: detection of picogram quantities of gelatinases.
Anal. Biochem. 218, 325-329

KOBAYASHI, Y. (1997)
Langerhans cells produce type IV collagenase (MMP-9) following epicutaneous stimulation with haptens.
Immunology 90, 496-501

Possible involvement of matrix metalloproteinase-9 in langerhans cell migration and maturation.
J. Immunology 163, 5989-5993

KOPP, E. und S. GOSH (1994)
Inhibition of NF-KappaB by sodium salicylate and aspirin.
Science 265, 956-959

Contact dermatitis I. Pathophysiology of contact sensitivity.
Eur. J. Immunol. 9, 65-77
Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone.

LAMBRECHT, B. N. (2001)
Allergen uptake and presentation by dendritic cells.
Allergy and Clin. Immunol. **1**, 51-59

LANZAVECCHIA, A. und F. SALLUSTO (2000)
Dynamics of T-lymphocyte responses: intermediates, effectors and memory cells.
Science **290**, 92-97

Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells.
J. Immunol. **152**, 5208-5219

LEBRE, M. C., P. KALINSKI, P. K. DAS und V. EVERTS (1999)
Inhibition of contact sensitizer-induced migration of human Langerhans cells by matrix metalloproteinase inhibitors.

LEE, J. und G. J. BURCKART (1998)
Nuclear Factor Kappa B: important transcription factor and therapeutic target.
Corticosteroid atrophy in human skin. A study by light, scanning, and transmission electron microscopy.
J. Invest. Dermatol. 81, 169-176

Benzoic acid 2-hydroxylase, a soluble oxygenase from tabacco, catalyzes salicylic acid biosynthesis.

LEPOITTEVIN, J. P. und I. LEBLOND (1997)
Hapten-peptide-T cell receptor interactions: molecular basis for the recognition of haptens by T lymphocytes.
Eur. J. Dermatol. 7, 151-154

LIU, Y. (2001)
Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity.
Cell 106, 259-262

Effects of the anti-inflammatory peptide (antiflammin 2) on cell influx, eicosanoid biosynthesis and oedema formation by arachidonic acid and tetradecanoyl phorbol dermal application.
Biochem. Pharmacol. 31, 347-353

LUBACH, D. und M. KIETZMANN (1992)
Pharmakologie der Glukokortikoide.
Kohlhammer, Stuttgart, pp 15-37
Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC subsets.
Blood 100, 1362-1372

An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow.
J. Immunol. Meth. 223, 77-92

Lipopolysaccharide-mediated transcriptional activation of human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor Kappa B binding sites.
J. exp. Med. 174, 1517-1526

MASFERRER, J. L., B. S. ZWEIFEL, K. SEIBERT und P. NEEDLEMAN (1990)
Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice.
J. Clin. Invest. 86, 1375-1379

Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells.
J. Leuk. Biol. 66, 909-914
Cyclooxygenase-independent inhibition of dendritic cell maturation by aspirin.
Immunol. 101, 53-60

Differential effects of corticosteroids during different stages of dendritic cell maturation.

Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases.
J. Neuroimmunol. 69, 141-149

Decreased L-12 production and Th1 cell development by acetyl salicylic acid-mediated inhibition of NF-KappaB.
Eur. J. Pharmacol. 28, 3205-3213

Pimecrolimus does not effect Langerhans cells in murine epidermis.
Br. J. Dermatol. 149, 853-857

Langerhans cells renew in the skin throughout life under steady-state conditions.
Nature 23, 1135-1141
Effects of Cyclooxygenase and Lipoxygenase Inhibitors on inflammation associated with Oxazolone-induced delayed hypersensitivity.
Biochem. Pharmacol. 37, 3511-3514

Sodium salicylate inhibits cyclooxygenase-2-activity independently of transcription factor (nuclear factor kappaB) activation: role of arachidonic acid.
Mol. Pharmacol. 51, 907-912

Glucocorticoids down-regulate dendritic cell function in vitro and in vivo.
Eur. J. Immunol. 25, 2818-2824

Aspirin inhibits tumor cell invasiveness induced by Epstein-Barr virus latent membrane protein 1 through suppression of matrix metalloproteinase-9 expression.
Cancer Res. 60, 2555-2561

MUSKATELLIO, K. (1962)
Adenosintriphasphatase activity in neural elements of human epidermis.
Exp. Cell. Res. 448-51

NEEDS, C. J. und P. M. BROOKS (1985)
Clinical pharmacokinetics of the salicylates.
Clin. Pharmacokin. 10, 164-177
NOWACK, H., P. ZEILLER und K. STECK (1987)
Plasmaspiegel und Gewebekonzentration beim Kaninchen nach kutaner Applikation einer Indomethacin-Lösung.
Arzneim. Forsch./ Drug Res. 37, 432-434

CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions.
Immunity 21, 279-288

An improved isolation method for murine migratory cutaneous dendritic cells.
J. Immunol. Meth. 193, 71-79

IgE production by normal human B cells induced by alloreactive T cell clones is mediated by IL-4 and suppressed by IFN-gamma.
J. Immunol. 141, 1218-1224

Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells.
J. Immunol. 150, 1122-1136

136
Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecules expression and neutrophil transmigration.
J. Immunol. 156, 3961-3969

Total IgE antibody production in BALB/c mice after dermal exposure to chemicals.
Fund. Appl. Toxicol. 26, 127-135

Pseudomonas aeruginosa lipopolysaccharide induction of keratinocyte proliferation, NF-KappaB, and Cyclin D1 is inhibited by Indometacin.
J. Immunol. 174, 2964-2973

PUIGNERO, V. und J. QUERALT (1997)
Effect of topically applied Cyclooxygenase-2-selective inhibitors on Arachidonic Acid- and Tetradecanoylphorbol Acetate-induced dermal inflammation in the mouse.
Inflammation 21, 431-442

PULENDRAN, B., E. MARASKOEAU und C. R. MALISZEWSKI (2001)
Modulating the immune response with dendritic cells and their growth factors.
Trends in Immunol. 22, 41-47

The CD16+ (Fc gamma RIII) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting.
J. exp. Med. 196, 517-27
Comparative evaluation of arachidonic acid (AA)- and tetradecanoylphorbol acetate (TPA)-induced dermal inflammation.
Inflammation _17_, 723-741

Matrix Metalloproteinase 9 and 2 are necessary for the migration of Langerhans Cells and dermal cells from human and murine skin.
J. Immunol. _168_, 4361-4371

RAY, A. und K. E. PREFONTAINE (1994)
Physical association and functional antagonism between p65 subunit of transcription of NF-kB and the glucocorticoid receptor.
Proc. Natl. Acad. Sci. USA _91_, 752-756

Cytokine-modulating activity of tepoxalin, a new potential antirheumatic.
Int. Immunopharmacol. _17_, 805-812

ROMAGNANI, S. (1994)
Lymphokine production by human T cells in disease states.

Proliferating dendritic cell progenitors in human blood.
J. exp. Med. _180_, 83-93
Langerhans cells - dendritic cells of the epidermis.
APMIS 111, 725-40

ROTH, G. J. und D. C. CALVERLEY (1994)
Aspirin, platelets and thrombosis: theory and practice.
Blood 83, 885-898

Bacteria-based intradermal vaccination is inefficient due to the induction of a potent inflammatory response that impedes DC differentiation and migration.
J. exp. Med. 198, 1253-63

Anatomical origin of Dendritic cells determines their life span in peripheral lymph nodes.
J. Immunol. 165, 4910-4916

SALLUSTO, F. und A. LANZAVECCHIA (1994)
Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/ macrophage colony stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.
J. exp. Med. 179, 1109-18

SALLUSTO, F. und A. LANZAVECCHIA (2001)
Exploring pathways for memory T cell generation.
Prostaglandin E$_2$ is a key factor for CCR 7 surface expression and migration of monocyte-derived dendritic cells.
Blood **100**, 1354-1361

Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids.
Science **270**, 283-286

SCHULER, G. und R. M. STEINMANN (1985)
Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro.
J. exp. Med. **161**, 526-546

In vivo effects of interleukin-10 on contact hypersensitivity and delayed-type hypersensitivity reactions.
Invest. Dermatol. **103**, 211-216

SCHWARZENBERGER, K. und M. C. UDEY (1996)
Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ.
J. Invest. Dermatol. **106**, 553

Dendritic cells in allergy.
Burnet oration: dendritic cells: multiple suptypes, multiple origins, multiple functions.

