Auswirkung einer verkürzten präovulatorischen Follikelphase auf den genitalen Blutfluss und die endometriale Hormonrezeptorkonzentration des Rindes

INAUGURAL-DISSERTATION
zur Erlangung des Grades eines
Doktors der Veterinärmedizin
-Doctor medicinae veterinariae-
(Dr. med. vet.)

vorgelegt von
David Prost
aus Coesfeld

Hannover 2008
Wissenschaftliche Betreuung: Prof. Dr. med. vet. H. Bollwein

Apl.-Prof. Dr. med. vet. H. Niemann

Institut für Nutztiergenetik, Mariensee, des Bundesforschungsinstitutes für Tiergesundheit des Friedrich Löffler Institutes (FLI)

1. Gutachter: Prof. Dr. med. vet. H. Bollwein
2. Gutachter: Prof. Dr. med. vet. H. Sieme

Tag der mündlichen Prüfung: 11.11.2008
Meinem treuen Jagd- und Lebensbegleiter
2.6.2	Zusammenhang zwischen uterinem Blutfluss und endogenen Steroidhormonkonzentrationen des Rindes	40
2.6.3	Zusammenhang zwischen uteriner Durchblutung und dem Schwangerschaftserfolg bei der Frau	41
2.7	Progesteronmangel während der Lutealphase	43
2.7.1	Beim Rind	43
2.7.2	Lutealphasendefekt (luteal phase defect; LPD) bei der Frau	45
3	Material und Methoden	51
3.1	Tiere	51
3.2	Definitionen	51
3.3	Versuchsdesign	52
3.4	Klinische Untersuchung	56
3.5	Sonographische Untersuchungen	56
3.5.1	Verwendete Geräte und Sonden	56
3.5.2	B-Bild-Sonographie	57
3.5.3	Farbdopplersonographie	58
3.6	Plasmagewinnung und hormonanalytische Untersuchung	63
3.7	Gewinnung von Endometrium-Biopsien und Hormonrezeptoranalyse	64
3.8	Hormonelle Behandlung	65
3.9	Statistische Auswertungen	66
4	Ergebnisse	67
4.1	Klinisch-gynäkologische Befunde	67
4.2	Hormonelle Befunde	69
4.2.1	Plasmaöstrogenkonzentrationen im Östrus	69
4.2.2	Expression der mRNA der Östrogen-, Progesteron- und Oxytozinrezeptoren im Östrus	69
4.2.3	Plasmaprogesteronkonzentrationen im Diöstrus	70
4.2.4 Expression der mRNA der Östrogen-, Progesteron- und Oxytozinrezeptoren im Diöstrus ... 71

4.3 Sonographische Befunde ... 73
 4.3.1 Follikel im Östrus ... 73
 4.3.2 Uteriner Blutfluss im Östrus .. 78
 4.3.3 Corpora lutea im Diöstrus ... 80
 4.3.4 Uteriner Blutfluss im Diöstrus .. 82

5 Diskussion .. 85
 5.1 Pathologische Befunde ... 85
 5.2 Endokrinologische Befunde .. 87
 5.3 Sonographische Befunde der Ovarien 90
 5.3.1 Follikel ... 90
 5.3.2 Corpora lutea ... 93
 5.4 Sonographische Befunde des Uterus .. 95
 5.5 Schlussfolgerungen und Ausblick .. 96

6 Zusammenfassung .. 97

7 Summary ... 100

8 Anhang ... 102

9 Verzeichnisse .. 105
 9.1 Tabellenverzeichnis ... 105
 9.2 Literaturverzeichnis ... 117
Abkürzungen

A. Arteria
Abb. Abbildung
Acl Gelbkörperquerschnittsfläche
Afol Follikelquerschnittsfläche
Alut Lutealgewebefläche
BFV Blutflussvolumen
bzw. beziehungsweise
ca. circa
cDNA complementary deoxyribonucleic acid
CF-Modus Color-Flow-Modus
Cl Corpus luteum
d Durchmesser
ACP gegen Ubiqitin und Histon normalisierte Zyklenanzahl der Zielgen-RNA
De enddiastolische Frequenzverschiebung
Eges Gesamtöstrogen
EIA Enzyme linked Immune Assay
ET Embryo Transfer
FAL Forschungsanstalt für Landwirtschaft
folBl absolute Follikeldurchblutung
FSH Follikel-stimulierendes Hormon
GnRH Gonadotropin Releasing Hormone
h Stunden
hCG humanes Choriongonadotropin
hMG humanes Menopausal Gonadotropin
i.d.R. in der Regel
i.m. intramuskulär
IVF In vitro Fertilisation
kg Kilogramm
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>Luteinisierendes Hormon</td>
</tr>
<tr>
<td>LPD</td>
<td>Lutealphasendefekt</td>
</tr>
<tr>
<td>lutBl</td>
<td>absolute Gelbkörperdurchblutung</td>
</tr>
<tr>
<td>M</td>
<td>Median</td>
</tr>
<tr>
<td>MAD</td>
<td>Median absolute deviation</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>MDV</td>
<td>Minimum diastolic velocity</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>n</td>
<td>Stichprobenumfang</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>Ov-Synch</td>
<td>Ovulations-Synchronisation</td>
</tr>
<tr>
<td>p</td>
<td>Irrtumswahrscheinlichkeit</td>
</tr>
<tr>
<td>P₄</td>
<td>Plasmaprogesteronkonzentration</td>
</tr>
<tr>
<td>PGF₂α</td>
<td>Prostaglandin F₂α</td>
</tr>
<tr>
<td>PI</td>
<td>Pulsatily Index; uteriner Blutflusswiderstand</td>
</tr>
<tr>
<td>p.i.</td>
<td>post inseminationem</td>
</tr>
<tr>
<td>pmol</td>
<td>Pico mol</td>
</tr>
<tr>
<td>PSV</td>
<td>peak systolic velocity</td>
</tr>
<tr>
<td>r</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>relfolBIF</td>
<td>relative follikuläre Durchblutung</td>
</tr>
<tr>
<td>rellutBIF</td>
<td>relative luteale Durchblutung</td>
</tr>
<tr>
<td>rellutBLut</td>
<td>relative luteale Durchblutung des Lutealgewebes</td>
</tr>
<tr>
<td>RI</td>
<td>Resistance Index</td>
</tr>
<tr>
<td>ROI</td>
<td>Region Of Interest</td>
</tr>
<tr>
<td>RT PCR</td>
<td>Real Time Polymerase Chain Reaction</td>
</tr>
</tbody>
</table>
S maximale systolische Frequenzverschiebung
Tab. Tabelle
TAMF time averaged maximum frequency shift
TAMV time averaged maximum velocity;
 uterine Blutflussgeschwindigkeit
V. Vena
vs. versus
1 Einleitung

Einleitung

2 Schrifttum

2.1 Das Ovulationssynchronisationsprogramm (OvSynch-Programm)

2.1.1 Grundlagen

PURSLEY et al. (1999) entwickelten eine Methode zur präzisen Synchronisation der Ovulation, um die künstliche Besamung ohne Brunstbeobachtung zu ermöglichen. Dieses Programm beinhaltet drei Hormon-Injektionen zu bestimmten Zeitpunkten mit anschließender terminierter Besamung (Abb. 1.1).

Schrifttum

2.1.2 Trächtigkeitsrate im Vergleich zur künstlichen Besamung nach natürlicher Ovulation

Schrifttum

(1999) unterschieden sich die Trächtigkeitsraten nach Erstbesamung nicht (OvSynch-Gruppe 37%; Kontrollgruppe 39%). In den Untersuchungen von MAWHINNEY et al. (1999) lagen die Trächtigkeitsraten nach Erstbesamung bei unbehandelten Tieren höher (50% vs. 40%). Übereinstimmend konnten beide Autorgruppen 100 Tage post partum (VASCONCELOS et al. 1999) bzw. 125 Tage post partum (MAWHINNEY et al. 1999) mehr behandelte als unbehandelte Tiere (53% vs. 35% bzw. 78% vs. 66%) tragend diagnostizieren. Nach PURSLEY et al. (1997a) und MAWHINNEY et al. (1999) könnten die geringeren Trächtigkeitsraten nach der Erstbesamung bei Tieren, die dem OvSynch Programm unterzogen wurden, darauf zurückzuführen sein, dass die synchronisierten Tiere früher nach der Geburt und damit in einem Stadium niedrigerer Fruchtbarkeit als die Kontrolltiere besamt wurden. Kürzere Zeitintervalle zwischen der Diagnose „nicht tragend“ und einer erneuten Besamung bei OvSynch Tieren könnten dagegen die Ursache für die größere Anzahl am Tag 100 post partum bzw. Tag 125 post partum tragender Tiere im Vergleich zu unbehandelten Tieren sein.

Schrifttum

39,8% deutlich geringer aus als bei den Kontrolltieren mit 54,3%. Zusätzlich fanden die Autoren heraus, dass bei OvSynch Tieren, die sich in der ersten Laktation befanden, der Erstbesamungserfolg deutlich niedriger war, als bei den entsprechenden, unbehandelten Kontrolltieren (37,8% vs. 71,1%). Dagegen waren bei Tieren mit einer höheren Laktationsnummer keine Unterschiede im Erstbesamungserfolg zwischen Versuchstieren und Kontrolltieren festzustellen. Auch der Zeitpunkt der Besamung nach der Geburt hatte keinen Einfluss auf die Erfolgsrate des OvSynch Programms im Vergleich zu den Kontrolltieren. Gründe für die von ihnen erhaltenen Ergebnisse nennen die Autoren aber nicht.

DECKER et al. (2002) verglichen in 60 Milchviehbetrieben die Konzeptionsraten von synchronisierten Tieren mit den Konzeptionsraten spontan brünstiger Tiere. Insgesamt wurden die Daten von 195 synchronisierten Tieren mit denen von 100 spontan brünstigen Tieren verglichen. Die synchronisierten Tiere wurden wiederum in zwei Gruppen aufgetrennt (OvSynch bei Erstbesamung / OvSynch bei Nachbesamung). Nach einmaliger Besamung lagen die Konzeptionsraten bei 51,9% (OvSynch bei Erstbesamung), 53% (Besamung nach spontaner Brunst) bzw. 62,6% (OvSynch bei Nachbesamung).

2.1.3 Einflüsse auf die Trächtigkeitsrate nach Ovulationssynchronisation

2.1.3.1 Zyklusstand zu Beginn eines OvSynch Programms

Zyklusphase (Tag zehn bis 16) bei 54% und in der letzten Zyklusphase (Tag 17 bis 21) bei 77% der Tiere eine Ovulation. Ferner ovulierten Kühe in ihren Studien nach Beginn des OvSynch Programms in der mittleren Zyklusphase (Tag fünf bis 13) mit kleineren Follikeln. Dabei teilten VASCONCELOS et al. (1999) die Follikelgrößen in die Gruppen „kleiner oder größer als der mittlere Follikeldurchmesser“ am Tage der PGF$_{2\alpha}$-Gabe (mittlerer Durchmesser = 15,4mm) und am Tag der zweiten GnRH-Gabe (mittlerer Durchmesser = 18,2mm) ein. VASCONCELOS et al. (2001) stellten fest, dass die Trächtigkeitsraten bei Tieren mit kleineren Follikeln sowohl zum Zeitpunkt der Prostaglandininjektion als auch zum Zeitpunkt der zweiten GnRH-Gabe höher waren, als bei Tieren mit einem größeren Follikel (42% vs. 32%). Auch korrelierte die Größe des ovulatorischen Follikels am Tag der Prostaglandininjektion negativ mit der Trächtigkeitsrate ($r = -0,44$, $p = 0,06$). Möglicherweise könnten nach VASCONCELOS et al. (1999) größere Follikel in ihren Untersuchungen bereits das Stadium der Follikelreife durchlaufen haben.

MOREIRA et al. (2000a) injizierten im Rahmen des OvSynch Programms erstmals an den Zyklustagen zwei, fünf, zehn, 15 und 18 (Tag 0 = Ovulation). Dabei beobachteten sie unterschiedliche Trächtigkeitsraten mit 40% (2/5) an Tag zwei, 20% (1/5) an Tag fünf, 75% (3/4) an Tag zehn, 0% (0/5) an Tag 15 sowie 60% (3/5) an Tag 18. Jedoch ist anhand dieser Studie nach Meinung der Autoren aufgrund zu geringer Tierzahlen eine direkte Aussage über den Einfluss des Zeitpunktes des Beginns mit dem OvSynch Programm auf die Trächtigkeitsraten nicht möglich. In derselben Studie beobachteten die Autoren anhand sonographischer Verlaufskontrollen der Follikeldynamik unterschiedliche Ovarreaktionen der verschiedenen Gruppen. Tiere, welche die erste GnRH-Gabe an Zyklustag zwei erhielten, reagierten weder auf die erste GnRH-Injektion noch auf die zweite GnRH-Injektion mit einer Ovulation. Am Tag der ersten Hormongabe waren nach MOREIRA et al. (2000a) die Follikel anscheinend in der frühen Rekrutierungsphase und zum Zeitpunkt der zweiten GnRH-Injektion war der dominante Follikel vermutlich bereits wieder atretisch. Tiere, die am 15. Zyklustag die erste GnRH-Injektion eines Ov-Synch-Programms erhielten, zeigten eine vorzeitige Regression des Gelbkörpers noch vor der exogenen PGF$_{2\alpha}$-Applikation. Dafür könnte nach Ansicht der Autoren ursächlich
PGF$_{2\alpha}$ endometrialen Ursprungs verantwortlich gewesen sein. Bei Tieren, welche die erste GnRH-Injektion innerhalb des Programms an Zyklustag 18 erhielten, beobachteten MOREIRA et al. (2000a) nach der Prostaglandininjektion eine unvollständige luteale Regression mit Plasmaprogesteronkonzentrationen über 3 ng/ml. Die Autoren vermuten, dass es durch die erste GnRH-Injektion wenig später zu der Entstehung eines akzessorischen Corpus luteum kam, das sieben Tage später eine verminderte Ansprechbarkeit gegenüber exogenem PGF$_{2\alpha}$ aufwies. In einer weiteren Studie stellten MOREIRA et al. (2000b) fest, dass bei Kühen mit einer unvollständigen Gelbkörperregression die Trächtigkeitsraten an Tag 27 p.i. niedriger lagen als bei Tieren mit einer vollständigen Gelbkörperregression (8,4% vs. 35%). Anhand der Ergebnisse ihrer Studien empfehlen die Autoren (MOREIRA et al. 2000a; 2000b) daher, die erste Hormoninjektion in einem OvSynch Programm zwischen den Zyklustagen fünf und zehn durchzuführen.