Old, new, and emerging therapies for atopic dermatitis.

SILBERBERG, I., R. L. BEAR und S. A. ROSENTHAL (1976)
The role of Langerhans cells in allergic contact hypersensitivity. A review of findings in man and guinea pigs.
J. Invest. Dermatol. 66, 210-217

The effects of dexamethasone, cyclosporine, and Vitamin D(3) on the activation of dendritic cells stimulated by haptens.

SIXT, M., N. KANAZAWA, M. SELG, T. SAMSON, G. ROOS, D. P. REINHARDT, R.
PABST, M. B. LUTZ und L. SOROKIN (2005)
The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T-cell area to the lymph node.
Immunity 22, 19-29

Mechanism of neutrophil accumulation in the skin and inflammatory dermatosis.
Eur. J. Dermatol. 3, 527-30
STEINMANN, R. M. und Z. A. COHN (1973)
Identification of novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution.
J. exp. Med. 139, 380-97

Dendritic cells: antigen presentation, accessory function and clinical relevance.

Some interfaces of dendritic cell biology.
APMIS 111, 675-97

Immunologic functions of la-bearing epidermal Langerhans cells.
J. Immunol. 121, 2005-13

Visualization and characterisation of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207.
J. Invest. Dermatol. 120, 266-274

Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation.
J. Invest. Dermatol. 125, 116-125
STRICKER, S. (1876)
Über Resultate der Behandlung der Polyarthritis rheumatica mit Salicylsäure.
Wochenschr. 8, 99-103

A skin homing molecule defines the Langerhans cell progenitor in human peripheral blood.
J. exp. Med. 185, 1131-1136

Pharmacological comparisons of the immune and non-immune inflammations induced by Picryl Chloride and Oxazolone in mice.
Arch. Int. Pharmacodyn. 269, 153-166

TEGEDER, I., J. PFEILSCHIFTER und G. GEISSLINGER (2001)
Cyclooxygenase-independent actions of cyclooxygenase inhibitors.
FASEB J. 15, 2057-2072

THOMAS, R. und P. E. LIPSKY (1996)
Dendritic cells: Origin and Differentiation.
Stem Cells 14, 196-206

Pharmaka zur Beeinflussung von Entzündungen.
Blackwell Verlag GmbH, Berlin, pp 320-359
VANE, J. R. (1971)
Inhibition of prostaglandin synthesis as a mechanism of action for Aspirin-like drugs.
Nat. New Biol. 231, 232-235

WAAGE, A. und O. BAKKE (1988)
Glucocorticoids suppress the production of tumor necrosis factor by lipopolysaccaride-stimulated human monocytes.
Immunol. 63, 299-302

Comparison of the ulcerogenic properties of tepoxalin with those of non-steroidal anti-inflammatory drugs (NSAIDs).
Agents Actions. 34, 247-50

Effect of high-dose methylprednisolone administration on immune functions in multiple sclerosis patients.
Acta Neurol. Scand. 97, 359-365

WHITTLE, B. J. R. (1977)
Mechanisms underlying gastric mucosal damage induced by indomethacin and bile-salts, and the actions of prostaglandins.
Br. J. Dermatol. 60, 455-460

Inhibition of eicosanoid release from synovial organ culture by incubation with tepoxalin and its acid metabolite.
Prostaglandins 52, 327-338
WOLFF, K. (1963)
Histologische Beobachtungen an der normalen menschlichen Haut bei der Durchführung fermenthistochemischer Untersuchungen mit Adenosintriphosphat als Substrat.

The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells.

Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells.
EMBO J. **15**, 4682-4690

T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukin (II) 4/II-10-producing (Th2) negative regulatory CD4+ T cells.
J. exp. Med. **183**, 1001-1012

The anti-inflammatory agents aspirin and salicylate inhibit the activity of I Kappa B Kinase- Beta.
Nature **396**, 77-80
Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and -independent mechanisms.
J. Immunol. 161, 3071-3076

Tepoxalin, a novel immunosuppressive agent with a different mechanism of action from cyclosporine A.
J. Immunol. 153, 5026-5037

ZINKERNAGEL, R. M. (1996)
Immunology taught by viruses.
Science 271, 173-178
9 Anhang

9.1 Anhangstabellen

Tab. 9-1 (a, b) Einfluss der Testsubstanzen in vitro auf die Vitalität der DC

Vitalitätswerte der DC nach Inkubation der Zellen mit den Testsubstanzen und LPS-Stimulation. In Tabelle 9-1a sind die Werte der mit ASS, Indometacin (Indo.) und Diflorasondiacetat (Diflo.) behandelten DC aufgeführt. n=8

In Tabelle 9-1b sind die Vitalitätswerte der DC nach Inkubation mit Tepoxalin (Tep.) aufgeführt; n=6

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>LPS</th>
<th>ASS 0,5 mmol/l</th>
<th>ASS 1 mmol/l</th>
<th>ASS 2,5 mmol/l</th>
<th>ASS 5 mmol/l</th>
<th>Indo 0,1 µmol/l</th>
<th>Indo 0,5 µmol/l</th>
<th>Indo 5 µmol/l</th>
<th>Diflo 2 nmol/l</th>
<th>Diflo 20 nmol/l</th>
<th>Diflo 200 nmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>1293</td>
<td>1450</td>
<td>1424</td>
<td>1416</td>
<td>1359</td>
<td>1309</td>
<td>1399</td>
<td>1399</td>
<td>1268</td>
<td>1284</td>
<td>1323</td>
<td>1369</td>
</tr>
<tr>
<td></td>
<td>1493</td>
<td>1396</td>
<td>1372</td>
<td>1425</td>
<td>1319</td>
<td>1355</td>
<td>1257</td>
<td>1327</td>
<td>1268</td>
<td>1284</td>
<td>1323</td>
<td>1369</td>
</tr>
<tr>
<td></td>
<td>1419</td>
<td>1289</td>
<td>1253</td>
<td>1283</td>
<td>1362</td>
<td>1302</td>
<td>1364</td>
<td>1311</td>
<td>904</td>
<td>972</td>
<td>1117</td>
<td>1088</td>
</tr>
<tr>
<td></td>
<td>1361</td>
<td>1398</td>
<td>1327</td>
<td>1404</td>
<td>1401</td>
<td>1373</td>
<td>1404</td>
<td>1442</td>
<td>1385</td>
<td>1398</td>
<td>1327</td>
<td>1404</td>
</tr>
<tr>
<td></td>
<td>1280</td>
<td>1422</td>
<td>1456</td>
<td>1400</td>
<td>1450</td>
<td>1371</td>
<td>1451</td>
<td></td>
<td>1390</td>
<td>1134</td>
<td>1365</td>
<td>1359</td>
</tr>
<tr>
<td></td>
<td>1232</td>
<td>1139</td>
<td>944</td>
<td>1178</td>
<td>1154</td>
<td>1226</td>
<td>1146</td>
<td>1074</td>
<td>1210</td>
<td>1192</td>
<td>1238</td>
<td>1168</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Kontrolle</td>
<td>841</td>
<td>978</td>
<td>1064</td>
<td>940</td>
<td>973</td>
<td>889</td>
<td></td>
<td>864</td>
<td>991</td>
<td>874</td>
<td>862</td>
</tr>
<tr>
<td></td>
<td>LPS</td>
<td>864</td>
<td>991</td>
<td>874</td>
<td>862</td>
<td>917</td>
<td>893</td>
<td></td>
<td>613</td>
<td>657</td>
<td>803</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>Tep. 0,1 µmol/l</td>
<td>613</td>
<td>657</td>
<td>803</td>
<td>631</td>
<td>826</td>
<td>651</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tep. 1 µmol/l</td>
<td>665</td>
<td>797</td>
<td>1429</td>
<td>1094</td>
<td>1247</td>
<td>1303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tep. 5 µmol/l</td>
<td>919</td>
<td>1054</td>
<td>934</td>
<td>1065</td>
<td>903</td>
<td>850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tep. 10 µmol/l</td>
<td>915</td>
<td>923</td>
<td>838</td>
<td>1015</td>
<td>900</td>
<td>724</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 9-2 (a-c) Wirkung der Testsubstanzen *in vitro* auf die TNF-α-Sekretion [pg/ml] der DC

TNF-α-Sekretion der DC nach Inkubation mit den Testsubstanzen ASS, Indometacin, Diflorasondiacetat und anschließender LPS-Stimulation. Der Versuch wurde dreimal durchgeführt. n=6

a.

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>97.72</th>
<th>81.24</th>
<th>91.12</th>
<th>101.01</th>
<th>84.533</th>
<th>101.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>737.35</td>
<td>800.00</td>
<td>687.90</td>
<td>694.50</td>
<td>605.47</td>
<td>701.10</td>
</tr>
<tr>
<td>ASS 0,5 mmol/l</td>
<td>549.41</td>
<td>664.81</td>
<td>747.24</td>
<td>727</td>
<td>773.62</td>
<td>691.12</td>
</tr>
<tr>
<td>ASS 1 mmol/l</td>
<td>615.36</td>
<td>516.44</td>
<td>519.75</td>
<td>710.98</td>
<td>572.50</td>
<td>776.91</td>
</tr>
<tr>
<td>ASS 2,5 mmol/l</td>
<td>539.53</td>
<td>605.47</td>
<td>572.50</td>
<td>503.26</td>
<td>641.73</td>
<td>645.03</td>
</tr>
<tr>
<td>ASS 5 mmol/l</td>
<td>246.09</td>
<td>272.47</td>
<td>275.77</td>
<td>460.40</td>
<td>348.30</td>
<td>302.14</td>
</tr>
<tr>
<td>Indo. 0,1 µmol/l</td>
<td>628,54</td>
<td>615,36</td>
<td>523,04</td>
<td>602,17</td>
<td>694,49</td>
<td>740,64</td>
</tr>
<tr>
<td>Indo. 0,5 µmol/l</td>
<td>565.90</td>
<td>654.92</td>
<td>582.40</td>
<td>638.44</td>
<td>664.81</td>
<td>707.67</td>
</tr>
<tr>
<td>Indo. 5 µmol/l</td>
<td>635.14</td>
<td>645.03</td>
<td>661.51</td>
<td>654.92</td>
<td>635.14</td>
<td>585.68</td>
</tr>
<tr>
<td>Diflo. 2 nmol/l</td>
<td>579,09</td>
<td>641,73</td>
<td>582,39</td>
<td>608,76</td>
<td>575,79</td>
<td>658,22</td>
</tr>
<tr>
<td>Diflo. 20 nmol/l</td>
<td>493,36</td>
<td>397,75</td>
<td>476,88</td>
<td>513,15</td>
<td>424,13</td>
<td>463,69</td>
</tr>
<tr>
<td>Diflo. 200 nmol/l</td>
<td>315,32</td>
<td>341,70</td>
<td>275,76</td>
<td>252,68</td>
<td>282,35</td>
<td>302,13</td>
</tr>
</tbody>
</table>

b.

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>81,16</th>
<th>69,64</th>
<th>157,97</th>
<th>155,41</th>
<th>146,45</th>
<th>179,73</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>646,96</td>
<td>786,49</td>
<td>810,81</td>
<td>159,25</td>
<td>1082,19</td>
<td>918,34</td>
</tr>
<tr>
<td>ASS 0,5 mmol/l</td>
<td>434,47</td>
<td>488,23</td>
<td>730,17</td>
<td>776,25</td>
<td>655,92</td>
<td>620,08</td>
</tr>
<tr>
<td>ASS 1 mmol/l</td>
<td>785,21</td>
<td>699,44</td>
<td>634,16</td>
<td>483,11</td>
<td>606,00</td>
<td>433,19</td>
</tr>
<tr>
<td>ASS 2,5 mmol/l</td>
<td>643,12</td>
<td>531,75</td>
<td>559,92</td>
<td>526,63</td>
<td>452,39</td>
<td>462,63</td>
</tr>
<tr>
<td>ASS 5 mmol/l</td>
<td>585,52</td>
<td>466,47</td>
<td>389,66</td>
<td>557,36</td>
<td>614,96</td>
<td>702,00</td>
</tr>
<tr>
<td>Indo 0,1 µmol/l</td>
<td>712,25</td>
<td>842,81</td>
<td>1002,82</td>
<td>876,10</td>
<td>749,37</td>
<td>798,01</td>
</tr>
<tr>
<td>Indo 0,5 µmol/l</td>
<td>855,61</td>
<td>769,85</td>
<td>562,48</td>
<td>914,50</td>
<td>602,16</td>
<td>580,40</td>
</tr>
<tr>
<td>Indo 5 µmol/l</td>
<td>877,38</td>
<td>708,41</td>
<td>737,85</td>
<td>586,80</td>
<td>813,37</td>
<td>716,09</td>
</tr>
<tr>
<td>Diflo 2 nmol/l</td>
<td>620,08</td>
<td>476,71</td>
<td>557,36</td>
<td>545,83</td>
<td>650,80</td>
<td>687,92</td>
</tr>
<tr>
<td>Diflo 20 nmol/l</td>
<td>349,98</td>
<td>504,87</td>
<td>403,75</td>
<td>440,87</td>
<td>277,02</td>
<td>602,16</td>
</tr>
<tr>
<td>Diflo 200 nmol/l</td>
<td>259,10</td>
<td>275,74</td>
<td>627,76</td>
<td>387,10</td>
<td>448,55</td>
<td>518,95</td>
</tr>
</tbody>
</table>
Tab. 9-3 (a-c) Wirkung von Tepoxalin in vitro auf die TNF-α-Sekretion [pg/ml] der DC

TNF-α-Konzentration der DC nach Inkubation mit Tepoxalin und anschließender LPS-Stimulation. Der Versuch wurde dreimal durchgeführt. n=6