2.1.3.2 Zeitpunkt der zweiten GnRH-Injektion nach PGF$_{2\alpha}$

zunehmendem Abstand zwischen der PGF\textsubscript{2\alpha}-Gabe und der zweiten GnRH-Gabe beobachtet. Die Autoren nehmen an, dass die Ursache für die geringeren Trächtigkeitsraten bei vorzeitiger GnRH-Injektion in Störungen bei der Entwicklung des Corpus luteum und einer dadurch bedingten frühzeitigen Regression des angebildeten Gelbkörpers liegen könnte. Auch SCHMITT et al. (1993) und TAPONEN et al. (1999) sind der Ansicht, dass durch eine frühzeitige Induktion des LH-Peaks vor der eigentlichen Follikelreife die Lutealphase verkürzt wird. TAPONEN et al. (1999) verfolgten das Follikelwachstum und die Gelbkörperentwicklung im Anschluss an eine Synchronisation. Zur Induktion der Luteolyse erhielten alle Studientiere acht bzw. neun Tage nach Ovulation eine PGF\textsubscript{2\alpha}-Injektion und im Anschluss 24, 48 oder 72 Stunden später eine GnRH-Gabe. Eine weitere Kontrollgruppe erhielt nur die erste PGF\textsubscript{2\alpha}-Injektion. Dabei beobachteten die Autoren in der „24-Stunden-Gruppe“ tendenziell kleinere Follikel um den Zeitpunkt der Ovulation (15,8mm vs. 16,7mm) und ein signifikant geringeres Wachstum des dominanten Follikels vom Tag der Prostaglandininjektion bis zur Ovulation (0,6mm/Tag) im Vergleich zu Tieren der Kontrollgruppe (0,8mm/Tag). Nach Auslösung der Ovulation kleinerer Follikel beobachteten TAPONEN et al. (1999) ab Tag fünf post ovulationem bei zwei von sieben Versuchstieren (29%), welche die GnRH-Injektion 24 Stunden nach der Prostaglandininjektion erhielten, eine vorzeitige Luteolyse des sich daraus resultierenden Gelbkörpers. MOREIRA et al. (2000a) stellten eine positive Korrelation zwischen der Größe der präovulatorischen Follikel und dem Progesterongehalt sieben Tage nach einer Besamung fest. Weitere Autoren verglichen die Trächtigkeitsraten von Kühen, die 24 bzw. 33 Stunden nach der PFG\textsubscript{2\alpha}-Injektion die zweite GnRH-Gabe erhielten, mit Tieren, denen 48 Stunden nach der PFG\textsubscript{2\alpha}-Injektion die zweite GnRH-Gabe verabreicht wurde (THATCHER et al. 1993; STEVENSON et al. 1999; DOLEZEL et al. 2002). Dabei wies die letzte genannte Gruppe nach STEVENSON et al. (1999) deutlich höhere Trächtigkeitsraten (35,6% vs. 22,1%) auf. Auch in den anderen Studien (SCHMITT et al. 1996; DOLEZEL et al. 2002) konnten bei den Kühen, denen 48 Stunden nach der PFG\textsubscript{2\alpha}-Injektion GnRH verabreicht wurde, höhere Trächtigkeitsraten erzielt werden (25,8% vs. 45,5% bzw. 42% vs. 66%), als bei den
Schrifttum

Schrifttum

spontaner und Tieren nach induzierter Ovulation, wobei letztere bei einem Durchmesser des dominanten Follikels von 10mm mittels GnRH induziert wurde. Zuvor waren bei allen Tieren die Follikel mittels transvaginaler Follikelpunktion entfernt und die Luteolyse induziert worden. Tiere der spontan ovulierenden Gruppe besaßen kurz vor der Ovulation einen größeren Follikeldurchmesser (12 vs. 10,5 mm), 12 Tage post ovulationem eine größere Lutealfläche (3,6 vs. 3,0 cm²) und eine höhere Plasmaprogesteronkonzentration (6,4 vs. 5,4 ng/ml) und schließlich auch eine höhere Trächtigkeitsrate 30 Tage post inseminationem (100% vs. 76%) im Vergleich zu den Tieren, bei denen die Ovulation induziert wurde. Um den Einfluss unterschiedlicher Proöstruslängen auf die Fertilität auszuschließen, führten die Autoren in einer zweiten Studie eine Vorsynchronisation durch und induzierten die Ovulation von Follikeln mit einem Durchmesser von 10 mm oder 13 mm mittels GnRH. Auch in dieser Studie besaßen Tiere mit einem größeren präovulatorischen Follikel zwölf Tage post ovulationem einen höheren Progesterongehalt (5,5 vs. 4,9 ng/ml) und 30 Tage post inseminationem eine höhere Trächtigkeitsrate (57,4 vs. 4,4%) im Vergleich zu Tieren mit einem kleineren präovulatorischen Follikel. Mit diesen Ergebnissen konnte zwar nach Meinung der Autoren ein Einfluss der Follikelreife auf die folgende Lutealphase bzw. auf den Erfolg einer Trächtigkeit nachgewiesen werden (MUSSARD et al. 2007), jedoch seien auch Trächtigkeitsverluste aufgrund einer Beeinträchtigung der Befruchtung oder der frühen Embryonalentwicklung möglich. Daher wurden in einer dritten Studie Tiere nach dem Versuchs schema des zweiten Versuches behandelt. Jedoch wurden die Tiere nicht besamt, sondern ein Embryotransfer am Tag sieben post ovulationem durchgeführt, um so negative Einflüsse auf die frühe embryonale Entwicklung auszuschließen. Auch in diesem Versuchsabschnitt wurden zwölf Tage nach der Ovulation bei Tieren mit einem Follikeldurchmesser von 13mm bei Ovulationsinduktion höhere Plasmaprogesterongehalte (5,6 vs. 3,4ng/ml) und 30 Tage nach der Besamung höhere Trächtigkeitsraten (66,7 vs. 8,3%) festgestellt, im Vergleich zu Tieren, bei denen die Ovulation bei einem Follikeldurchmesser von 10mm induziert wurde. Nach MUSSARD et al. (2007) ist somit die Follikelreifung ein komplexes System und wird durch weitere Faktoren beeinflusst, die ausschlaggebend für die Etablierung einer

2.2 Steroidhormone und deren Rezeptoren im Endometrium des Rindes

2.2.1 Steroidhormone im Plasma während des Zyklus beim Rind

2.2.1.1 GnRH, FSH, LH und Östrogene

58,9 ng/ml an (CHRISTENSEN u. SCHINDLER 1997) und löst dadurch eine Ovulation aus (WALTERS u. SCHALLENBERGER 1984). Während der übrigen Zyklusabschnitte bleibt die LH-Konzentration relativ konstant auf einem basalen Wert von 1,8ng/ml (CHRISTENSEN et al. 1974).

2.2.1.2 Progesteron

Basalwerte unter 1,0 ng/ml ab (STABENFELDT et al. 1969; HENRICKS et al. 1970; POPE et al. 1982; BAUMGARTNER 1998).

2.2.2 Steroidhormon- und Oxytozinrezeptoren im Endometrium des Rindes

Vergleichbare Konzentrationsveränderungen im Zyklusverlauf des Rindes erfährt auch der endometriale Oxytozinrezeptor (JENNER et al. 1991; LAMMING u. MANN...

MEYER et al. (1988) nahmen an, dass die steigende Sensitivität des Uterus gegenüber den Steroidhormonen Östrogen und Progesteron in den ersten acht Tagen nach der Ovulation die Ursache für erste PGF$_{2\alpha}$-Freigaben mit folgender Luteolyse sein könnte. Oxytozin schien Ihrer Meinung nach eine geringere Bedeutung bei der PGF$_{2\alpha}$ Freisetzung in diesem Zeitraum zu spielen. Dagegen sprechen Jenner et al. (1991) dem Oxytozinrezeptor eine Schlüsselrolle in der Luteolyse des Rindes zu. Sie ermittelten einen Anstieg der Oxytozinrezeptor-

2.2.3 Auswirkungen einer verkürzten präovulatorischen Follikelphase auf die Plasmasteroidgehalte und ihre Rezeptoren im Endometrium

MEIKLE et al. (2001) injizierten Kühen PGF$_{2\alpha}$ und teilten die Tiere in eine Gruppe mit einer verkürzten Zykluslänge von 16 Tagen und eine Gruppe mit einer normalen Zykluslänge von 21 Tage im darauf folgenden Zyklus ein. Ab Tag neun post ovulationem waren bei den Tieren der verkürzt zyklischen Gruppe die Progesteron-

In einer vorangehenden Studie konnten bereits ZOLLERS et al. (1993) mit Hilfe markierter Steroide die Progesteron- und Oxytozinrezeptoren von Rindern mit physiologischen und verkürzten Zyklen am Tag fünf post ovulationem vergleichen. Dabei wurden als verkürzte Zyklen diejenigen von Mutterkühen, bei denen kurz vorher die Kälber abgesetzt worden waren und bei denen das Ovulationsintervall zwölf Tage betrug, herangezogen. Die Autoren beobachteten, dass bei verkürzt zyklischen Tieren die Progesteronrezeptorkonzentration im Endometrium am
Zyklustag fünf niedriger und die Oxytozinrezeptorkonzentration höher war als bei normal zyklischen Tieren. Die Autoren stellten aufgrund ihrer Ergebnisse die Hypothese auf, dass durch teilweisen Wegfall der Progesteronhemmung verstärkt Oxytozin produziert werden könnte und so die uterine PGF$_{2\alpha}$-Freisetzung ermöglicht würde. Dies könnte ihrer Meinung nach letztendlich zu einer vorzeitigen Luteolyse führen.

2.3 Gefäßversorgung des inneren Genitale des Rindes

2.3.1 Gefäßversorgung des Uterus

Abbildung 2.2: Schematische Darstellung der Beckenorgane einer Kuh in situ unter besonderer Berücksichtigung der uterinen Gefäßversorgung (mit freundlicher Genehmigung von Dr. J. Maierl, Institut für Tieranatomie I der Universität München)
2.3.2 Gefäßversorgung des Ovars

Im folgenden Kapitel wird lediglich das intraovarielle System der Gefäßversorgung des Ovars und nicht die A. ovarica beschrieben, da nur ersteres in der vorliegenden Studie untersucht wurde.

Abbildung 2.3: schematische Darstellung der Durchblutung eines Corpus luteum etwa sieben Tage nach der Ovulation in der Achse halbiert, modifiziert nach KÖNIG (1981); Das arterielle Gefäßsystem ist auf der rechten Seite und das venöse Gefäßsystem auf der linken Seite der Abbildung dargestellt.

Der venöse Abfluss erfolgt über Venolen im Läppchenzentrum, die sich zu Venen vereinigen und den Kapselvenen zustreben (KÖNIG u. AMSELGRUBER 1986). Das Corpus luteum ist während der frühen Anbildungsphase bis Tag fünf post ovulationem allseits von einem relativ weitmaschigem Kapillarnetz durchzogen, welches direkt unter der Gelbkörperoberfläche verläuft. Dieses verdichtet sich in der späten Anbildungsphase, d.h. zwischen den Tagen fünf bis neun, und besitzt an Tag neun post ovulationem seine größte Dichte (König et al. 1988).

Der Anbildungsphase schließt sich das Blütestadium des Corpus luteum, das nach KÖNIG et al. (1988) von Tag zehn bis 15 währt, an. Der im Ovar verankerte Abschnitt des Corpus luteum gliedert sich in diesem Stadium durch Sprossung des Gefäßsystems in Läppchen, während die über die Ovaroberfläche erhabene
pilzförmige Kuppel des Gelbkörpers aus einem feinen Kapillarschwamm besteht (KÖNIG et al. 1988).
Mit der Regression des Gelbkörpers ab Tag 16 post ovulationem beginnt zunächst die Rückbildung des Kapillarnetzes im Bereich der Kuppe. Danach kommt es zur Verengung größerer Gefäße, wodurch die Abnahme der Kapillardichte des gesamten Gelbkörpers ausgelöst wird (KÖNIG et al. 1988).
2.4 Dopplersonographie

2.4.1 Dopplersonographische Grundlagen

\[
fd = f_0 - f_e = \frac{2 \cdot f_0 \cdot v \cdot \cos \alpha}{c}
\]

- \(fd \) = Frequenzverschiebung = Dopplershift [Hz]
- \(f_0 \) = Sendefrequenz des Schallkopfes [Hz]
- \(f_e \) = Empfangsfrequenz [Hz]
- \(v \) = Blutflussgeschwindigkeit [m/sec]
- \(\alpha \) = Winkel zwischen Ultraschallstrahl und Richtung des Blutflusses
- \(c \) = Ausbreitungsgeschwindigkeit des Ultraschalls im Weichteilgewebe (ca. 1540 m/sec)

2.4.2 Gerätetechnologie

In der Farbdopplersonographie wird die Frequenzverschiebung in einem Fenster farbkodiert über das im B-Modus erstellte Bild projiziert. In der Regel werden im so

Heutzutage werden vorwiegend pulsed-wave-Dopplergeräte (PW-Doppler) eingesetzt. Im Gegensatz zu continuous-wave-Geräten (CW-Doppler), bei denen die Frequenzverschiebungen aller Ebenen innerhalb des Ultraschallstrahls erfasst werden, besitzen sie den Vorteil einer tiefenselektiven Blutflussmessung. Dies bedeutet, dass die Messtiefe vom Untersucher durch Wählen eines Dopplerfensters exakt bestimmt werden kann (DUDWIESUS et al. 1993; DICKEY 1997).

2.4.3 Auswertung dopplersonographischer Untersuchungen

genannte „Region Of Interest (ROI)“ eingezeichnet, innerhalb welcher die Gesamtfläche der durchbluteten Areale bzw. die Gesamtanzahl der Farbpixel als Maß für die Durchblutung mit Hilfe der Software berechnet wird (DELOREME u. ZUNA 1995; BAUMGARTNER 1998; ACOSTA et al. 2004).

\[v = \frac{f_d \cdot c}{2 \cdot f_0 \cdot \cos \alpha} \]

\(v \) = Blutflussgeschwindigkeit (PSV, MDV oder TAMV) [m/sec]

\(f_d \) = Frequenzverschiebung (S, Dm oder TAMF) [Hz]

\(c \) = Ausbreitungsgeschwindigkeit des Ultraschalls im Weichteilgewebe (ca. 1540 m/sec)

\(f_0 \) = Sendefrequenz des Schallkopfes [Hz]

\(\alpha \) = Winkel zwischen Ultraschallstrahl und Richtung des Blutflusses
Da die genaue Bestimmung des Winkels \(\alpha \) Schwierigkeiten bereiten kann, wird häufig mit Hilfe von winkelunabhängigen Dopplerindices eine semiquantitative Beurteilung des Blutflusses vorgenommen (DEANE 1995). Die Dopplerindices stellen Maße für die Widerstandsverhältnisse in dem distal der untersuchten Arterie gelegenen Gefäßbett dar. Je höher die Index-Werte sind, desto größer ist der Blutflusswiderstand in dem vom jeweiligen Gefäß versorgten Organ und umgekehrt (DICKEY 1997). Die gebräuchlichsten Indizes sind in der Dopplersonographie der Resistance Index (RI) (POURCELOT 1974) und der Pulsatility Index (PI) (DICKEY 1997). In die Berechnungen gehen die maximale systolische (S), die minimale diastolische (Dm), die enddiastolische (De) und die mittlere maximale (TAMF) Frequenzverschiebung ein (Abb. 2.4):

![Diagramm der Dopplerwelle](image)

Abb. 2.4: Schematische Darstellung einer Dopplerwelle mit der maximalen systolischen (S), minimalen diastolischen (Dm), enddiastolischen (De) und mittleren maximalen (TAMF) Frequenzverschiebung während eines Herzzyklus.