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>LPS</th>
<th>ASS 0,5 mmol/l</th>
<th>ASS 1 mmol/l</th>
<th>ASS 2,5 mmol/l</th>
<th>ASS 5 mmol/l</th>
<th>Indo 0,1 μmol/l</th>
<th>Indo 0,5 μmol/l</th>
<th>Indo 5 μmol/l</th>
<th>Diflo 2 nmol/l</th>
<th>Diflo 20 nmol/l</th>
<th>Diflo 200 nmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>111,24</td>
<td>174,75</td>
<td>176,38</td>
<td>194,29</td>
<td>160,09</td>
<td>163,35</td>
<td>1011,75</td>
<td>1286,95</td>
<td>845,65</td>
<td>1089,91</td>
<td>1298,35</td>
<td>1273,92</td>
</tr>
<tr>
<td>ASS 0,5 mmol/l</td>
<td>1102,94</td>
<td>1441,64</td>
<td>1212,04</td>
<td>1078,51</td>
<td>1221,81</td>
<td>1187,61</td>
<td>10102,94</td>
<td>1441,64</td>
<td>1212,04</td>
<td>1078,51</td>
<td>1221,81</td>
<td>1187,61</td>
</tr>
<tr>
<td>ASS 1 mmol/l</td>
<td>1060,60</td>
<td>1037,80</td>
<td>876,59</td>
<td>813,08</td>
<td>998,72</td>
<td>1128,99</td>
<td>106060</td>
<td>1037,80</td>
<td>876,59</td>
<td>813,08</td>
<td>998,72</td>
<td>1128,99</td>
</tr>
<tr>
<td>ASS 2,5 mmol/l</td>
<td>1086,65</td>
<td>1169,70</td>
<td>1146,90</td>
<td>1028,03</td>
<td>1179,47</td>
<td>1254,38</td>
<td>108665</td>
<td>1169,70</td>
<td>1146,90</td>
<td>1028,03</td>
<td>1179,47</td>
<td>1254,38</td>
</tr>
<tr>
<td>ASS 5 mmol/l</td>
<td>448,32</td>
<td>430,41</td>
<td>422,27</td>
<td>482,52</td>
<td>335,96</td>
<td>487,40</td>
<td>44832</td>
<td>430,41</td>
<td>422,27</td>
<td>482,52</td>
<td>335,96</td>
<td>487,40</td>
</tr>
<tr>
<td>Indo 0,1 μmol/l</td>
<td>871,70</td>
<td>1050,83</td>
<td>985,69</td>
<td>1151,79</td>
<td>840,77</td>
<td>912,41</td>
<td>87170</td>
<td>1050,83</td>
<td>985,69</td>
<td>1151,79</td>
<td>840,77</td>
<td>912,41</td>
</tr>
<tr>
<td>Indo 0,5 μmol/l</td>
<td>493,92</td>
<td>1098,28</td>
<td>1039,43</td>
<td>1303,23</td>
<td>1272,29</td>
<td>1466,07</td>
<td>49392</td>
<td>1098,28</td>
<td>1039,43</td>
<td>1303,23</td>
<td>1272,29</td>
<td>1466,07</td>
</tr>
<tr>
<td>Indo 5 μmol/l</td>
<td>857,05</td>
<td>938,47</td>
<td>1083,40</td>
<td>1389,54</td>
<td>1146,90</td>
<td>940,10</td>
<td>85705</td>
<td>938,47</td>
<td>1083,40</td>
<td>1389,54</td>
<td>1146,90</td>
<td>940,10</td>
</tr>
<tr>
<td>Diflo 2 nmol/l</td>
<td>806,57</td>
<td>997,09</td>
<td>752,83</td>
<td>1023,15</td>
<td>751,20</td>
<td>772,37</td>
<td>80657</td>
<td>997,09</td>
<td>752,83</td>
<td>1023,15</td>
<td>751,20</td>
<td>772,37</td>
</tr>
<tr>
<td>Diflo 20 nmol/l</td>
<td>554,17</td>
<td>521,60</td>
<td>627,44</td>
<td>635,99</td>
<td>633,96</td>
<td>640,47</td>
<td>55417</td>
<td>521,60</td>
<td>627,44</td>
<td>635,99</td>
<td>633,96</td>
<td>640,47</td>
</tr>
<tr>
<td>Diflo 200 nmol/l</td>
<td>461,35</td>
<td>583,48</td>
<td>492,29</td>
<td>401,10</td>
<td>428,78</td>
<td>586,73</td>
<td>46135</td>
<td>583,48</td>
<td>492,29</td>
<td>401,10</td>
<td>428,78</td>
<td>586,73</td>
</tr>
</tbody>
</table>
Tab. 9-4 (a-c) Wirkung der Testsubstanzen *in vitro* auf die PGE$_2$-Sekretion [pg/ml] der DC

Einzelwerte der PGE$_2$-Konzentration in den Zellkulturüberständen nach Behandlung der DC mit ASS, Indometacin und Diflorasondiacetat und anschließender LPS-Stimulation. Der Versuchsansatz wurde insgesamt dreimal durchgeführt. n=6

a.

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>LPS 160,00</th>
<th>ASS 0,5 mmol/l</th>
<th>ASS 1 mmol/l</th>
<th>ASS 2,5 mmol/l</th>
<th>ASS 5 mmol/l</th>
<th>Indo 0,1 µmol/l</th>
<th>Indo 0,5 µmol/l</th>
<th>Indo 5 µmol/l</th>
<th>Diflo 2 nmol/l</th>
<th>Diflo 20 nmol/l</th>
<th>Diflo 200 nmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>160,00</td>
<td>146,70</td>
<td>126,05</td>
<td>124,24</td>
<td>102,12</td>
<td>168,33</td>
<td>64,27</td>
<td>65,27</td>
<td>29,47</td>
<td>60,89</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>LPS 1664,47</td>
<td>893,73</td>
<td>984,77</td>
<td>1681,81</td>
<td>1546,41</td>
<td>1256,87</td>
<td>49,14</td>
<td>80,06</td>
<td>31,44</td>
<td>58,55</td>
<td>39,24</td>
<td>1337,90</td>
<td>393,12</td>
</tr>
<tr>
<td>ASS 0,5 mmol/l</td>
<td>75,41</td>
<td>89,49</td>
<td>114,72</td>
<td>102,87</td>
<td>99,18</td>
<td>84,97</td>
<td>64,27</td>
<td>65,27</td>
<td>29,47</td>
<td>60,89</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>ASS 1 mmol/l</td>
<td>59,48</td>
<td>72,62</td>
<td>64,77</td>
<td>40,60</td>
<td>22,16</td>
<td>94,91</td>
<td>64,27</td>
<td>65,27</td>
<td>29,47</td>
<td>60,89</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>ASS 2,5 mmol/l</td>
<td>115,56</td>
<td>74,28</td>
<td>58,55</td>
<td>79,47</td>
<td>88,18</td>
<td>86,88</td>
<td>64,27</td>
<td>65,27</td>
<td>29,47</td>
<td>60,89</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>ASS 5 mmol/l</td>
<td>51,58</td>
<td>88,84</td>
<td>60,89</td>
<td>74,85</td>
<td>67,82</td>
<td>62,32</td>
<td>64,27</td>
<td>65,27</td>
<td>29,47</td>
<td>60,89</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>Indo 0,1 µmol/l</td>
<td>64,27</td>
<td>65,27</td>
<td>29,47</td>
<td>35,34</td>
<td>53,68</td>
<td>70,99</td>
<td>64,27</td>
<td>65,27</td>
<td>29,47</td>
<td>60,89</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>Indo 0,5 µmol/l</td>
<td>36,93</td>
<td>20,80</td>
<td>43,07</td>
<td>75,98</td>
<td>60,88</td>
<td>47,56</td>
<td>36,93</td>
<td>20,80</td>
<td>43,07</td>
<td>75,98</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>Indo 5 µmol/l</td>
<td>49,14</td>
<td>80,06</td>
<td>31,44</td>
<td>58,55</td>
<td>39,24</td>
<td>41,64</td>
<td>49,14</td>
<td>80,06</td>
<td>31,44</td>
<td>58,55</td>
<td>1065,02</td>
<td>505,54</td>
</tr>
<tr>
<td>Diflo 2 nmol/l</td>
<td>953,01</td>
<td>1065,02</td>
<td>1922,41</td>
<td>1197,18</td>
<td>1337,90</td>
<td>1029,51</td>
<td>953,01</td>
<td>1065,02</td>
<td>1922,41</td>
<td>1197,18</td>
<td>1337,90</td>
<td>1029,51</td>
</tr>
<tr>
<td>Diflo 200 nmol/l</td>
<td>505,54</td>
<td>577,21</td>
<td>416,30</td>
<td>371,51</td>
<td>393,12</td>
<td>412,89</td>
<td>505,54</td>
<td>577,21</td>
<td>416,30</td>
<td>371,51</td>
<td>1337,90</td>
<td>1029,51</td>
</tr>
</tbody>
</table>
b. Kontrolle 19,16 25,25 16,94 8,38 15,86 24,93
LPS 386,34 530,26 647,02 17,48 957,23 554,83
ASS 0,5 mmol/l 19,74 3,84 3,62 15,34 25,90 23,03
ASS 1 mmol/l 16,13 31,06 18,32 17,21 14,82 29,64
ASS 2,5 mmol/l 39,96 22,72 20,91 27,91 24,61 27,57
ASS 5 mmol/l 7,50 19,74 13,80 18,32 21,81 27,91
Indo 0,1 µmol/l 23,03 7,07 21,21 9,96 15,86 22,42
Indo 0,5 µmol/l 18,60 9,96 19,74 5,36 20,03 10,88
Indo 5 µmol/l 17,21 17,48 8,38 13,05 14,56 19,45
Diflo 2 nmol/l 608,11 554,83 510,73 802,70 492,04 764,43
Diflo 20 nmol/l 43,37 69,50 38,73 43,37 81,52 87,01
Diflo 200 nmol/l 45,59 60,41 42,93 56,18 41,22 32,15

c. Kontrolle 14,36 0 18,54 8,59 12,74 20,09
LPS 341,06 369,07 189,04 209,90 257,64 257,64
ASS 0,5 mmol/l 40,30 67,72 25,32 14,89 35,12 25,32
ASS 1 mmol/l 46,94 47,56 46,94 31,78 26,38 56,58
ASS 2,5 mmol/l 51,35 50,07 183,41 49,44 100,13 50,07
ASS 5 mmol/l 68,45 81,44 82,24 62,73 78,27 57,92
Indo 0,1 µmol/l 43,27 32,33 34,56 37,40 26,38 44,48
Indo 0,5 µmol/l 34,00 0 14,36 31,23 30,14 44,48
Indo 5 µmol/l 0 14,36 39,13 36,25 24,26 25,85
Diflo 2 nmol/l 76,72 77,49 108,46 148,76 200,73 157,21
Diflo 20 nmol/l 19,06 38,55 37,97 35,69 35,12 76,72
Diflo 200 nmol/l 88,81 79,06 63,43 53,28 76,72 42,08
<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>70.75</th>
<th>916.17</th>
<th>77.31</th>
<th>98.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>3578.76</td>
<td>2079.11</td>
<td>4175.04</td>
<td>1669.49</td>
</tr>
<tr>
<td>Tep. 0,1 µmol/l</td>
<td>745.48</td>
<td>264.11</td>
<td>1100.58</td>
<td>213.87</td>
</tr>
<tr>
<td>Tep. 1 µmol/l</td>
<td>11.90</td>
<td>206.19</td>
<td>12.91</td>
<td>15.66</td>
</tr>
<tr>
<td>Tep. 5 µmol/l</td>
<td>35.89</td>
<td>29.16</td>
<td>32.18</td>
<td>16.76</td>
</tr>
<tr>
<td>Tep. 10 µmol/l</td>
<td>40.43</td>
<td>1995.49</td>
<td>168.12</td>
<td>81.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>73,70</th>
<th>67,60</th>
<th>71,21</th>
<th>68,79</th>
<th>27,63</th>
<th>86,54</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS</td>
<td>127,10</td>
<td>123,06</td>
<td>111,67</td>
<td>122,07</td>
<td>103,77</td>
<td>66,43</td>
</tr>
<tr>
<td>Tep. 0,1 µmol/l</td>
<td>134,47</td>
<td>157,93</td>
<td>233,19</td>
<td>108,09</td>
<td>137,76</td>
<td>94,81</td>
</tr>
<tr>
<td>Tep. 1 µmol/l</td>
<td>130,21</td>
<td>79,56</td>
<td>111,67</td>
<td>93,25</td>
<td>76,26</td>
<td>150,50</td>
</tr>
<tr>
<td>Tep. 5 µmol/l</td>
<td>64,14</td>
<td>61,36</td>
<td>45,24</td>
<td>125,06</td>
<td>66,43</td>
<td>149,29</td>
</tr>
<tr>
<td>Tep. 10 µmol/l</td>
<td>73,70</td>
<td>80,92</td>
<td>56,09</td>
<td>73,70</td>
<td>72,44</td>
<td>54,08</td>
</tr>
</tbody>
</table>
Tab. 9-6 Gewichte der Lnn. auriculares [mg] nach Sensibilisierung
Die regionalen Lymphknoten der behandelten Ohrscheiden wurden 24 Stunden nach der letztmaligen TDI-Applikation freipräpariert und gewogen. n=5

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Kontrolle</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch I</td>
<td>5</td>
<td>2</td>
<td>4.7</td>
<td>8.7</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>2.4</td>
<td>4.5</td>
<td>6.7</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>1.1</td>
<td>6.9</td>
<td>7</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>1.9</td>
<td>2.6</td>
<td>4.3</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>2.5</td>
<td>3.1</td>
<td>2.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Tab. 9-7 Gesamtzellzahl der regionalen Lymphknoten nach Sensibilisierung
Die Lymphknoten wurden in einem Homogenisator suspensiert und die vitalen Zellen mittels Trypanblau-Färbung ausgezählt. n=5

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Kontrolle</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch I</td>
<td>7125000</td>
<td>1200000</td>
<td>3502500</td>
<td>8692500</td>
<td>37500</td>
</tr>
<tr>
<td></td>
<td>7627500</td>
<td>1785000</td>
<td>6360000</td>
<td>7912500</td>
<td>247500</td>
</tr>
<tr>
<td></td>
<td>6067500</td>
<td>405000</td>
<td>8182500</td>
<td>6442500</td>
<td>1237500</td>
</tr>
<tr>
<td></td>
<td>7852500</td>
<td>1265000</td>
<td>2002500</td>
<td>4477500</td>
<td>2130000</td>
</tr>
<tr>
<td></td>
<td>3847500</td>
<td>1612500</td>
<td>652500</td>
<td>1132500</td>
<td>255000</td>
</tr>
</tbody>
</table>

Tab. 9-8 Gesamtanzahl CD11c⁺-Zellen in der Lymphknotenzellsuspension
Die Bestimmung der CD11c⁺-Zellen in der Lymphknotenzellsuspension erfolgte mittels FACS-Analyse. n=5

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Kontrolle</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch I</td>
<td>503025</td>
<td>48480</td>
<td>46583.25</td>
<td>565881.75</td>
<td>4008.75</td>
</tr>
<tr>
<td></td>
<td>343237.5</td>
<td>53907</td>
<td>62964</td>
<td>482662.50</td>
<td>11632.50</td>
</tr>
<tr>
<td></td>
<td>415017</td>
<td>21951</td>
<td>84279.75</td>
<td>405877.50</td>
<td>26977.50</td>
</tr>
<tr>
<td></td>
<td>346295.25</td>
<td>26518</td>
<td>84105</td>
<td>396258.75</td>
<td>52398</td>
</tr>
<tr>
<td></td>
<td>140818.5</td>
<td>73691.25</td>
<td>8221.50</td>
<td>80634</td>
<td>12189</td>
</tr>
</tbody>
</table>
Tab. 9-9 Ausgewanderte DC aus der Haut/mg Ohrgewicht in der Sensibilisierung

Die Anzahl der aus den Ohrexplantaten in das Medium migrierten Zellen wurde am dritten Tag der Gewebekultur ermittelt und ins Verhältnis der Ohrgewichte gesetzt. Die Kontrollgruppe blieb unbehandelt. n=5

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Kontrolle</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251.75</td>
<td>100.79</td>
<td>271.97</td>
<td>159.44</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>462.56</td>
<td>115.38</td>
<td>116.50</td>
<td>0</td>
<td>283.53</td>
<td></td>
</tr>
<tr>
<td>370.12</td>
<td>79.80</td>
<td>317.46</td>
<td>150</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1263.29</td>
<td>50.95</td>
<td>378.50</td>
<td>248.10</td>
<td>96.85</td>
<td></td>
</tr>
<tr>
<td>328.12</td>
<td>64.71</td>
<td>287.56</td>
<td>220.43</td>
<td>197.63</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 9-10 Grauwertdichte der MMP-9 Aktivität

Im Zymographie-Gel wurde anhand der Grauwertdichten der gelatinolytischen Banden der Einfluss der Testsubstanzen auf die MMP-9-Aktivität ermittelt. n=5