Resistance Index: \[
\text{RI} = \frac{S - D_e}{S}
\]

Pulsatility Index: \[
\text{PI} = \frac{S - D_m}{\text{TAMF}}
\]
2.5 Ovarieller Blutfluss des Rindes

2.5.1 A. ovarica

2.5.2 Follikuläre Durchblutung

Im Gegensatz dazu konnten KAWASHIMA et al. (2006) keine Unterschiede in der darstellbaren follikulären Wanddurchblutung ovulatorischer und anovulatorischer Follikel während des ersten Zyklus nach der Geburt feststellen. Ihrer Meinung nach ist eher die mangelnde Östradiolsynthese der follikulären Granulosazellen der bestimmende Faktor für das Ausbleiben der Ovulation und nicht eine insuffiziente

2.5.3 Luteale Durchblutung

Die lutealen Durchblutungsveränderungen nach mittels PGF₂α induzierter Luteolyse bestimmten ACOSTA et al. (2002) in einer vorangegangenen Studie an Kühen, welche sich an den Tagen vier bzw. zehn bis zwölf des Zyklus befanden. Tiere am Tag zehn bis zwölf des Zyklus zeigten 30 Minuten bis zwei Stunden nach einer
PGF$_{2\alpha}$-Injektion einen Anstieg der lutealen Durchblutung, gefolgt von einem drastischen Abfall derselben. Die Prostaglandin-Injektion am Tag vier des Zyklus bewirkte dagegen keine Änderungen in der lutealen Durchblutung. Die Luteolyse blieb bei diesen Tieren aus, d.h. die Plasmaprogesteronkonzentration und der Gelbkörperdurchmesser stiegen im Laufe der Untersuchungen weiter an. ACOSTA et al. (2002) folgerten daraus, dass ein direkter Zusammenhang zwischen akutem Anstieg der lutealen Durchblutung und der Luteolyse besteht.

2.5.4 Zusammenhang zwischen ovariellen Blutfluss und endogenen Steroidhormonkonzentrationen

2.5.5 Zusammenhang zwischen dem ovariellen Blutfluss, der Oozytenqualität und dem Schwangerschaftserfolg bei der Frau

Ferner beobachteten einige Autoren (OYESANA et al. 1996; NARGUND et al. 1996a; NARGUND et al. 1996b) Korrelationen zwischen ovariellen Perfusionsparametern und der Quantität und der Qualität gewonnener Oozyten. OYESANA et al. (1996) stellten positive Korrelationen \((r = 0,47, \ p = 0,0001)\) zwischen dem Vaskularisationsindex vor der Stimulation mittels hCG \((\text{humanes Choriongonadotropin})\) und der Anzahl der danach gewonnenen Oozyten fest. Der follikuläre Vaskularisationsindex ergibt sich dabei nach OYESANA et al. (1996) aus dem Verhältnis zwischen den Zahlen an Follikeln mit darstellbarer Durchblutung und allen Follikeln. Auch NARGUND et al. (1996b) konnten positive Zusammenhänge \((r = 0,75, \ p = 0,0001)\) zwischen der Durchblutung der Follikel vor der hormonellen...

COULAM et al. (1999) bestimmten quantitativ den follikulären Blutfluss (PSV) vor der hormonellen Stimulation mittels hCG-Applikation und beurteilten ausserdem qualitativ den Anteil an perifollikulär durchbluteter Fläche, wobei bei einem Score von I weniger als 25% des umgebenden Follikelgewebes, bei einem Score von II 26% bis 50% des Gewebes, bei einem Score von III 51% bis 75% des Gewebes und bei einem Score von IV 100% des umgebenden Follikelgewebes durchblutet waren. Patientinnen, die eine erfolgreiche Schwangerschaft austrugen, besaßen ausschließlich einen qualitativen follikulären Blutfluss mit Scores von III und IV. Darüber hinaus besaßen 91% der Patientinnen, die nach der Behandlung schwanger wurden, PSV-Werte über 10 cm/s auf.

In den Untersuchungen von NARGUND et al. (1996a) stammten Oozyten, aus denen ein guter oder sehr guter Embryo hervorging, aus Follikeln mit hoher Blutflussgeschwindigkeit in der Follikelwand. Betrug die Blutflussgeschwindigkeit in der Follikelwand vor der Follikelaspiration mindestens 10 cm/s, so lag der Prozentsatz guter Embryonen bei 70%, im Gegensatz zu 14% bei einem Blutfluss von unter 10 cm/s. Der follikuläre PI korrelierte in ihren Untersuchungen nicht mit der Oozytenqualität. Dagegen sahen HUEY et al. (1999) im perifollikulären Blutflusswiderstand des präovulatorischen Follikels einen indirekten Marker für die Kompetenz der Oozyte sich zu entwickeln. Sie beobachteten eine negative Korrelation (r = -0,32) des RI mit der Fertilisationsrate der Oozyten sowie eine negative Korrelation des PI (r = -0,33) und des RI (r = -0,37) mit dem Entwicklungsstand drei Tage alter Embryonen. Jedoch zweifeln HUEY et al. (1999) aufgrund der moderaten Zusammenhänge an der klinischen Anwendbarkeit des follikulären Blutflusswiderstandes zur Prognose einer erfolgreichen Schwangerschaft.

PALOMBA et al. (2006) überprüften die Blutflussgeschwindigkeit und den Blutflusswiderstand in der Peripherie der Follikel hinsichtlich ihrer Eignung zur Beurteilung der Anzahl zu gewinnender Oozyten im Vergleich zur morphologischen Beurteilung der gewonnenen Oozyten. Dabei beurteilten sie unter anderem die Wahrscheinlichkeit einer hohen Oozytenanzahl, einer guten Oozytenqualität und

2.6 Uteriner Blutfluss

2.6.1 Änderungen im Zyklus des Rindes

2.6.2 Zusammenhang zwischen uterinem Blutfuss und endogenen Steroidhormonkonzentrationen des Rindes

der Ovulation war sowohl die uterine Durchblutung, als auch die Östradiolkonzentration wieder deutlich abgesunken.

2.6.3 Zusammenhang zwischen uteriner Durchblutung und dem Schwangerschaftserfolg bei der Frau

Da bisher keine Studien über Zusammenhänge zwischen uterinem Blutfluss und der Trächtigkeitsrate in der Veterinärmedizin existieren, wird im Folgenden auf entsprechende Studien bei der Frau eingegangen.

CACCIATORE und TIITINEN (1996) sehen in einem Abfall des uterinen PI infolge einer Hormontherapie einen wichtigen Faktor für die Fertilität im Rahmen eines IVF-Programms und einen therapeutischen Ansatz zur Verbesserung der Konzeptionschancen. So bestanden in ihren Studien positive Korrelationen zwischen der Abnahme des uterinen PI vor der Ovulation und der Zahl angebildeter Follikel \(r = 0,29 \) sowie der Zahl gewonnener Oozyten \(r = 0,28 \). Darüber hinaus war in ihrer Studie bei Frauen, die am Tage des Embryotransfers einen PI-Werte unter 3,0 aufwiesen, eine höhere Schwangerschaftsrate zu verzeichnen, als bei Frauen, die einen uterinen PI größer oder gleich 3,0 (35% vs. 8%) besaßen.

2.7 Progesteronmangel während der Lutealphase

2.7.1 Beim Rind

2.7.2 Lutealphasendefekt (luteal phase defect; LPD) bei der Frau

Der LPD ist nach Meinung diverser Autoren einer der wesentlichen Gründe für wiederholte Verluste einer Schwangerschaft und für Unfruchtbarkeit bei der Frau (ODA et al. 1992; CHRISTENSEN u. SCHINDLER 1997; CRAMER u. WISE 2000; ROBERTS u. MURPHY 2000; PRITTS u. ATWOOD 2002; TAVANIOTOU et al. 2002; POTDAR u. KONJE 2005; NARDO u. SALLAM 2006). Nach wiederholten Schwangerschaftsverlusten konnten GUILLAUME et al. (1995) bei Patientinnen mit einem retrospektiv diagnostizierten LPD signifikant mehr ektopische Schwangerschaften (11,8% vs. 2,9%) und hoch signifikant mehr spontane Aborte (37,3% vs. 11,8%) finden.

3 Material und Methoden

3.1 Tiere

Die Untersuchungen wurden im Zeitraum von April 2006 bis November 2006 an 50 multiparen Kühen der Rassen Deutsche Schwarzbunte ($n = 19$), Holstein-Friesian ($n = 18$) und deren Kreuzungen ($n = 13$) durchgeführt. Die Tiere gehörten dem Institut für Tierzucht der Forschungsanstalt für Landwirtschaft (FAL) mit Sitz in Mariensee an.

Bei Versuchsbeginn waren die Tiere zwischen 30 und 113 Monate ($\bar{x} \pm s = 58 \pm 20$ Monate) alt und hatten zwischen ein- und fünfmal abgekalbt ($\bar{x} \pm s = 1,7 \pm 1,1$ Abkalbungen). Es wurden ausschließlich laktierende Kühe untersucht, deren letzte Geburt bei Versuchsbeginn zwischen 45 und 180 Tagen ($\bar{x} \pm s = 95 \pm 46$ Tage) zurücklag. Die durchschnittliche Tagesmilchleistung der Herde betrug während des Untersuchungszeitraums zwischen 23,4 und 27,1 Liter pro Kuh ($\bar{x} \pm s = 25,3 \pm 1,7$ Liter).

3.2 Definitionen

Follikel- bzw. Corpus luteum-Größe

Die Größe eines Follikels bzw. Corpus luteum wurde als maximale Querschnittsfläche des jeweiligen Funktionsgebildes im sonographischen B-Bild definiert. Der mittlere Durchmesser eines Follikels bzw. Corpus luteum wurde aus der maximalen
Material und Methoden

Querschnittsfläche berechnet, unter der Annahme, dass dieser kreisrund ist (siehe Kapitel 3.5.2.1).

Dominanter Follikel
Wies ein Follikel eine Größe von mindestens 10 mm Durchmesser auf, so wurde dieser als dominant definiert.

Großzystische Entartung
Wies ein Funktionsgebilde mit Hohlraum einen Durchmesser von mindestens 25 mm auf und war kein Corpus luteum auf dem Ovar vorhanden, so wurde dieses nach der Definition von GRUNERT (1996) als großzystische Entartung definiert und das Tier von der Studie ausgeschlossen.

Ovulation
War der dominante Follikel bei aufeinander folgenden Untersuchungen nicht mehr vorhanden und entwickelte sich in der Folge ein Corpus luteum, so wurde der Zeitpunkt, an dem der Follikel zum ersten Mal nicht mehr sichtbar war, als Zeitpunkt der Ovulation bezeichnet.

Funktionelles Corpus luteum
Wiesen die Tiere sieben Tage nach der Ovulation einen Plasmaprogesterongehalt (P₄) von über 3,18 pmol/ml auf, so wurde das Corpus luteum als funktionell ungestört definiert.

3.3 Versuchsdesign
Es wurden nur Tiere, die als allgemein und gynäkologisch gesund beurteilt wurden und ein Corpus luteum mit einem Durchmesser von mindestens 20 mm aufwiesen, in die Studie aufgenommen. Pro Woche wurden maximal drei Tiere, die vor mindestens sechs Wochen abgekalbt hatten, gleichzeitig in die Studie aufgenommen und einer der Versuchsgruppen nach dem Losverfahren zugeordnet. Mit Hilfe hormoneller Behandlung wurde bei den Versuchstieren im Anschluss an eine mittels PGF₂α-Gabe induzierte Luteolyse die Ovulation nach unterschiedlichen Zeitintervallen eingeleitet. Bei Tieren der Gruppe G40 wurde bereits 40 Stunden nach induzierter Luteolyse die zweite GnRH-Injektion durchgeführt. Bei Tieren der Gruppe G60 erfolgte die zweite
Material und Methoden

Material und Methoden

1. GnRH
 PGF2α
 Tag 1 8 10 11 18
 24h

2. GnRH

Tag 1 8 11 11 12 12

G40

1. GnRH
 PGF2α
 2. GnRH
 Tag 1 8 10 24h 11 18

G60

1. GnRH
 PGF2α
 2. GnRH
 Tag 1 8 11 12 19

S

GnRH
 PGF2α
 Ovulation
 Tag 1 8 11 11 12 12

Abb. 3.1: Schematische Darstellung des zeitlichen Ablaufes der Hormoninjektionen und der Untersuchungen der Kühe der Gruppen G40 (zweite GNRH Injektion 40h nach PGF2α), G60 (zweite GNRH Injektion 60h nach PGF2α) und S (keine GNRH Injektion nach PGF2α).
3.4 Klinische Untersuchung

3.5 Sonographische Untersuchungen

Für die transrektalen sonographischen Untersuchungen wurden die Tiere in einen Untersuchungsstand verbracht. Alle Studien erfolgten durch denselben Untersucher. Zur Verhinderung von starken Bauchpressen erhielten die Tiere eine kleine Epiduralanästhesie (60 mg Procain, Procasel® 2%, Selectavet, Weyarn-Holzollig, D). Für die einzelnen Untersuchungsmodi wurden zu den verschiedenen Untersuchungszeitpunkten jeweils die gleichen Geräteeinstellungen gewählt (siehe Tabellenverzeichnis, Tabelle 9.5).

Die farbdopplersonographischen Studien dauerten jeweils etwa 30 Minuten pro Untersuchungszeitpunkt. Für die übrigen sonographischen Untersuchungen im B-Modus wurden etwa weitere 15 Minuten benötigt.