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Kontrolle</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.33</td>
<td>9.96</td>
<td>26.24</td>
<td>6.35</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>36.35</td>
<td>4.54</td>
<td>36.24</td>
<td>6.73</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>5.33</td>
<td>3.03</td>
<td>2.32</td>
<td>1.28</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>4.74</td>
<td>2.77</td>
<td>4.92</td>
<td>1.73</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>8.46</td>
<td>8.94</td>
<td>14.62</td>
<td>3.08</td>
<td>4.14</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 9-11 Einfluss der Pharmaka auf die Ohrschwellung [µm] in der Challengephase

Einzelwerte der Ohrdicken. Die erste Messung erfolgte vor Behandlung der Tiere und die zweite 16 Stunden nach TDI-Challenge bzw. 17 Stunden nach letzter Behandlung mit den Substanzen. Die Messung wurde an insgesamt 6 Ohren durchgeführt. 1.=erste Messung; 2.=zweite Messung

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst</th>
<th>Indo. top.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 2.</td>
<td>1. 2.</td>
<td>1. 2.</td>
<td>1. 2.</td>
<td>1. 2.</td>
<td>1. 2.</td>
</tr>
<tr>
<td>25 37</td>
<td>23 42</td>
<td>22 36</td>
<td>23 28</td>
<td>26 23</td>
<td></td>
</tr>
<tr>
<td>25 28</td>
<td>24 37</td>
<td>24 40</td>
<td>26 28</td>
<td>23 22</td>
<td></td>
</tr>
<tr>
<td>22 33</td>
<td>24 34</td>
<td>22 33</td>
<td>26 28</td>
<td>23 24</td>
<td></td>
</tr>
<tr>
<td>23 38</td>
<td>25 39</td>
<td>22 31</td>
<td>26 27</td>
<td>23 25</td>
<td></td>
</tr>
<tr>
<td>26 40</td>
<td>22 33</td>
<td>24 35</td>
<td>24 27</td>
<td>24 23</td>
<td></td>
</tr>
<tr>
<td>25 39</td>
<td>24 35</td>
<td>25 36</td>
<td>23 24</td>
<td>24 3</td>
<td>23</td>
</tr>
</tbody>
</table>
Tab. 9-12 Einfluss von Tepoxalin auf die TDI-induzierte Ohrschwellung [µm]

Die Tiere erhielten Tepoxalin (3 mg) topisch aufs Ohr bzw. Tepoxalin (3 mg) topisch und 50 mg/kg systemisch mittels Magenschlundsonde. n=6
1.=erste Messung; 2.=zweite Messung

<table>
<thead>
<tr>
<th>Hauptversuch III</th>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>23</td>
<td>29</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>24</td>
<td>31</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>26</td>
<td>28</td>
<td>22</td>
<td>31</td>
</tr>
</tbody>
</table>

Tab. 9-13 Einzelwerte der resorbierten Menge ASS und Salicylsäure [µmol/cm²] durch Maushaut in der Franz-Zelle

In Analogie zu den in-vivo-Versuchen wurde zweimal im Abstand von 8 Stunden ASS (gelöst in DMSO/Aceton 9:1) auf die Bauchhaut aufgetragen und die nach 17 Stunden resorbierte Menge ASS und Salicylsäure ermittelt. n=6

<table>
<thead>
<tr>
<th>Zeit h</th>
<th>Zelle 1</th>
<th>Zelle 2</th>
<th>Zelle 3</th>
<th>Zelle 4</th>
<th>Zelle 5</th>
<th>Zelle 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0375</td>
<td>0,0158</td>
<td>0,0264</td>
<td>0,0204</td>
<td>0,0214</td>
<td>0,0243</td>
</tr>
<tr>
<td>2</td>
<td>0,0546</td>
<td>0,0421</td>
<td>0,0423</td>
<td>0,0340</td>
<td>0,0282</td>
<td>0,0319</td>
</tr>
<tr>
<td>3</td>
<td>0,0749</td>
<td>0,0707</td>
<td>0,0649</td>
<td>0,0478</td>
<td>0,0362</td>
<td>0,0451</td>
</tr>
<tr>
<td>4</td>
<td>0,0941</td>
<td>0,1011</td>
<td>0,0966</td>
<td>0,0562</td>
<td>0,0447</td>
<td>0,0622</td>
</tr>
<tr>
<td>5</td>
<td>0,1108</td>
<td>0,1345</td>
<td>0,1281</td>
<td>0,0774</td>
<td>0,0536</td>
<td>0,0811</td>
</tr>
<tr>
<td>6</td>
<td>0,1244</td>
<td>0,1649</td>
<td>0,1558</td>
<td>0,0962</td>
<td>0,0626</td>
<td>0,1013</td>
</tr>
<tr>
<td>7</td>
<td>0,1458</td>
<td>0,1820</td>
<td>0,1788</td>
<td>0,1162</td>
<td>0,0728</td>
<td>0,1211</td>
</tr>
<tr>
<td>8</td>
<td>0,1529</td>
<td>0,2169</td>
<td>0,2016</td>
<td>0,1345</td>
<td>0,0796</td>
<td>0,1374</td>
</tr>
<tr>
<td>9</td>
<td>0,1797</td>
<td>0,1771</td>
<td>0,2308</td>
<td>0,1583</td>
<td>0,1059</td>
<td>0,1622</td>
</tr>
<tr>
<td>11.5</td>
<td>0,2834</td>
<td>0,3355</td>
<td>0,3119</td>
<td>0,1667</td>
<td>0,1368</td>
<td>0,2330</td>
</tr>
<tr>
<td>22</td>
<td>0,5804</td>
<td>0,7052</td>
<td>0,6058</td>
<td>0,6331</td>
<td>0,5255</td>
<td>0,5966</td>
</tr>
<tr>
<td>24</td>
<td>0,6117</td>
<td>0,7697</td>
<td>0,6496</td>
<td>0,6666</td>
<td>0,5547</td>
<td>0,6481</td>
</tr>
<tr>
<td>26</td>
<td>0,6863</td>
<td>0,8645</td>
<td>0,6939</td>
<td>0,6831</td>
<td>0,4724</td>
<td>0,7071</td>
</tr>
<tr>
<td>28</td>
<td>0,7100</td>
<td>0,8761</td>
<td>0,7743</td>
<td>0,7183</td>
<td>0,4770</td>
<td>0,7651</td>
</tr>
<tr>
<td>30</td>
<td>0,7468</td>
<td>0,9368</td>
<td>0,7824</td>
<td>0,7373</td>
<td>0,6852</td>
<td>0,8172</td>
</tr>
</tbody>
</table>
Tab. 9-14 Gewichte der Lnn. auriculares [mg]
Einzelwerte der Lymphknotengewichte aus dem Hauptversuch II im TDI-Kontaktallergiemodell. ASS, Indomethacin, Diflorasondiacetat wurde topisch aufgetragen, eine weitere Gruppe wurde systemisch mit ASS behandelt. n=6

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>2.8</td>
<td>2.9</td>
<td>3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
<td>2.9</td>
<td>3</td>
<td>2.1</td>
</tr>
<tr>
<td>2.8</td>
<td>2.8</td>
<td>1.7</td>
<td>2.3</td>
<td>1.6</td>
</tr>
<tr>
<td>3.9</td>
<td>3</td>
<td>2.8</td>
<td>3.2</td>
<td>1.5</td>
</tr>
<tr>
<td>4.4</td>
<td>2.3</td>
<td>3.5</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>2.8</td>
<td>2.6</td>
<td>1.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Hauptversuch II

Tab. 9-15 Gesamtzellzahl der regionalen Lymphknoten
Nachdem die drainierenden Lymphknoten gewogen wurden, wurden sie mittels eines Homogenisators suspendiert und die Gesamtzellzahl der Lymphknoten ermittelt.