3.5.1 Verwendete Geräte und Sonden

Die sonographischen Untersuchungen erfolgten mit dem Farbdopplersonographen LOGIQ™ Book XP der Firma GE Medical Systems (General Electrics Medical Systems, China), welcher mit einer 7,0 bis 10,0 MHz Linearsonde ausgestattet war. Es wurden über eine USB-Schnittstelle Videosequenzen sowie Standbilder der sonographischen Aufnahmen für die späteren Analysen im DICOM-Format auf einer externen Festplatte (Firma Freecom; Freecom Classic SL Hard Drive, 250GB) gespeichert.
3.5.2 B-Bild-Sonographie

3.5.2.1 Morphologische Befunde an den Ovarien
An allen Untersuchungstagen wurden die Ovarien im B-Modus dargestellt. Dabei wurden alle Follikel ab einem mittleren Durchmesser von 10 mm sowie alle sonographisch abgrenzbaren Gelbkörper dokumentiert. Zur späteren Flächenberechnung wurde von diesen Funktionsgebilden jeweils ein Standbild gespeichert (Abb. 3.2). Zur Messung der Größe der Funktionsgebilde wurden die Ovarien in unterschiedlichen Ebenen dargestellt. Die maximale Querschnittsfläche (Follikelquerschnittsfläche: Afol, Gelbkörperquerschnittsfläche: Acl) wurde an einem IBM kompatiblen Laptop mit Hilfe der Software PixelFlux (Chameleon-Software, Leipzig, D) bestimmt. Dazu wurde die gesamte Querschnittsfläche der Funktionsgebilde durch Umfahren mit dem Cursor als Region of Interest (ROI) markiert (Abb. 3.2). Aus der so erhaltenen Querschnittsfläche wurde über die Formel:

\[d = 2 \cdot \sqrt{\frac{\text{Fläche}}{\pi}} \]

der mittlere Durchmesser (d) ermittelt.
Wiesen Gelbkörper einen Hohlraum auf, wurde die Querschnittsfläche des Hohlraums zur Ermittlung der Lutealgewebefläche (Alut) von der Gelbkörpergesamtquerschnittsfläche abgezogen (Abb. 3.2).

Abb. 3.2: links: Maximale Querschnittsfläche eines Corpus luteum im B-Modus an Tag sieben post ovulationem; rechts: Markierung der maximalen Querschnittsfläche und des Hohlraumes zur Kennzeichnung der Lutealgewebefläche (Alut).
3.5.3 Farbdopplersonographie

3.5.3.1 Bestimmung der follikulären und lutealen Durchblutung

Material und Methoden

Die zu analysierende Fläche entsprach nicht der Fläche der Funktionsgebilde. Daher wurde durch Umfahren des Querschnitts der ovariellen Funktionskörper mit dem Cursor die Analysenfläche als Region of Interest (ROI) festgelegt (Abbildung 3.3), wobei die versorgenden Randgefäße nicht miteingeschlossen wurden. Als Maß für die absolute folliculäre (folBl) und absolute luteale Durchblutung (lutBl) wurde die durchblutete Fläche innerhalb der markierten Analysenfläche herangezogen:

\[\text{folBl bzw. lutBl} = \text{Farbpixelfläche in cm}^2 \]
Material und Methoden

Die relative follikuläre (relfolBlFl) und die relative luteale Durchblutung (rellutBlFl) wurde als Verhältnis zwischen Farbpixelfläche und Gesamtquerschnittsfläche der Funktionsgebilde berechnet:

\[
\text{relfolBlFl bzw. rellutBlFl} = \frac{\text{Farbpixelfläche in cm}^2}{\text{Funktionskörperquerschnittsfläche in cm}^2}
\]

Als Maß für die relative luteale Durchblutung des Lutealgewebes (rellutBlLut) wurde die Fläche der Farbpixel in Relation zur Fläche des Lutealgewebes betrachtet:

\[
\text{rellutBlLut} = \frac{\text{Farbpixelfläche in cm}^2}{\text{Lutealgewebequerschnittsfläche in cm}^2}
\]

Aus den so erhaltenen Perfusionsparametern der drei Standbildauswertungen wurden jeweils die Mittelwerte berechnet und diese für die weiteren Auswertungen herangezogen.

3.5.3.2 Bestimmung des uterinen Blutflusses

Die Ultraschallsonde wurde jeweils so an der A. uterina platziert, dass die Ultraschallwellen in einem Winkel zwischen 30° und 60° (siehe Abb. 3.4) zum Blutstrom der A. uterina auftrafen. Die Winkelmessung erfolgte während der Untersuchung in der
linken Bildhälfte im CF-Modus. Das Farbdopplfenster wurde über dem Gefäß positioniert und die Dopplerwellen durch den zugeschalteten pulsed-wave-Modus abgeleitet (Abb. 3.4). Alle Untersuchungen wurden in Form von Videosequenzen digital aufgezeichnet.
Material und Methoden

Abb. 3.4: Farbdopplersonographie der A. uterina dextra eines Tieres 24 Stunden vor Ovulation; links: A. uterina (rot) im Farbdopplerfenster mit Winkelvorstellung 60°, rechts: Dopplerwellen der A. uterina, bestehend aus systolischem (S) und diastolischem Blutfluss (D).

Aus der maximalen systolischen (S), der minimalen diastolischen Frequenzverschiebung (D_m) und der mittleren maximalen Frequenzverschiebung (TAMF) erfolgte die Ermittlung (siehe Kapitel 2.4.3) des uterinen Blutflusswiderstandes anhand des winkelunabhängigen Pulsatility Index (PI). Aus dem Winkel α zwischen Dopplerstrahl und Blutflussrichtung und der mittleren maximalen
Frequenzverschiebung über den Herzzyklus (time averaged maximum frequency shift, TAMF) wurde die uterine Blutflussgeschwindigkeit (time averaged maximum velocity, TAMV) berechnet.

3.6 Plasmagewinnung und hormonanalytische Untersuchung

Mittels EIA erfolgte die Bestimmung von E₉ im Blutplasma nach der von MEYER et al. (1990) beschriebenen Methode. Dafür wurden zunächst 300 µl Plasma in 1,5 ml Ethergemisch (30 % Buthylmethylether, 70 % Petrolether) extrahiert und mit 120 µl Assaypuffer versetzt. Mittels des monoklonalen Antikörpers E2/E3 Pool 1-Ak und des konkurrierenden enzymmarkierten Hormons 17β-Östradiol-17-Hemisuccinat-Meerrettichperoxidase erfolgte die Hormonkonzentrationsbestimmung. Die Intra- und Interassay-Variationskoeffizienten lagen bei 8,7 % und 12,5 %. Der lineare Messbereich des EIA zur Bestimmung von E₉ erstreckte sich von 0,74 pmol/ml bis 36,80 pmol/ml. Werte, die unterhalb des linearen Messbereiches lagen, wurden für die statistische Auswertung gleich 0,74 pmol/ml gesetzt.
3.7 Gewinnung von Endometrium-Biopsien und Hormonrezeptoranalyse

Am Tag der zweiten GnRH-Gabe sowie sieben Tage post ovulationem wurde den Tieren der Gruppen G40 und G60 direkt im Anschluss an die farbdopplersonographischen Untersuchungen jeweils eine Biopsieprobe aus dem Endometrium entnommen. Dazu wurde die Vulva der Tiere mit Hilfe von Einmalpapierhandtüchern trocken gereinigt und eine modifizierte Biopsiezange nach KEVORKIAN (Firma Hauptner, Solingen, D) unter transrektaler manueller Kontrolle in geschlossenem Zustand vaginal eingeführt. Nach Passieren der Cervix uteri wurde die Biopsiezange am Übergang vom Corpus zu einem der beiden Cornua uteri platziert, die Zange kurzzeitig geöffnet, durch Drücken mit der transrektal eingeführten Hand endometriales Gewebe in die geöffneten Backen der Zange gebracht und durch Schließen der Zange abgesetzt. Direkt im Anschluss an die Gewinnung wurden die Proben in sterile, RNAse freie Mikroschraubröhrchen überführt (Firma Sarstedt, Sarstedt, D, Best.Nr. 72.694.006), in flüssigem Stickstoff tiefgefroren und bis zur Analyse bei -80°C zwischengelagert.

Die Quantifizierung der mRNA der Progesteron-α und –β sowie der Oxytozinrezeptoren erfolgte mittels real-time RT-PCR-Analyse am Lehrstuhl für Physiologie der Technischen Universität München in Freising-Weihenstephan. Die Gesamt-RNA der Endometriumbioptate wurde mit Hilfe des TRlzol Reagens (Invitrogen, Karlsruhe, D) isoliert. Eine zweistufige, quantitative real-time RT-PCR wurde, wie bei ULBRICH et al. (2004) beschrieben, mit Hilfe des LightCycler DNA Master SYBR Green I Protokolls (Roche, Mannheim, D) durchgeführt. Hierfür wurde 1µg jeder RNA-Probe in insgesamt 60µl bestehend aus: 5X Puffer (Promega, Madison, USA), 10mmol dNTPs (Roche, Mannheim, D), 50µmol Hexamere (Gibco BRL, Grand Island, USA) 200U Superscript NT Enzym (Promega, Madison, USA) in cDNA umgeschrieben.

Für jede real-time PCR Reaktion wurde 1µl cDNA zur Amplifizierung spezifischer Zielgene eingesetzt. Jede PCR-Reaktion wurde mit 17ng/µl cDNA begonnen. Das Reaktionsvolumen betrug 10 µl (3mmol MgCl₂, jeweils 0,4µmol Primer, 1X Light Cycler DNA Master SYBR Green I; Roche, Mannheim, D). Eine Standardkurve
wurde erstellt. Folgende Primersequenzen wurden eingesetzt (ULBRICH et al 2003): Ubiquitin (foward: 5’- AGATCCAGGATAAGGAAGGCAT -3’; reverse:5’- GCTCCACCTCAGGGTGAT -3’[198 bp]), Histone (foward: 5’- ACTGCTACAAAGCCGCTC -3’; reverse:5’- ACTTGCTCTGCAAAGCAC -3’[233 bp]), Progesteronrezeptor (foward: 5’-GAGAGCTCATCAAGGCAATTGG-3’; reverse:5’-CACCATCCCTGCAATATCTTG-3’[227 bp]), Östrogenrezeptor-α (foward: 5’- AGGAAGCTCTATTTGCTCC-3’; reverse 5’- CGGTGGATGTGGTCTTCTCT-3’ [234 bp]), Östrogenrezeptor-β (foward: 5’- GCTTCGTGGAGCTCAGCCTG-3’; reverse: 5’-AGGATCATGGCCTTGACACAGA-3’ [262 bp]) und Oxytozinrezeptor (foward: 5’-ACGGTGTCCTGACTGCTG-3’; reverse: 5’-GGTGGCAAGGACAGTGAC-3’ [110 bp]). Die amplifizierten PCR-Fragmente wurden sequenziert (MWG, Ebersberg, D), um die erwarteten PCR Produkte zu verifizieren (EINSPANIER et al. 2002). Danach diente der spezifische Schmelzpunkt der amplifizierten Produkte als Nachweis der Produktidentität (ULBRICH et al. 2004). Als negative Kontrolle wurde Wasser anstelle von cDNA verwendet. Die Zyklauszahl (cycle number, CP), die benötigt wurde, um ein definiertes SYBR Green Fluoreszenz Signal zu erhalten, wurde mit Hilfe der second derivative maximum method ermittelt (LightCycler software, Version 3·5·28). Die CP korrelierte umgekehrt proportional mit dem Logarithmus der initialen Probenkonzentration. Die ermittelten CP der Zielgene wurde gegen die der Mittelwerte aus Ubiquitin und Histone normalisiert (ΔCP).

3.8 Hormonelle Behandlung

Material und Methoden

3.9 Statistische Auswertungen

Die statistische Auswertung wurde mit Hilfe der Programme SAS 9.1 (SAS Institute Inc., Cary/North Carolina, USA, 1988) und StatView Version 5.0 (SAS Institute Inc., Cary, North Carolina, USA) durchgeführt. Aufgrund der teilweise geringen Gruppengrößen wurde die Verteilung der Daten als nicht normalverteilt angenommen. In der deskriptiven Statistik wurden die Daten durch Minimal-(Min) und Maximalwerte (Max) sowie den Median (M) und die Medianabweichung (MAD) charakterisiert. Zur Veranschaulichung der tierindividuellen Variabilität wurden zusätzlich die 25% / 75% Quantile angegeben. Um zu prüfen, ob sich in unabhängigen Stichproben zwei oder mehrere Klassen eines qualitativen Merkmals bezüglich eines quantitativen Merkmals unterscheiden, wurden die Mittelwerte mittels Kruskal-Wallis Test verglichen. Wurden im Kruskal-Wallis Test Unterschiede zwischen den Klassen ersichtlich, wurde durch paarweise Klassenvergleiche (Two Sample Test nach Wilcoxon) untersucht, zwischen welchen Klassen Unterschiede bestanden. Um Zusammenhänge zwischen quantitativen Daten zu erfassen, wurden Korrelationsanalysen nach Spearman durchgeführt. Ergebnisse mit Korrelationskoeffizienten (r) von 0,01 bis 0,25 wurden als geringe Zusammenhänge zwischen zwei Parametern gewertet, jene von 0,26 bis 0,50 wurden als mäßige Beziehungen interpretiert, jene von 0,51 bis 0,75 indizierten gute Zusammenhänge und jene über 0,75 sehr gute Zusammenhänge. Es waren nur die Korrelationskoeffizienten von Interesse, die statistisch signifikant waren.

Beziehungen zwischen zwei Parametern bzw. Unterschiede zwischen Parameterklassen oder abhängigen Stichproben mit einer Irrtumswahrscheinlichkeit (p) mit \(\leq 0,05 \) wurden als signifikant, jene mit \(0,05 < p \leq 0,10 \) als tendenziell und jene mit \(p > 0,05 \) als nicht signifikant bezeichnet.
4 Ergebnisse

4.1 Klinisch-gynäkologische Befunde

Tabelle 4.1: Gründe für das Ausscheiden aus der Studie und Anzahl der Tiere der verschiedenen Gruppen, welche aus der Studie ausgeschieden sind.

<table>
<thead>
<tr>
<th>Ausscheidungsgrund</th>
<th>Gruppe G40 (n = 17)</th>
<th>Gruppe G60 (n = 16)</th>
<th>Gruppe S (n = 17)</th>
<th>Gesamt (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Großzystische Entartungen am Tag 7 p.ov.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>keine Ovulation</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$P_4 < 3,18$ pmol/ml am Tag 7 Tage p.ov.</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Gesamt</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>14</td>
</tr>
</tbody>
</table>

P_4 = Plasmaprogesterongehalt; Gruppe G40: zweite GnRH Injektion 40h nach PGF$_{2\alpha}$; Gruppe G60: zweite GnRH Injektion 60h nach PGF$_{2\alpha}$; Gruppe S: keine GnRH Injektion nach PGF$_{2\alpha}$; n = Anzahl der untersuchten Tiere

Trotz nachgewiesener Ovulation war sieben Tage später bei insgesamt fünf Tieren sonographisch kein Corpus luteum diagnostizierbar. Zwei Tiere mit nachgewiesener Ovulation besaßen zwar sieben Tage später ein im B-Bild darstellbares Corpus
luteum auf einem Ovar, wiesen jedoch einen P₄-Gehalt unter 3,18 pmol/ml auf, so dass bei diesen Gebilden nicht von einem funktionsfähigen Gelbkörper auszugehen war.