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3735000</td>
<td>2152500</td>
<td>1830000</td>
<td>4920000</td>
<td>577500</td>
</tr>
<tr>
<td>6697500</td>
<td>5677500</td>
<td>2512500</td>
<td>1740000</td>
<td>1252500</td>
</tr>
<tr>
<td>1680000</td>
<td>2677500</td>
<td>1260000</td>
<td>1447500</td>
<td>345000</td>
</tr>
<tr>
<td>2715000</td>
<td>3585000</td>
<td>1290000</td>
<td>2002500</td>
<td>255000</td>
</tr>
<tr>
<td>3735000</td>
<td>1042500</td>
<td>2482500</td>
<td>1697500</td>
<td>352500</td>
</tr>
<tr>
<td>7267500</td>
<td>3015000</td>
<td>720000</td>
<td>840000</td>
<td>360000</td>
</tr>
</tbody>
</table>

Hauptversuch II

Tab. 9-16 Gewichte der Lymphknoten [mg] nach Behandlung mit Tepoxalin
Einfluss von Tepoxalin auf das Gewicht der regionalen Lymphknoten in der Challenge. Die Entnahme der Lymphknoten erfolgte 16 Stunden nach TDI-Gabe und 17 Stunden nach der letzten Behandlung mit Tepoxalin. n=6

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4</td>
<td>4,2</td>
<td>2,7</td>
</tr>
<tr>
<td>4,3</td>
<td>2,6</td>
<td>3,3</td>
</tr>
<tr>
<td>5,1</td>
<td>4,8</td>
<td>3,5</td>
</tr>
<tr>
<td>3,4</td>
<td>3,5</td>
<td>3,3</td>
</tr>
<tr>
<td>2,7</td>
<td>2,7</td>
<td>3,0</td>
</tr>
<tr>
<td>3,8</td>
<td>4,8</td>
<td>3,3</td>
</tr>
</tbody>
</table>

Hauptversuch III
Tab. 9-17 Gesamtzellzahl der Lymphknoten nach Behandlung mit Tepoxalin

Einzelwerte der Lymphknotengesamtzellzahl. Die Lymphknoten wurden suspansiert und die Gesamtzellzahl ermittelt. n=6

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3540000</td>
<td>4365000</td>
<td>1395000</td>
<td></td>
</tr>
<tr>
<td>2760000</td>
<td>2265000</td>
<td>2805000</td>
<td></td>
</tr>
<tr>
<td>4020000</td>
<td>2745000</td>
<td>1950000</td>
<td></td>
</tr>
<tr>
<td>2640000</td>
<td>1590000</td>
<td>1215000</td>
<td></td>
</tr>
<tr>
<td>2430000</td>
<td>2100000</td>
<td>1755000</td>
<td></td>
</tr>
<tr>
<td>3945000</td>
<td>4185000</td>
<td>1725000</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 9-18 CD11c⁺-Zellen in den regionalen Lymphknoten

Anzahl der CD11c⁺-Zellen in den regionalen Lymphknoten nach Challenge. Die Analyse wurde mittels FACS durchgeführt. Hauptversuch II; n=6

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246136,5</td>
<td>84593,25</td>
<td>36234</td>
<td>293232</td>
<td>67278,75</td>
<td></td>
</tr>
<tr>
<td>366353,25</td>
<td>291255,75</td>
<td>102007,5</td>
<td>124932</td>
<td>117735</td>
<td></td>
</tr>
<tr>
<td>178752</td>
<td>200277</td>
<td>85554</td>
<td>195123</td>
<td>24874,5</td>
<td></td>
</tr>
<tr>
<td>226431</td>
<td>132645</td>
<td>140739</td>
<td>55669,5</td>
<td>33787,5</td>
<td></td>
</tr>
<tr>
<td>197955</td>
<td>78187,5</td>
<td>149446,5</td>
<td>36200,25</td>
<td>83507,25</td>
<td></td>
</tr>
<tr>
<td>253635,75</td>
<td>112761</td>
<td>49608</td>
<td>148092</td>
<td>85932</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 9-19 Einfluss von Tepoxalin auf den Anteil CD11c⁺-Zellen

Die Suspension der regionalen Lymphknoten wurde mittels FACS-Analyse auf den Gehalt CD11c⁺-Zellen ermittelt. n=6

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148326</td>
<td>127021,5</td>
<td>39199,5</td>
<td></td>
</tr>
<tr>
<td>93840</td>
<td>81313,5</td>
<td>100918</td>
<td></td>
</tr>
<tr>
<td>176478</td>
<td>99643,5</td>
<td>91260</td>
<td></td>
</tr>
<tr>
<td>104280</td>
<td>102396</td>
<td>52366,5</td>
<td></td>
</tr>
<tr>
<td>43497</td>
<td>67620</td>
<td>83187</td>
<td></td>
</tr>
<tr>
<td>95863,5</td>
<td>154426,5</td>
<td>14662,5</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 9-20 Gesamtanzahl CD11c⁺- und CD40⁺-Zellen im Lymphknoten
Einzelwerte der aus der Haut in den Lymphknoten migrierten epidermalen und dermalen DC nach topischer Applikation der Testsubstanzen bzw. systemischer Behandlung mit ASS. n=6

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch II</td>
<td>191232</td>
<td>64790,25</td>
<td>25620</td>
<td>222384</td>
<td>61677</td>
</tr>
<tr>
<td></td>
<td>290671,5</td>
<td>214609,5</td>
<td>76631,25</td>
<td>97092</td>
<td>104082,75</td>
</tr>
<tr>
<td></td>
<td>158760</td>
<td>167076</td>
<td>69804</td>
<td>168199,5</td>
<td>22839</td>
</tr>
<tr>
<td></td>
<td>199009,5</td>
<td>100380</td>
<td>116229</td>
<td>39649,5</td>
<td>31645,5</td>
</tr>
<tr>
<td></td>
<td>167328</td>
<td>67971</td>
<td>120401,25</td>
<td>30062,25</td>
<td>79735,5</td>
</tr>
<tr>
<td></td>
<td>196949,25</td>
<td>88038</td>
<td>38592</td>
<td>138180</td>
<td>81864</td>
</tr>
</tbody>
</table>

Tab. 9-21 Einfluss von Tepoxalin auf CD11c⁺- und CD40⁺-Zellen im Lymphknoten
Einzelwerte der CD11c⁺-Zellen in den regionalen Lymphknoten. n=6

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch III</td>
<td>53109386</td>
<td>87736,5</td>
<td>26365,5</td>
</tr>
<tr>
<td></td>
<td>60996</td>
<td>55039,5</td>
<td>72369</td>
</tr>
<tr>
<td></td>
<td>116178</td>
<td>76860</td>
<td>57720</td>
</tr>
<tr>
<td></td>
<td>69696</td>
<td>88404</td>
<td>40459,5</td>
</tr>
<tr>
<td></td>
<td>27216</td>
<td>43890</td>
<td>37030,5</td>
</tr>
<tr>
<td></td>
<td>607</td>
<td>98766</td>
<td>11557,5</td>
</tr>
</tbody>
</table>

Tab. 9-22 Ausgewanderte Zellen/mg Ohrgewicht
Nach topischer Applikation von ASS (8 mg/Ohr), Indometacin (1 mg/Ohr) Diflorasondiacetat (0,05 %) und systemischer Verabreichung von ASS (150 mg/kg). n=6

<table>
<thead>
<tr>
<th></th>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptversuch II</td>
<td>1062</td>
<td>2280,50</td>
<td>337,5</td>
<td>564,81</td>
<td>89,11</td>
</tr>
<tr>
<td></td>
<td>2071,42</td>
<td>666,20</td>
<td>656,25</td>
<td>485,54</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2205</td>
<td>451,22</td>
<td>808,47</td>
<td>738,63</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1786,04</td>
<td>1570,58</td>
<td>545,53</td>
<td>522,93</td>
<td>133,80</td>
</tr>
<tr>
<td></td>
<td>897,70</td>
<td>305,69</td>
<td>216,21</td>
<td>232,14</td>
<td>44,49</td>
</tr>
<tr>
<td></td>
<td>3213,80</td>
<td>687,5</td>
<td>856,21</td>
<td>1042,10</td>
<td>153,33</td>
</tr>
</tbody>
</table>
Tab. 9-23 Ausgewanderte Zellen/mg Ohrgewicht