Die in die Studie aufgenommenen 12 Tiere der Gruppe G40 hatten vor 45 bis 120 Tagen (M ± MAD = 60 ± 0), die 15 Tiere der Gruppe G60 vor 45 bis 150 Tagen (M ± MAD = 60 ± 0) und Tiere der Gruppe S vor 60 bis 180 Tage abgekalbt (M ± MAD = 120 ± 30). Somit wurden die Tiere der Gruppe S in einem späteren Zeitraum nach der Geburt untersucht als die Tiere der Gruppen G40 (p = 0,02) und G60 (p = 0,05). Die von der Studie ausgeschlossenen fünf Tiere der Gruppe G40 hatten vor 60 bis 180 Tagen (M ± MAD = 90 ± 30), das ausgeschlossene Tier der Gruppe G60 vor 45 Tagen und die acht ausgeschlossenen Tiere der Gruppe S vor 60 bis 180 Tage abgekalbt (M ± MAD = 165 ± 15). Es bestanden keine signifikanten Unterschiede (p = 0,54) zwischen den ausgeschiedenen Tieren der Gruppen G40 und S hinsichtlich des Zeitpunkts der Aufnahme in die Studie.

Die Tiere der Gruppen G40 und G60, welche die Kriterien der Studie erfüllten, ovulierten definitionsgemäß zwischen 64 und 76 Stunden (Gruppe G40) sowie zwischen 84 und 96 Stunden (Gruppe G60) nach Prostaglandininjektion. Der Ovulationszeitpunkt in der Gruppe S variierte zwischen 84 und 144 Stunden. Während eine Kuh bereits 84 Stunden und fünf Kühe 96 Stunden nach induzierter Luteolyse ovulierte, kam es bei drei Tieren dieser Gruppe 108, 120 und 144 Stunden nach induzierter Luteolyse zum Eisprung.
4.2 Hormonelle Befunde

4.2.1 Plasmaöstrogenkonzentrationen im Östrus

Die Gesamtöstrogenkonzentration (E_{ges}) im Plasma der Kontrollgruppe blieb zwischen 36 und 12 Stunden vor der Ovulation auf gleichem Niveau (36-24h p = 0,12; 24-12h p = 0,56). Zwölf Stunden vor der Ovulation lag der Median der E_{ges}-Werte der Gruppe S bei 0,74 pmol/ml. Nur bei zwei Tieren lag E_{ges} mit 1,29 pmol/ml und 0,96 pmol/ml über der Nachweisgrenze von 0,74 pmol/ml.

Vierundzwanzig Stunden vor der Ovulation wiesen Tiere der Gruppe G40 höhere (M ± MAD = 2,06 ± 0,86, Min = 0,74, Max = 4,32; p = 0,02) und Tiere der Gruppe G60 tendenziell höhere E_{ges}-Spiegel auf (M ± MAD = 1,99 ± 0,79, Min = 0,90, Max = 3,86; p = 0,08) als Kühe der Gruppe S (M ± MAD = 0,74 ± 0,00 Min = 0,74, Max = 1,51). Zwischen den Gruppen G40 und G60 waren 24 Stunden vor der Ovulation keine Unterschiede in den E_{ges}-Spiegeln zu verzeichnen (p = 0,76).

Ferner war in der Studiengruppe S eine geringe Variabilität der E_{ges}-Werte mit dem Faktor von 1,2 zwischen minimalen und maximalen Werten zu beobachten. Dagegen waren die Variabilitäten der E_{ges}-Werte der Gruppen G40 und G60 mit den Faktoren 5,8 bzw. 4,3 höher.

4.2.2 Expression der mRNA der Östrogen-, Progesteron- und Oxytozinrezeptoren im Östrus

Aufgrund technischer Schwierigkeiten beim Einführen der Biopsiezange durch die Cervix konnten im Östrus bei zwei Tieren der Gruppe G40 und bei drei Tieren der Gruppe G60 keine Biopsieproben gewonnen werden.

Vierundzwanzig Stunden vor der Ovulation unterschied sich weder die mRNA-Expression des Östrogenrezeptors-α (p = 1,00), des Östrogenrezeptors-β (p = 0,43), des Oxytozinrezeptors (p = 0,80), noch des Progesteronrezeptors (p = 0,44) zwischen den Gruppen G40 und G60 (Abbildung 4.1). Es fiel auf, dass insbesondere die Expression der Progesteronrezeptoren 24 Stunden vor der Ovulation sehr hohen Schwankungen innerhalb der Gruppen G40 und G60 unterlag (siehe Tabellenverzeichnis, Tabelle 9.1). So differierte die Progesteronrezeptorexpression...
Ergebnisse

der Gruppe G40 um den Faktor 36 und diejenige der Gruppe G60 um den Faktor 31. Dagegen variierte die Expression des Oxytozinrezeptors (Faktor 2,6 bzw. 2,1) sowie die Expression des Östrogenrezeptors-α (Faktor 2,8 bzw. 2,9) und –β (Faktor 2,3 bzw. 1,7) weit weniger deutlich zwischen den Tieren.

Abbildung 4.1: Expression der mRNA der endometrialen Hormonrezeptoren Östrogenrezeptor-α, Östrogenrezeptor-β, Oxytozinrezeptor und Progesteronrezeptor 24 Stunden vor der Ovulation der Gruppen G40 (zweite GNRH-Injektion 40h nach PGF$_{2\alpha}$), G60 (zweite GnRH-Injektion 60h nach PGF2α); ΔCP = gegen Ubiqitin und Histon normalisierte Zyklenanzahl der Zielgen-RNA. Es sind jeweils die Medianwerte (M), die 10%--, 25%--, 75%- und 95%-Quantile sowie die Minimal- und Maximalwerte dargestellt.

4.2.3 Plasmaprogesteronkonzentrationen im Diöstrus

Sieben Tage nach der Ovulation wurden bei den Tieren der Gruppen G40, G60 und S keine Unterschiede (G40-G60 p = 0,75, G40-S p = 0,30, G60-S p = 0,36) in der Plasmaprogesteronkonzentration (P$_4$) ermittelt (Tabelle 4.2). In der Gruppe G60 fielen zwei Tiere auf, die mit P$_4$ von 3,30 pmol/ml einen sehr niedrigen bzw. mit P$_4$
von 41,98 pmol/ml einen sehr hohen P₄-Spiegel besaßen. Bei den übrigen Tieren der Gruppe G60 schwankten die P₄-Spiegel zwischen 5,90 und 18,13 pmol/ml. Somit waren unter Ausschluss dieser zwei Ausreißer die Variabilitäten innerhalb der Gruppe G60 zwischen minimalen und maximalen P₄-Werten (Faktor 3,1) mit den Variabilitäten innerhalb der anderen Studiengruppen (G40 = Faktor 3,5; S = Faktor 4,3) vergleichbar.

Tabelle 4.2: Plasmaprogesteronkonzentrationen (P₄) sieben Tage post ovulationem der Gruppen G40, G60 und S (n = 36).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>P₄ [pmol/ml]</th>
<th>G40 (n = 12)</th>
<th>G60 (n = 15)</th>
<th>S (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M ± MAD</td>
<td>10,33 ± 2,70</td>
<td>10,49 ± 3,18</td>
<td>12,40 ± 2,86</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>6,20</td>
<td>3,30</td>
<td>6,68</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>21,37</td>
<td>41,98</td>
<td>28,62</td>
<td></td>
</tr>
</tbody>
</table>

M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; P₄ = Plasmaprogesteronkonzentration; Gruppe G40: zweite GNRH Injektion 40h nach PGF₂α; Gruppe G60: zweite GNRH Injektion 60h nach PGF₂α; Gruppe S = keine GnRH Injektion nach PGF₂α; n = Anzahl der Tiere.

4.2.4 Expression der mRNA der Östrogen-, Progesteron- und Oxytozinrezeptoren im Diöstrus

Aufgrund technischer Schwierigkeiten beim Einführen der Biopsiezange durch die Cervix konnten sieben Tage nach der Ovulation bei vier Tieren der Gruppe G40 und bei drei Tieren der Gruppe G60 keine Biopsieproben gewonnen werden. Sieben Tage nach der Ovulation unterschied sich weder die mRNA-Expression des Östrogenrezeptors-α (p = 0,10), des Östrogenrezeptors-β (p = 0,87), des Oxytozinrezeptors (p = 0,75) noch des Progesteronrezeptors (p = 0,75) zwischen den Gruppen G40 und G60 (Abbildung 4.2). Auch zeigte die Variabilität der untersuchten
Ergebnisse

Hormonrezeptorexpressionen innerhalb der einzelnen Gruppen (siehe Tabellenverzeichnis, Tabelle 9.1) insgesamt eine moderate Schwankungsbreite (Faktor 2,1 bis 4,28).

Abbildung 4.2: Expression der mRNA der endometrialen Hormonrezeptoren Östrogenrezeptor-\(\alpha\), Östrogenrezeptor-\(\beta\), Oxytozinrezeptor und Progesteronrezeptor sieben Tage nach der Ovulation der Gruppen G40 (zweite GNRH-Injektion 40h nach PGF\(_2\)\(\alpha\)), G60 (zweite GnRH-Injektion 60h nach PGF\(_2\)\(\alpha\)); \(\Delta CP\) = gegen Ubiqitin und Histon normalisierte Zyklenanzahl der Zielgen-RNA. Es sind jeweils die Medianwerte (M), die 10%-., 25%-., 75%- und 95%-Quantile sowie die Minimal- und Maximalwerte dargestellt.

Die mRNA-Expression des Oxytozinrezeptors (\(p = 0,44\)), des Östrogenrezeptors-\(\alpha\) (\(p = 0,56\)), des Östrogenrezeptors-\(\beta\) (\(p = 0,16\)), und des Progesteronrezeptors (\(p = 0,56\)) im Diöstrus korrelierte nicht mit der m-RNA-Expression der entsprechenden Rezeptoren im Östrus.
4.3 Sonographische Befunde

4.3.1 Follikel im Östrus

Größen der Follikel
Da in der Studie die Durchmesser der Follikel und der Corpora lutea nicht gesondert vermessen, sondern nur jeweils aus der mittleren Querschnittsfläche der Funktionsgebilde berechnet wurden (siehe Kapitel 3.5.2.1), gelten die Größenvergleiche für beide Parameter. In den folgenden Kapiteln werden daher lediglich die Vergleiche der Querschnittsflächen in Textform beschrieben, während die Vergleiche der Durchmesser nur tabellarisch wiedergegeben werden.

In der Gruppe S blieb der dominante Follikel 36 bis 12 Stunden vor der Ovulation gleich (36-24h p = 0,49; 24-12h p = 0,86) groß (Tabelle 4.3). Auch konnten zu den einzelnen Untersuchungszeitpunkten nur relativ geringe individuelle Unterschiede in Afol beobachtet werden. So schwankten die minimale und maximale Fläche des dominanten Follikels bei den Kontrolltieren um die Faktoren 1,8 (36 Stunden vor der Ovulation), 1,8 (24 Stunden vor der Ovulation) und 1,7 (12 Stunden vor der Ovulation).
Tabelle 4.3: Follikelquerschnittsfläche (Afol), Follikeldurchmesser, absolute follikuläre Durchblutung (folBl) und relative follikuläre Durchblutung (relfolBlFl) des dominanten Follikels der Gruppe S 36 bis 12 Stunden vor Ovulation (n = 9).

<table>
<thead>
<tr>
<th></th>
<th>36 Stunden vor Ovulation</th>
<th>24 Stunden vor Ovulation</th>
<th>12 Stunden vor Ovulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afol [mm²]</td>
<td>M ± MAD</td>
<td>220 ± 40</td>
<td>235 ± 17</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>166</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>302</td>
<td>374</td>
</tr>
<tr>
<td>Follikeldurchmesser [mm]</td>
<td>M ± MAD</td>
<td>17 ± 7</td>
<td>17 ± 5</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>folBl [mm²]</td>
<td>M ± MAD</td>
<td>48 ± 10</td>
<td>46 ± 16</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>72</td>
<td>99</td>
</tr>
<tr>
<td>relfolBlFl [%]</td>
<td>M ± MAD</td>
<td>21 ± 3</td>
<td>17 ± 5</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>27</td>
<td>39</td>
</tr>
</tbody>
</table>

M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; Afol = Follikelquerschnittsfläche; folBl = absolute follikuläre Durchblutung; relfolBlFl = relative follikuläre Durchblutung; Gruppe S = keine GnRH Injektion nach PGF₂α; n = Anzahl der Tiere.
Ergebnisse

Tiere der Gruppe G40 wiesen 24 Stunden vor der Ovulation im Vergleich zur Gruppe S eine um 33% kleinere (p = 0,004) Afol auf (Abbildung 4.3). Afol der Gruppe G60 unterschied sich nicht von derjenigen der beiden anderen Gruppen (G40-G60 p = 0,44, G60-S p = 0,27). Auffällig war, dass die Variabilität der Afol-Werte in der Kontrollgruppe weniger stark ausgeprägt war (Faktor 1,8), als in den Gruppen G40 (Faktor 5,6) und G60 (Faktor 6,4).

Abbildung 4.3: Follikelquerschnittsfläche (Afol) 24 Stunden vor der Ovulation der Gruppen G40 (zweite GNRH-Injektion 40h nach PGF$_2$α), G60 (zweite GnRH-Injektion 60h nach PGF2α) und S (keine zweite GnRH-Injektion); a, b: Werte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (p < 0,05). Es sind jeweils die Medianwerte (M), die 10%--, 25%--, 75%- und 95%-Quantile sowie die Minimal- und Maximalwerte dargestellt.
Follikulärer Blutfluss

Bei allen Tieren der Gruppe S war 36 bis 12 Stunden vor der Ovulation eine Durchblutung des dominanten Follikels darstellbar (Tabelle 4.3), wobei sich weder der absolute (folBl) (36-24h p = 0,79; 24-12h p = 0,29) noch der relative follikuläre Blutfluss (relBlFl) (36-24h p = 0,89; 24-12h p = 0,35) zwischen den einzelnen Untersuchungszeitpunkten veränderte. Es fiel bei Betrachtung der Variabilität der folBl-Werte auf, dass diese mit Annäherung an den Ovulationszeitpunkt deutlich abnahm (36h p. ov.: Faktor 5,5; 24h p. ov.: Faktor 3,5; 12h p. ov.: Faktor 1,6).

Vierundzwanzig Stunden vor der Ovulation war folBl der Gruppe S um 46% höher als derjenige der Gruppe G40 (p = 0,05; Abbildung 4.4), wobei in beiden Gruppen die Variabilität gleich hoch war (Gruppe G40, Faktor 3,8; Gruppe S, Faktor 3,5). Die folBl-Werte unterschieden sich zu diesem Zeitpunkt nicht zwischen den Gruppen G40 und G60 (p = 0,65) sowie zwischen G60 und S (p = 0,17). Bei der Gruppe G60 waren hohe Unterschiede in den folBl-Werten zwischen den einzelnen Tieren auffallend (Faktor 8,1). Hinsichtlich des Parameters relfolBlFl waren keine Unterschiede zwischen den Gruppen G40, G60 und S (G40-G60 p = 0,93, G40-S p = 0,76, G60-S p = 0,64) zu beobachten (siehe Tabellenverzeichnis, Tabelle 9.2). Dagegen war die Variabilität der relfolBlFl-Werte der Gruppe G40 (Faktor 10) höher als die Variabilität der Gruppen G60 (Faktor 4,6) und S (Faktor 3,25).

Der relative follikuläre Blutfluss stand 24 Stunden vor der Ovulation in mäßiger negativer Beziehung zu Afol (r = -0,44; p = 0,01). Die folBl-Werte wiesen keine Beziehung zu den Afol-Werten auf (p = 0,50). Weder die folBl- noch die relBlFl-Werte korrelierten 24 Stunden vor der Ovulation mit E_{ges} (p = 0,91).
Abbildung 4.4: Absolute follikuläre Durchblutung (folBl) und relative follikuläre Durchblutung (relfolBlFl) 24 Stunden vor der Ovulation der Gruppen G40 (zweite GNRH-Injektion 40h nach PGF$_2\alpha$), G60 (zweite GnRH-Injektion 60h nach PGF$_2\alpha$) und S (keine zweite GnRH-Injektion); a, b: Werte mit unterschiedlichen Buchstaben unterscheiden sich signifikant ($p < 0,05$). Es sind jeweils die Medianwerte (M), die 10%--, 25%--, 75%- und 95%-Quantile sowie die Minimal- und Maximalwerte dargestellt.

Uteriner Blutfluss im Östrus

Die uterine Blutflussgeschwindigkeit (TAMV) und der uterine Blutflusswiderstand (PI) der Gruppen G40 und G60 differierte 24 Stunden vor der Ovulation weder (TAMV $p = 0,29$; PI $p = 0,33$) zwischen der rechten und linken Körperseite (siehe Tabellenverzeichnis, Tabelle 9.4) noch (TAMV $p = 0,45$; PI $p = 0,68$) in Abhängigkeit von der Lokalisation des dominanten Follikels (siehe Tabellenverzeichnis, Tabelle 9.4). Daher wurden für die weiteren Auswertungen jeweils die Mittelwerte der Blutflussparameter beider Körperseiten herangezogen.

Sowohl die mittleren TAMV-Werte ($p = 0,18$) als auch die mittleren PI-Werte ($p = 0,21$) differierten 24 Stunden vor der Ovulation nicht zwischen den Tieren der Gruppen G40 und G60 (Tabelle 4.4). Darüber hinaus zeigten die Tiere beider Studiengruppen bei den TAMV-Werten vergleichbare Schwankungsbereiche.
Ergebnisse

(Gruppe G40: Faktor 3,85, Gruppe G60: Faktor 3,43). Dagegen waren die Spannbreiten der PI-Werte der Gruppe G40 höher als bei den Tieren der Gruppe G60 (Faktor 4,2 vs. Faktor 2,1).
Ergebnisse

Tabelle 4.4: Uterine Blutflussgeschwindigkeit (TAMV) und uteriner Blutflusswiderstand (PI) 24 Stunden vor der Ovulation der Gruppen G40 und G60 (n = 19).

<table>
<thead>
<tr>
<th>TAMV [cm/s]</th>
<th>G40 (n = 9)</th>
<th>Gruppe G60 (n = 10)</th>
<th>Gesamt (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M ± MAD</td>
<td>20,57 ± 4,52</td>
<td>25,47 ± 5,46</td>
<td>21,15 ± 5,62</td>
</tr>
<tr>
<td>Min</td>
<td>7,94</td>
<td>10,78</td>
<td>7,94</td>
</tr>
<tr>
<td>Max</td>
<td>30,60</td>
<td>36,99</td>
<td>36,99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PI</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M ± MAD</td>
<td>3,07 ± 0,31</td>
<td>2,88 ± 0,39</td>
<td>3,02 ± 0,43</td>
</tr>
<tr>
<td>Min</td>
<td>2,59</td>
<td>2,13</td>
<td>2,13</td>
</tr>
<tr>
<td>Max</td>
<td>10,77</td>
<td>4,51</td>
<td>10,77</td>
</tr>
</tbody>
</table>

M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; TAMV = uterine Blutflussgeschwindigkeit; PI = uteriner Blutflusswiderstand, Pulsatily Index; Gruppe G40: zweite GnRH Injektion 40h nach PGF$_2\alpha$; Gruppe G60: zweite GnRH Injektion 60h nach PGF$_2\alpha$; n = Anzahl der Tiere.

Vierundzwanzig Stunden vor der Ovulation bestanden weder Beziehungen zwischen den Perfusionsparametern TAMV (p = 0,80), PI (p = 0,91) und E_{ges} noch zwischen den Perfusionparametern TAMV (Östrogenrezeptor-α p = 0,44, Östrogenrezeptor-β p = 0,79, Oxytozinrezeptor p = 0,93, Progesteronrezeptor p = 0,38), PI (Östrogenrezeptor-α p = 0,62, Östrogenrezeptor-β p = 0,75, Oxytozinrezeptor p = 0,84, Progesteronrezeptor p = 0,50) und der mRNA-Expression der Hormonrezeptoren (siehe Tabellenverzeichnis, Tabellen 9.6).
4.3.2 Corpora lutea im Diöstrus

Größe der Corpora lutea

Kühe der Gruppe G40 (Abbildung 4.5) besaßen sieben Tage nach der Ovulation eine tendenziell kleinere Gelbkörperquerschnittsfläche (Acl) als Tiere der Gruppe S ($p = 0,08$). Der Unterschied betrug 21%. Ansonsten waren zwischen den drei Gruppen keine Unterschiede (Acl G40-G60 $p = 0,35$, G60-S $p = 0,46$; Alut G40-G60 $p = 0,23$, G40-S $p = 0,25$, G60-S $p = 0,91$) hinsichtlich der mittels B-Modus erhobenen Parameter am Corpus luteum (siehe Tabellenverzeichnis, Tabelle 9.3) und hinsichtlich der Variabilität der erhobenen Parameter innerhalb der Gruppen festzustellen (Acl: Gruppe G40: Faktor 2,3, Gruppe G60: Faktor 2,6, Gruppe S: Faktor 2,1; Alut: Gruppe G40: Faktor 2,6, Gruppe G60: Faktor 2,6, Gruppe S: Faktor 2,1).

Abbildung 4.5: Gelbkörperquerschnittsfläche (Acl) und Lutealgewebefläche (Alut) sieben Tage nach der Ovulation bei den Gruppen G40 (zweite GnRH-Injektion 40h nach PGF$_2\alpha$), G60 (zweite GnRH-Injektion 60h nach PGF$_2\alpha$) und S (keine zweite GnRH-Injektion); *, #) mit Asteriks markierte Werte unterscheiden sich tendenziell ($0,05 < p \leq 0,10$). Es sind jeweils die Medianwerte (M), die 10%--, 25%--, 75%- und 95%-Quantile sowie die Minimal- und Maximalwerte dargestellt.
Lutealer Blutfluss

Die lutBl-Werte (Abbildung 4.6) waren bei den Tieren der Gruppe G40 sieben Tage nach der Ovulation um 32% geringer ($p = 0,02$) als bei Tieren der Gruppe G60 und um 53% geringer ($p = 0,0007$) als bei Tieren der Gruppe S. Tiere der Gruppe G60 unterschieden sich in den lutBl-Werten nur tendenziell ($p = 0,08$) von den Tieren der Gruppe S, wobei die lutBl-Werte um 30% geringer waren.

![Abbildung 4.6: Absolute luteale Durchblutung (lutBl), relative luteale Durchblutung (rellutBIFl) und relative luteale Durchblutung des Lutealgewebes (rellutBLut) sieben Tage nach der Ovulation bei den Gruppen G40 (zweite GnRH-Injektion 40h nach PGF$_{2\alpha}$), G60 (zweite GnRH-Injektion 60h nach PGF$_{2\alpha}$) und S (keine zweite GnRH-Injektion); a, b: Werte mit unterschiedlichen Buchstaben unterscheiden sich signifikant ($p < 0,05$); *, # mit Asteriks markierte Werte unterscheiden sich tendenziell (0,05 $< p < 0,10$). Es sind jeweils die Medianwerte (M), die 10%--, 25%--, 75%- und 95%-Quantile sowie die Minimal- und Maximalwerte dargestellt.](image)

Der rellutBIFl der Gruppe G40 war um 41% geringer ($p = 0,03$) als derjenige der Gruppe S. Er war jedoch nur tendenziell um 29% geringer ($p = 0,08$) als derjenige der Gruppe G60. Die Tiere der Gruppe G40 besaßen zudem einen um 44%
geringeren rellutBlLut als Tiere der Gruppe S (p = 0,01). Sie unterschieden sich jedoch hinsichtlich dieses Parameters nicht von Tieren der Gruppe G60 (p = 0,17). Tiere der Gruppe G60 differierten weder hinsichtlich des Parameters rellutBlFl (p = 0,34) noch bezüglich des Parameters rellutBlLut (p = 0,19) von Tieren der Gruppe S.

Lediglich die Variabilität von Alut innerhalb der Gruppe G60 war (Faktor 4,3) höher als bei der Gruppe G40 (Faktor 2,6) und S (Faktor 2,2). Dagegen konnten bei den relativen lutealen Perfusionsparametern rellutBlFl (Gruppe G40: Faktor 3,0; Gruppe G60: Faktor 3,1; Gruppe S: Faktor 3,3) und rellutBlLut (Gruppe G40: Faktor 3,5; Gruppe G60: Faktor 4,3; Gruppe S: Faktor 3,2) vergleichbare tierindividuelle Schwankungen beobachtet werden (siehe Tabellenverzeichnis, Tabelle 9.3).

Die Acl-Werte korrelierten sieben Tage nach der Ovulation negativ mit rellutBlFl (r = -0,35; p = 0,03) und negativ mit rellutBlLut (r = -0,31; p = 0,06), standen aber in keiner Beziehung zu lutBl (p = 0,17). Die Alut-Werte korrelierten negativ (r = -0,31; p = 0,05) mit rellutBlFl und negativ (r = -0,37; p = 0,03) mit rellutBlLut. Dagegen bestanden keine Beziehungen zwischen Alut und lutBl (p = 0,12). Jedoch bestanden Beziehungen zwischen den lutBl Werten und den P4 Werten (r = 0,41, p = 0,05), wogegen zwischen Acl und P4 keine Korrelationen (p = 0,54) ermittelt werden konnten.

Die 24 Stunden vor der Ovulation gemessenen Werte für Afol korrelierten mit Acl (r = 0,51; p = 0,003), mit Alut (r = 0,44; p = 0,01) und mit lutBl (r = 0,49, p = 0,005), welche sieben Tage nach der Ovulation bestimmt wurden. Zwar korrelierte folBl vierundzwanzig Stunden vor der Ovulation tendenziell mit lutBl (r = 0,41, p = 0,06), die sieben Tage nach Ovulation gemessen wurde. Jedoch konnten keine Korrelationen zwischen den relativen Blutflüssen der Follikel und den relativen Blutflüssen der sich daraus entwickelnden Corpora lutea ermittelt werden (p = 0,14). Dagegen korrelierten die reflolBlFl-Werte negativ (r = -0,49, p = 0,004) mit Acl und negativ (r = -0,39, p = 0,03) mit Alut, welche sieben Tage nach der Ovulation bestimmt wurden.
4.3.3 Uteriner Blutfluss im Diöstrus

Sieben Tage nach der Ovulation unterschieden sich TAMV und PI weder (TAMV \(p = 0,18; \) PI \(p = 0,66 \)) in Abhängigkeit von der Körperseite (siehe Tabellenverzeichnis, Tabelle 9.4) noch (TAMV \(p = 0,81; \) PI \(p = 0,15 \)) in Abhängigkeit von der Lokalisation des Corpus luteums. Daher wurde für die weitere Auswertung jeweils der Mittelwert der Blutflussparameter beider Körperseiten herangezogen.

Sowohl die mittleren TAMV- (\(p = 0,65 \)) als auch die mittleren PI- (\(p = 0,49 \)) Werte (Tabelle 4.5) unterschieden sich sieben Tage nach der Ovulation nicht zwischen den Tieren der Gruppen G40 und G60. In den TAMV- Werten wurden vergleichbare tierindividuelle Schwankungen der Gruppe G40 (Faktor 3,4) und G60 (Faktor 2,5) beobachtet. Dagegen war die Variabilität der PI-Werte bei der Gruppe G40 (Faktor 2,7) höher als die Variabilität der Gruppe S (Faktor 1,6).
Ergebnisse

Tabelle 4.5: Uterine Blutflussgeschwindigkeit (TAMV) und uteriner Blutflusswiderstand (PI) der Gruppen G40 und G60 sieben Tage nach der Ovulation (n = 19).

<table>
<thead>
<tr>
<th>TAMV</th>
<th>G40</th>
<th>G60</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 9)</td>
<td>(n = 10)</td>
<td>(n = 19)</td>
</tr>
<tr>
<td>M ± MAD</td>
<td>15,02 ± 3,24</td>
<td>15,26 ± 2,12</td>
<td>15,02 ± 3,14</td>
</tr>
<tr>
<td>Min</td>
<td>6,74</td>
<td>9,18</td>
<td>6,74</td>
</tr>
<tr>
<td>Max</td>
<td>23,21</td>
<td>22,80</td>
<td>22,80</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>4,02 ± 0,35</td>
<td>4,09 ± 0,33</td>
<td>4,08 ± 0,38</td>
</tr>
<tr>
<td>Min</td>
<td>3,22</td>
<td>2,97</td>
<td>2,97</td>
</tr>
<tr>
<td>Max</td>
<td>8,65</td>
<td>4,88</td>
<td>8,65</td>
</tr>
</tbody>
</table>

M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; TAMV = uterine Blutflussgeschwindigkeit; PI = uteriner Blutflusswiderstand, Pulsatily Index; Gruppe G40: zweite GnRH Injektion 40h nach PGF\(_2\alpha\); Gruppe G60: zweite GnRH Injektion 60h nach PGF\(_2\alpha\); n = Anzahl der Tiere.