Nach topische Applikation (3 mg/Ohr) und kombinierter Verabreichung (topisch (3mg/Ohr) und oral (50 mg/kg)) von Tepoxalin n=6

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>3451.23</td>
<td>1626.66</td>
<td>857.14</td>
</tr>
<tr>
<td>946.22</td>
<td>1111.46</td>
<td>924.06</td>
</tr>
<tr>
<td>7016.94</td>
<td>917.47</td>
<td>552.27</td>
</tr>
<tr>
<td>3677.96</td>
<td>1003.17</td>
<td>269.23</td>
</tr>
<tr>
<td>962.79</td>
<td>686</td>
<td>637.35</td>
</tr>
<tr>
<td>1388.71</td>
<td>590.625</td>
<td>577.22</td>
</tr>
</tbody>
</table>

Abbildung 9-24 MMP-9 Aktivität Hauptversuch II

Einzelwerte der Grauwertdichten der gelatinolytischen MMP-9 Banden. n=6

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Diflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.32</td>
<td>10.74</td>
<td>0.47</td>
<td>9.12</td>
<td>0.86</td>
</tr>
<tr>
<td>19.46</td>
<td>7.55</td>
<td>1.94</td>
<td>4.54</td>
<td>1.09</td>
</tr>
<tr>
<td>2.34</td>
<td>4.44</td>
<td>0.84</td>
<td>0.74</td>
<td>0.30</td>
</tr>
<tr>
<td>1.94</td>
<td>2.45</td>
<td>0.62</td>
<td>0.78</td>
<td>0.68</td>
</tr>
<tr>
<td>7.92</td>
<td>3.26</td>
<td>0.5</td>
<td>3.63</td>
<td>1.24</td>
</tr>
<tr>
<td>5.4</td>
<td>3.32</td>
<td>0.01</td>
<td>8.35</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Abbildung 9-25 MMP-9 Aktivität Hauptversuch III

Grauwertdichten der MMP-9-Banden der Gelatine-Zymographie nach Behandlung mit Tepoxalin. n=6

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.89</td>
<td>24.08</td>
<td>8.87</td>
</tr>
<tr>
<td>22.13</td>
<td>17.11</td>
<td>19.89</td>
</tr>
<tr>
<td>19.42</td>
<td>19.1</td>
<td>5.48</td>
</tr>
<tr>
<td>10.18</td>
<td>15.15</td>
<td>6.63</td>
</tr>
<tr>
<td>45.61</td>
<td>14.13</td>
<td>13.47</td>
</tr>
<tr>
<td>38.9</td>
<td>11.89</td>
<td>16.70</td>
</tr>
</tbody>
</table>
Abbildung 9-26 Mittelwerte der MHC-II⁺-Zellen pro cm² in der Epidermis

Nach Behandlung der Tiere mit ASS (topisch, systemisch), Indometacin und Diflorasondiacetat. Von den immunhistochemischen Präparaten der Epidermis wurden 16 Bilder von verschiedenen Stellen der Epidermis aufgenommen und die Anzahl der MHC-II⁺-Zellen ermittelt. Aus den so gewonnenen Werten wurden die Mittelwerte gebildet. n=6

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Difflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1423,43</td>
<td>1537,5</td>
<td>1478,12</td>
<td>1396,66</td>
<td>1940,62</td>
</tr>
<tr>
<td>1317,18</td>
<td>1245,31</td>
<td>1442,18</td>
<td>1671,87</td>
<td>1528,12</td>
</tr>
<tr>
<td>1214,06</td>
<td>1370,31</td>
<td>1262,5</td>
<td>1256,25</td>
<td>1679,68</td>
</tr>
<tr>
<td>1234,37</td>
<td>1576,56</td>
<td>1418,75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hauptversuch II

Abbildung 9-27 Mittelwerte der MHC-II⁺-Zellen pro cm² in der Epidermis

Nach Behandlung mit Tepoxalin. Es wurden jeweils 16 Bilder der immunhistohemischen Präparate ausgezählt und daraus die Mittelwerte gebildet. n=6

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>Tep. top.</th>
<th>Tep. top. und oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1260,93</td>
<td>1260,93</td>
<td>1142,18</td>
</tr>
<tr>
<td>1146,87</td>
<td>1326,56</td>
<td>1223,43</td>
</tr>
<tr>
<td>879,68</td>
<td>1253,12</td>
<td>1275</td>
</tr>
<tr>
<td>1167,18</td>
<td>1435,93</td>
<td>1064,06</td>
</tr>
<tr>
<td>1113,67</td>
<td>1367,18</td>
<td>1176,56</td>
</tr>
<tr>
<td>1218,75</td>
<td>1440</td>
<td>1348,43</td>
</tr>
</tbody>
</table>

Hauptversuch III

Abbildung 9-28 PGE₂-Konzentration in den Ohrhomogenaten

Im 2. Hauptversuch wurde die Ohrexplanate aus dem Skin-DC-Migration-Assay homogenisiert und in den Überständen der Ohrhomogenate die PGE₂-Konzentration [pg/ml] gemessen. n=6;

<table>
<thead>
<tr>
<th>Vehikel</th>
<th>ASS top.</th>
<th>ASS syst.</th>
<th>Indo. top.</th>
<th>Difflo. top.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2515,72</td>
<td>5588,37</td>
<td>90,77</td>
<td>22,08</td>
<td>2286,74</td>
</tr>
<tr>
<td>4105,11</td>
<td>4250,55</td>
<td>86,32</td>
<td>18,28</td>
<td>45,33</td>
</tr>
<tr>
<td>5353,89</td>
<td>2000,93</td>
<td>45,33</td>
<td>51,76</td>
<td>169,46</td>
</tr>
<tr>
<td>2859,28</td>
<td>3104,56</td>
<td>72,59</td>
<td>68,94</td>
<td>62,10</td>
</tr>
<tr>
<td>4570,04</td>
<td>2578,82</td>
<td>35,98</td>
<td>34,71</td>
<td>93,55</td>
</tr>
<tr>
<td>8441,01</td>
<td>3104,56</td>
<td>43,32</td>
<td>110,81</td>
<td>61,45</td>
</tr>
</tbody>
</table>

Hauptversuch II
9.2 Veröffentlichungen

Ein Teil der in dieser Arbeit beschriebenen Ergebnisse und Untersuchungen liegt bereits in veröffentlichter Form vor:

Tagungsposter:
46. Frühjahrstagung der DGPT in Mainz, 2005
W. BÄUMER, S. KREKELER, V. de VRIES, T. TSCHERNIG and M. KIETZMANN
Effects of acetylsalicylic acid, indomethacin and diflorasone diacetate on dendritic cell migration in the elicitation phase of allergic contact dermatitis in mice
Naunyn-Schmiedeberg’s Arch. Pharmacol. 2005 371 (Suppl. 1) 297 (Abstract)
Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. Manfred Kietzmann für die Überlassung des interessanten Themas, seinen vielfältigen Anregungen, sowie für seine Unterstützung und die nette Zusammenarbeit.

Ein großer Dank gebührt Dr. Wolfgang Bäumer für die hervorragende Betreuung, seiner immerwährenden Hilfsbereitschaft und Geduld. Desweiteren danke ich den Dres. Braun und Niedorf für die vielen großen und kleinen Hilfestellungen.

Ebenso danke ich meinen Mitdoktoranden, insbesondere Ka, Julia und Line für die nette, wenn auch nur kurze, Zeit und die Unterstützung.

Victor de Vries und Anette Schürmann danke ich für die Durchführung der FACS-Analysen.

Der Wilhelm Schaumann-Stiftung danke ich für die finanzielle Unterstützung.

Mein güttester Dank gilt meiner Familie sowie Malte für ihre Unterstützung während des Studiums.