Sieben Tage nach Ovulation bestanden weder Beziehungen zwischen den Perfusionparametern TAMV (p = 0,59), PI (p = 0,99) und P\(_4\) noch zwischen den Perfusionparametern TAMV (Östrogenrezeptor-\(\alpha\) p = 0,21, Östrogenrezeptor-\(\beta\) p = 0,75, Oxytozinrezeptor p = 0,39, Progesteronrezeptor p = 0,96) PI (Östrogenrezeptor-\(\alpha\) p = 0,23, Östrogenrezeptor-\(\beta\) p = 0,20, Oxytozinrezeptor p = 0,61, Progesteronrezeptor p = 0,33) und der Genexpression der Hormonrezeptoren (siehe Tabellenverzeichnis, Tabelle 9.7).
Weder die 24 Stunden vor der Ovulation gemessenen TAMV-Werte ($p = 0,13$) noch die PI-Werte ($p = 0,19$) standen mit den jeweiligen uterinen Perfusionsparametern sieben Tage nach der Ovulation in einem Zusammenhang.
5 Diskussion

5.1 Pathologische Befunde

Im Verlauf der Studie zeigte sich, dass die vorzeitige Induktion der Ovulation mittels GnRH bereits 40 Stunden nach der Prostaglandingabe dazu geführt hat, dass bei

5.2 Endokrinologische Befunde

Weiterhin fiel in der eigenen Studie auf, dass die Variabilität der Östrogenkonzentrationen 24 Stunden vor der Ovulation bei der Gruppe S geringer war als bei den Gruppen G40 und G60. Dies könnte darauf hinweisen, dass die Follikel sich zu diesem Zeitpunkt bei den Tieren mit induzierter Ovulation in einem sehr variablen Reifezustand befanden. Bei Tieren, die hohe Östrogenwerte aufwiesen, waren die Follikel wahrscheinlich noch nicht so weit ausgereift wie bei Tieren, bei denen basale Östrogenkonzentrationen gemessen wurden.

5.3 Sonographische Befunde der Ovarien

5.3.1 Follikel

Obwohl PURSLEY et al. (1997a) der Ansicht sind, dass sich alle präovulatorischen Follikel zum Zeitpunkt der Besamung in einem einheitlichen Reifestadium befinden, fiel in der eigenen Studie auf, dass bei den Tieren der Gruppen G40 und G60 die
präovulatorischen Follikelphase zunehmen (PETERS et al. 1999; MAWHINNEY et al. 1999; PETERS u. PURSLEY 2003). Der follikuläre Blutfuss in Relation zur Größe des Follikels unterschied sich zwar nicht zwischen den verschiedenen Tiergruppen, es fiel aber auch hier auf, dass die Variabilität des Blutfusses mit zunehmender Länge der präovulatorischen Phase abnahm. Auch dieses Ergebnis lässt vermuten, dass die Angiogenese ein wichtiger Indikator für die Follikelreife ist.

5.3.2 Corpora lutea
Das Lutealgewebe war bei den Tieren der Gruppe G40 am Tag sieben nach der Ovulation tendenziell kleiner als bei den Tieren der Gruppe S. Zwischen den Tieren der Gruppen G40 und G60 bzw. G60 und S waren hinsichtlich dieses Parameters keine Unterschiede festzustellen. Die Größe des Corpus luteum differierte nicht zwischen den Tiergruppen. Die Ovulationsinduktion mittels GnRH hatte dagegen deutliche Effekte auf den lutealen Blutfuss. Alle drei lutealen Blutfussparameter, der absolute Blutfuss sowie die relativen Blutfüsse, bezogen auf die Größe des Corpus luteum bzw. das Lutealgewebe, waren sieben Tage nach der Ovulation bei den Tieren, bei denen die Ovulation bereits 40 Stunden nach der Prostaglandininjektion verabreicht worden war, geringer als bei den Kühen, bei denen die Ovulation spontan eingetreten war. Ausserdem war bei den Tieren der Gruppe G60 der absolute luteale Blutfuss tendenziell niedriger als bei den Tieren der Gruppe S und...
der relative luteale Blutfluss bezogen auf die Größe des CL größer als bei den Tieren der Gruppe G40.

Dies bedeutet, dass sich die frühzeitige Induktion der Ovulation 40 Stunden nach der Prostaglandinapplikation negativ auf die Angiogenese des CL ausgewirkt hat. Auch bei der Gruppe G60 waren tendenziell negative Effekte der Ovulationsinduktion auf die luteale Durchblutung zu verzeichnen.

Die Ursache dafür, dass die Corpora lutea nach frühzeitiger Ovulationsinduktion tendenziell kleiner und signifikant schlechter durchblutet waren, ist vermutlich bereits in der präovulatorischen Phase zu suchen. So bestanden zwischen den Größen der präovulatorischen Follikel- und der sich daraus entwickelnden Corpora lutea gute Zusammenhänge. Ausserdem bestanden Korrelationen zwischen der absoluten und relativen Durchblutung der Follikel und der Corpora lutea.

luteum nach Ovulationsinduktion, unabhängig von den Plasmaprogesteron­spiegeln, negativ auf die Fertilität auswirken.

5.4 Sonographische Befunde des Uterus

5.5 Schlussfolgerungen und Ausblick
Insgesamt zeigen die Ergebnisse dieser Studie, dass beim Rind eine Verkürzung der präovulatorischen Follikelphase zwar keine negativen Auswirkungen auf die im Plasma gemessenen Steroidhormone, aber auf die Durchblutung der ovariellen Funktionsgebilde hat. Negative Folgen auf das uterine Geschehen konnten weder anhand der Genexpression der Steroidhormonrezeptoren, noch der uterinen Perfusion nachgewiesen werden. Somit scheinen die variierenden Trächtigkeitsergebnisse nach unterschiedlichen Synchronisationsverfahren
Diskussion

Im Hinblick auf bestehende Synchronisationsprogramme wäre es so möglich, neue Empfehlungen für die optimale Zeitspanne von induzierter Gelbkörperrückbildung bis zur Induktion der Ovulation, sprich der zweiten GnRH-Gabe eines OvSynch Programms, auszusprechen.

Dies könnte letztendlich ein Beitrag zur Verbesserung der Fruchtbarkeit in Hochleistungsmilchviehherden darstellen.
Zusammenfassung

6 Zusammenfassung

David Prost

Auswirkung einer verkürzten präovulatorischen Follikelphase auf den genitalen Blutfluss und die endometriale Hormonrezeptorkonzentration des Rindes

Ziel der vorliegenden Studie war es, zu überprüfen, welche Auswirkungen die Dauer der präovulatorischen Follikelphase auf den genitalen Blutfluss und die mRNA-Expression der Sexualhormon- und Oxytozinrezeptoren im Endometrium hat. Dazu wurden 50 Holstein Friesian Kühe modifizierten OvSynch Programmen unterzogen, bei denen die zweite GnRH-Injektion 40 (G40, n=17) bzw. 60 Stunden (G60, n=16) nach der PGF$_{2\alpha}$ Gabe erfolgte. In einer dritten Gruppe (Gruppe S, n=17) wurde keine zweite GnRH-Applikation durchgeführt, sondern die spontane Ovulation abgewartet. Mittels transrektaler Farbdopplersonographie wurde an den Tag der Hormonapplikationen sowie 24 Stunden vor und sieben Tage nach der Ovulation die Morphologie und Durchblutung des inneren Genitales beurteilt. Es wurden die maximale Querschnittsfläche und die absolute und relative Durchblutung der dominanten Follikel und der sich daraus entwickelnden Corpora lutea ermittelt, wobei die relative Durchblutung aus dem Quotienten zwischen absoluter Durchblutung und der Fläche der Funktionsgebilde errechnet wurde. Die uterine Perfusion wurde anhand der Blutflussgeschwindigkeit (TAMV) und des Blutflusswiderstands (PI) in den Aa. uterinae bestimmt. Ferner wurden 24 Stunden vor der Ovulation die Östrogenkonzentration im Plasma (E$_{ges}$) und die mRNA-Expression der Östrogenrezeptoren-α und β sowie der Oxytozin- und Progesteronrezeptoren im Endometrium bestimmt. Sieben Tage nach der Ovulation wurden die Progesteronspiegel (P$_{4}$) im Plasma und die Expression der genannten Rezeptoren im Endometrium gemessen. Die Bestimmung der mRNA-Konzentration der Rezeptoren im Endometrium beschränkte sich auf die Gruppen G40 und G60. Im Rahmen der Untersuchungen wurden folgende Ergebnisse erzielt:
1. Von den Kühen aus Gruppe G40 schieden 29%, von denjenigen aus Gruppe G60 1% und von den Tieren aus Gruppe S 47% aus der Studie aus, da sie entweder nicht ovulierten, die Follikel großzystisch entarteten oder am Tag sieben post ovulationem der P₄-Spiegel unter dem Schwellenwert von 3,18 pmol/ml lag. Alle anderen 36 Tiere ovulierten ordnungsgemäß und wiesen am Tag 7 nach der Ovulation ein Corpus luteum und P₄-Spiegel ≥ 3,18 pmol/ml auf.

2. Vierundzwanzig Stunden vor der Ovulation war E_{ges} in Gruppe S signifikant niedriger als in Gruppe G40 (0,74 pmol/ml vs. 2,06 pmol/ml; p = 0,02) und tendenziell geringer als in Gruppe G60 (0,74 pmol/ml vs. 1,99 pmol/ml; p = 0,08). Die Werte der Gruppen G40 und G60 differierten nicht (p > 0,05).

3. Sieben Tage nach der Ovulation unterschied sich die P₄-Konzentration nicht zwischen den drei Tiergruppen (G40: 10,33 pmol/ml; G60: 10,49 pmol/ml; S: 12,40 pmol/ml; p > 0,05).

4. Die endometriale mRNA-Expression der Steroidhormon- und Oxytozinrezeptoren unterschied sich weder 24 Stunden vor der Ovulation noch sieben Tage nach der Ovulation zwischen den Gruppen G40 und G60 (p > 0,05).

5. Tiere der Gruppe G40 wiesen 24 Stunden vor der Ovulation sowohl eine geringere Follikelquerschnittsfläche (156 mm² vs. 232 mm²; p = 0,004) als auch eine geringere absolute follikuläre Durchblutung (32 mm² vs. 59 mm²; p = 0,05) auf als Kühe der Gruppe S. Die Follikelparameter der Gruppe G60 unterschieden sich nicht von denjenigen der Gruppen G40 und S (p > 0,05).

6. Sieben Tage nach der Ovulation hatten Kühe aus Gruppe G40 verglichen mit Kühen aus Gruppe S sowohl eine tendenziell geringere Querschnittsfläche (347 mm² vs. 438 mm²; p = 0,08) als auch eine geringere absolute (69 mm² vs. 146 mm²; p = 0,0007) und relative (20% vs. 34%; p = 0,03) Durchblutung des Gelbkörpers. In Gruppe G60 war nur die absolute luteale Durchblutung tendenziell niedriger als in Gruppe S (102 mm² vs. 146 mm²; p = 0,08). Zwischen den Gruppen G40 und G 60 bestand nur ein signifikanter Unterschied in der absoluten lutealen Durchblutung (69 mm² vs. 102 mm²; p = 0,02).

7. Die Querschnittsflächen der präovulatorischen Follikel korrelierten positiv mit den Querschnittsflächen der sich daraus entwickelnden Corpora lutea ($r = 0,51$;
Zusammenfassung

$p = 0,003$). Außerdem bestanden tendenziell positive Korrelationen zwischen der absoluten Durchblutung der Follikel und derjenigen der Corpora lutea ($r = 0,41; p = 0,06$), jedoch keine Korrelationen zwischen der relativen Durchblutung der Follikel und derjenigen der Corpora lutea ($p = 0,14$). Es konnten weder Korrelationen zwischen der Follikelfläche und E_{ges} noch der Gelbkörperquerschnittsfläche und P_4 ermittelt werden ($p > 0,05$).

8. Es bestanden weder 24 Stunden vor der Ovulation noch sieben Tage nach der Ovulation Unterschiede in den uterinen TAMV- und PI-Werten zwischen den einzelnen Gruppen ($p > 0,05$).

Die Ergebnisse dieser Studie deuten darauf hin, dass eine Verkürzung der präovulatorischen Follikelphase zwar keine negativen Auswirkungen auf das uterine, jedoch auf das ovarielle Geschehen hat. Folglich könnten die erhöhten Trächtigkeitsraten bei OvSynch Programmen, bei denen die präovulatorische Follikelentwicklung durch eine spätere Injektion von GnRH verlängert wird, auf eine positive Beeinflussung der follikulären und lutealen Entwicklung zurückzuführen sein.
7 Summary

David Prost

Effects of a shortened preovulatory follicular phase on genital blood flow and endometrial hormone receptor concentrations by in diary cows

The aim of this study was to measure the effect of the duration of the preovulatory phase on genital blood flow and the mRNA expression of endometrial hormone receptors. Therefore, the oestrus and/or ovulation of 50 German Holstein cows was synchronised by modified Ovsynch programs, in which the second GnRH injection was given 40h (group G40, n=17) or 60h (group G60, n=16) after the PGF2α injection. In the third group (group S, n=17), no second GnRH-application was performed and cows ovulated spontaneously. Transrectal colour Doppler examinations were carried out on the days of hormone injections, 24h before and seven days after ovulation to evaluate genital morphology and blood flow. The area of the maximum vertical plane and the absolute and relative blood flow of the dominant follicle and the subsequent developing corpus luteum were determined. Relative blood flow was calculated by the ratio of absolute blood flow to the area of the according structures. Uterine blood flow was reflected by the time-averaged maximum velocity (TAMV) and the pulsatility index (PI). Furthermore, estrogen concentrations in blood plasma (E$_{ges}$) and endometrial mRNA-concentrations of estrogen receptors α and β as well as oxytocin and progesterone receptors were determined 24h before ovulation. Seven days after ovulation, plasma progesterone concentrations (P$_{4}$) and mentioned endometrial hormone receptor concentrations were determined. The following results were obtained:

1. Due to missing ovulation, cystic degeneration of the follicle or P$_{4}$ levels less than 3.18 pmol/ml seven days after ovulation, 29% of the cows in group G40, 1% of group G60 and 47% of group S were excluded from further analyses. The
remaining 36 cows ovulated as expected and showed P_4-values ≥ 3.18 pmol/ml seven days after ovulation.

2. Twenty-four hours before ovulation, the cows of group S showed significant lower E_{ges} levels than cows of group G40 (0.74 pmol/ml vs. 2.06 pmol/ml; $P = 0.02$) and tended to have lower levels than cows in group G60 (0.74 pmol/ml vs. 1.99 pmol/ml; $P = 0.08$). No difference in E_{ges} was observed between groups G40 and G60 ($P > 0.05$).

3. Seven days after ovulation, the P_4 concentration did not differ between the three groups (G40: 10.33 pmol/ml; G60: 10.49 pmol/ml; S: 12.40 pmol/ml; $P > 0.05$).

4. The mRNA-expression of the steroid hormone and oxytocin receptors did not differ between groups G40 and G60 24 h before as well as seven days after ovulation ($P > 0.05$).

5. Twenty-four hours before ovulation, the dominant follicles of group G40 exhibited smaller areas of the maximum vertical plane (156 mm2 vs. 232 mm2, $P = 0.004$) and lower absolute blood flow (32 mm2 vs. 59 mm2, $P = 0.05$) compared to those of cows in group S. The values of the follicular end point variables of group G60 did not differ from those of groups G40 and S ($P > 0.05$).

6. Seven days after ovulation, cows of group G40 tended to have smaller areas of the maximum vertical plane of the corpus luteum (347 mm2 vs. 438 mm2; $P = 0.08$), and had significantly lower absolute (69 mm2 vs. 146 mm2; $P = 0.0007$) and relative (20% vs. 34%; $P = 0.03$) luteal blood flow values compared to cows in group S. In group G60, solely the absolute luteal blood values tended to be lower than those in group S (102 mm2 vs. 146 mm2; $P = 0.08$) and were higher compared to those in group G40 (102 mm2 vs. 69 mm2; $P = 0.02$).

7. The areas of the maximum vertical plane of the dominant follicles and the corresponding corpora lutea correlated positively ($r = 0.51$; $P = 0.003$). Also the absolute blood flow of the dominant follicles and the corresponding corpora lutea tended to correlate positively ($r = 0.41$; $P = 0.06$), but there were no correlations between the relative blood of the dominant follicles and the corresponding corpora lutea ($P = 0.14$). No correlations were observed between the area of the
maximum vertical plane of the dominant follicles and E_{ges}, and the area of the maximum vertical plane of the corpora lutea and P_4, respectively ($P > 0.05$).

8. Neither the uterine TAMV nor the PI values differed between the three groups 24 h before and seven days after ovulation ($P > 0.05$).

The results of this study indicate that a shortened preovulatory follicle phase primarily affects ovarian, but not uterine events. Thus, the increased pregnancy rates that were observed in cows undergoing Ovsynch programs with an extended preovulatory follicle phase caused by a delayed GnRH injection may be due to positive effects on the development of the follicles and corpora lutea.
8 Anhang

Befundbogen

Untersuchung Nr.: Tier Nr.:
Gruppe:
Datum: Uhrzeit:
Alter: Laktationsnummer:

Umgebungsbesonderheiten (Gewitter, Hitze, Panik des Tieres):

Klinische Allgemeinuntersuchung

Haltung: □ physiologisch □ ________________________________

Verhalten: □ ruhig und aufmerksam □ ________________________________

Ernährungszustand: BCS: ______

Habitus: □ ggr. □ akut
□ mgr. □ subakut □ nicht □ nicht erkrankt
□ hgr. □ chronisch

Pflegezustand: □ sehr gut □ gut □ mäßig □ schlecht

Atemfrequenz:_________/min

Herzfrequenz:_________/ min

Körpertemperatur:________ °C

Pansenfüllung/-Schichtung:_________

Pansenfrequenz/-Intensität:_________

Störung des Allgemeinbefindens: □ nicht □ ggr. □ mgr. □ hgr.

Gynäkologische Untersuchung

Äußere Untersuchung

Abdomen: □ normal □ ________________________________

Vulva: □ Schrägestellung: □ ggr. □ mgr. □ hgr.
□ mangelnder Schluss
□ Ödem
□ Verletzung
□ o.b.B.

Ausfluss: □ nein □ ja:______________________________
Rektale Untersuchung

Vagina: □ Pneumovagina □ Urovagina □ ____________________________

Zervix: ___

Uterus:

G S K

transrektale sonographische Untersuchung

B-Modus:

Voreinstellung:___________

Ovarien:

Ovar re:

Follikel: □ nein □ ja: Anzahl:
Größe:

Corpus luteum: □ nein □ ja: Anzahl:
Größe:

Ovar li:

Follikel: □ nein □ ja: Anzahl:
Größe:

Corpus luteum: □ nein □ ja: Anzahl:
Größe:

Fluktuation: --- / +-- / ++- / +++

□ Sonstiges (z.B. Zysten):_______________________________________

Voreinstellung:_______________

A. uterina: Durchmesser:______cm
Angio-Modus:
Voreinstellung:__________________

jeweils drei Loops der

☐ Follikel

☐ Gelbkörper

Pulsed-Wave-Modus:
Voreinstellung:__________________

☐ drei Loops der rechten A. uterina

☐ drei Loops der linken A. uterina

Vaginale Untersuchung
- Form der Portio vaginalis: ☐ Z ☐ R ☐ V ☐ S

- Öffnungsgrad des Zervikalkanals: ☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

- Farbe der Schleimhaut von Scheide und Portio vaginalis: ☐ A ☐ B ☐ C ☐ D ☐ E

- Feuchtigkeitsgrad der Schleimhaut von Scheide und Portio vaginalis:

☐ I ☐ II ☐ III ☐ IV ☐ V

- Besondere Befunde:______________________________

Manipulationen
Blutentnahme: ☐

Hormongabe: ☐ nein ☐ ja:___________

Biopsie des Endometrium:

☐ nein ☐ ja ☐ Besonderheiten: ________
9 Verzeichnisse

9.1 Tabellenverzeichnis

Tabelle 9.1: Expression der mRNA des Östrogenreceptors-α, Östrogenreceptors-β, Oxytozinrezeptors und des Progesteronrezeptors 24 Stunden vor der Ovulation (n = 14) sowie sieben Tage nach Ovulation (n = 12) der Gruppen G40 und G60.

<table>
<thead>
<tr>
<th>Rezeptor</th>
<th>Gruppe G40</th>
<th>Gruppe G60</th>
<th>Gruppe G40</th>
<th>Gruppe G60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Östrus</td>
<td>Östrus</td>
<td>Diöstrus</td>
<td>Diöstrus</td>
</tr>
<tr>
<td></td>
<td>(n = 7)</td>
<td>(n = 7)</td>
<td>(n = 5)</td>
<td>(n = 7)</td>
</tr>
<tr>
<td>Östrogenrezeptor-α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>-0,27 ± 0,56</td>
<td>-0,65 ± 0,54</td>
<td>-0,80 ± 0,17</td>
<td>-0,34 ± 0,19</td>
</tr>
<tr>
<td>Min</td>
<td>-0,97</td>
<td>-1,20</td>
<td>-1,42</td>
<td>-0,91</td>
</tr>
<tr>
<td>Max</td>
<td>1,18</td>
<td>1,35</td>
<td>-0,49</td>
<td>0,07</td>
</tr>
<tr>
<td>Östrogenrezeptor-β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>-9,02 ± 1,49</td>
<td>-9,61 ± 0,47</td>
<td>-5,02 ± 0,43</td>
<td>-5,09 ± 0,45</td>
</tr>
<tr>
<td>Min</td>
<td>-11,05</td>
<td>-10,21</td>
<td>-9,35</td>
<td>-6,50</td>
</tr>
<tr>
<td>Max</td>
<td>-4,89</td>
<td>-6,15</td>
<td>-3,55</td>
<td>-3,25</td>
</tr>
<tr>
<td>Progesteronrezeptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>-1,68 ± 1,02</td>
<td>-2,45 ± 1,52</td>
<td>-2,89 ± 0,40</td>
<td>-2,89 ± 0,82</td>
</tr>
<tr>
<td>Min</td>
<td>-3,94</td>
<td>-5,39</td>
<td>-3,84</td>
<td>-5,38</td>
</tr>
<tr>
<td>Max</td>
<td>-0,11</td>
<td>0,18</td>
<td>-2,22</td>
<td>-1,64</td>
</tr>
<tr>
<td>Oxytozinrezeptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>-4,09 ± 0,94</td>
<td>-3,71 ± 0,22</td>
<td>-5,88 ± 0,37</td>
<td>-5,44 ± 0,42</td>
</tr>
<tr>
<td>Min</td>
<td>-5,88</td>
<td>-6,07</td>
<td>-8,01</td>
<td>-8,47</td>
</tr>
<tr>
<td>Max</td>
<td>-2,27</td>
<td>-2,93</td>
<td>-4,58</td>
<td>-4,82</td>
</tr>
</tbody>
</table>
M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; ΔCP = gegen Ubiquitin und Histon normalisierte Zyklenanzahl der Zielgen-RNA; Gruppe G40: zweite GNRH Injektion 40h nach PGF$_{2\alpha}$; Gruppe G60: zweite GNRH Injektion 60h nach PGF$_{2\alpha}$; n = Anzahl der Tiere.

<table>
<thead>
<tr>
<th></th>
<th>Gruppe G40 (n = 12)</th>
<th>Gruppe G60 (n = 15)</th>
<th>Gruppe S (n = 9)</th>
<th>Gesamt (n = 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afol [mm²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>156 ± 25⁹</td>
<td>196 ± 75</td>
<td>232 ± 20⁸⁹</td>
<td>205 ± 49</td>
</tr>
<tr>
<td>Min</td>
<td>68</td>
<td>55</td>
<td>205</td>
<td>55</td>
</tr>
<tr>
<td>Max</td>
<td>378</td>
<td>352</td>
<td>374</td>
<td>378</td>
</tr>
<tr>
<td>Follikeldurchmesser [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>14 ± 6⁹</td>
<td>16 ± 10</td>
<td>17 ± 5⁸⁹</td>
<td>16 ± 8</td>
</tr>
<tr>
<td>Min</td>
<td>9</td>
<td>8</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Max</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>folBl [mm²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>32 ± 10⁹</td>
<td>43 ± 17</td>
<td>59 ± 12⁹⁹</td>
<td>43 ± 16</td>
</tr>
<tr>
<td>Min</td>
<td>17</td>
<td>11</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>Max</td>
<td>64</td>
<td>78</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>relfolBlFl [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>19 ± 10</td>
<td>18 ± 3</td>
<td>22 ± 5</td>
<td>19 ± 6</td>
</tr>
<tr>
<td>Min</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Max</td>
<td>91</td>
<td>46</td>
<td>39</td>
<td>91</td>
</tr>
</tbody>
</table>

⁹, ⁸, ⁹) Werte mit unterschiedlichen Buchstaben innerhalb einer Zeile unterscheiden sich signifikant (p < 0.05).

M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; Afol = Follikelquerschnittsfläche; folBl = absolute follikuläre Durchblutung; relfolBlFl = relative follikuläre Durchblutung; Gruppe G40: zweite GnRH Injektion 40h nach PGF₂α; Gruppe G60: zweite GnRH Injektion 60h nach PGF₂α; Gruppe S = keine GnRH Injektion nach PGF₂α; n = Anzahl der Tiere.
Verzeichnisse
Tabelle 9.3: Gelbkörperquerschnittsfläche (Acl), Gelbkörperdurchmesser, Querschnittsfläche des Lutealgewebes (Alut), absolute luteale Durchblutung (lutBl), relative luteale Durchblutung (rellutBlFl), relative luteale Durchblutung des Lutealgewebes (rellutBlLut) der Corpora lutea sieben Tage post ovulationem der Gruppen G40, G60 und S (n = 36).

<table>
<thead>
<tr>
<th></th>
<th>Gruppe G40 (n = 12)</th>
<th>Gruppe G60 (n = 15)</th>
<th>Gruppe S (n = 9)</th>
<th>Gesamt (n = 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acl [mm²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>347 ± 80⁠<sup>a</sup></td>
<td>408 ± 108</td>
<td>438 ± 72⁠<sup>b</sup></td>
<td>300 ± 81</td>
</tr>
<tr>
<td>Min</td>
<td>214</td>
<td>236</td>
<td>276</td>
<td>214</td>
</tr>
<tr>
<td>Max</td>
<td>496</td>
<td>607</td>
<td>567</td>
<td>607</td>
</tr>
<tr>
<td>Gelbkörperdurchmesser [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>21 ± 10⁠<sup>a</sup></td>
<td>23 ± 12</td>
<td>24 ± 10⁠<sup>b</sup></td>
<td>20 ± 10</td>
</tr>
<tr>
<td>Min</td>
<td>16</td>
<td>17</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Max</td>
<td>25</td>
<td>28</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Alut [mm²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>325 ± 81</td>
<td>369 ± 90</td>
<td>391 ± 28</td>
<td>368 ± 74</td>
</tr>
<tr>
<td>Min</td>
<td>189</td>
<td>236</td>
<td>253</td>
<td>189</td>
</tr>
<tr>
<td>Max</td>
<td>496</td>
<td>607</td>
<td>519</td>
<td>607</td>
</tr>
<tr>
<td>lutBl [mm²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>69 ± 18⁠<sup>a</sup></td>
<td>102 ± 31⁠<sup>b,*</sup></td>
<td>146 ± 25⁠<sup>b,#</sup></td>
<td>99 ± 34</td>
</tr>
<tr>
<td>Min</td>
<td>41</td>
<td>47</td>
<td>91</td>
<td>41</td>
</tr>
<tr>
<td>Max</td>
<td>107</td>
<td>200</td>
<td>201</td>
<td>201</td>
</tr>
<tr>
<td>rellutBlFl [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>20 ± 7⁠<sup>a,*</sup></td>
<td>28 ± 10⁠<sup>a</sup></td>
<td>34 ± 12⁠<sup>b</sup></td>
<td>26 ± 8</td>
</tr>
<tr>
<td>Min</td>
<td>11</td>
<td>16</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>Max</td>
<td>33</td>
<td>50</td>
<td>59</td>
<td>59</td>
</tr>
</tbody>
</table>
rellutBlLut [%]

<table>
<thead>
<tr>
<th></th>
<th>M ± MAD</th>
<th>22 ± 6<sup>a</sup></th>
<th>33 ± 10</th>
<th>39 ± 11<sup>b</sup></th>
<th>27 ± 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>11</td>
<td>16</td>
<td>19</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>38</td>
<td>69</td>
<td>61</td>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

^{a, b} mit unterschiedlichen Buchstaben markierte Werte innerhalb einer Zeile unterschieden sich signifikant (p < 0,05).

^{*,#} mit Asteriks markierte Werte innerhalb einer Zeile unterscheiden sich tendenziell (0,05 < p < 0,10).

M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; Acl = Gelbkörperquerschnittsfläche; Alut = Querschnittsfläche des Lutealgewebes; lutBl = absolute luteale Durchblutung; rellutBlFl = relative luteale Durchblutung; rellutBlLut = relative luteale Durchblutung des Lutealgewebes; Gruppe G40: zweite GNRH Injektion 40h nach PGF_{2α}; Gruppe G60: zweite GNRH Injektion 60h nach PGF_{2α}; Gruppe S = keine GnRH Injektion nach PGF_{2α}; n = Anzahl der Tiere.

<table>
<thead>
<tr>
<th></th>
<th>A. uterina dextra</th>
<th>A. uterina sinistra</th>
<th>A. uterina contralateral</th>
<th>A. uterina ipsilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Stunden vor Ovulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAMV [cm/s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>23,73 ± 4,41</td>
<td>23,49 ± 8,81</td>
<td>21,36 ± 7,21</td>
<td>25,02 ± 2,94</td>
</tr>
<tr>
<td>Min</td>
<td>7,94</td>
<td>6,18</td>
<td>6,18</td>
<td>14,30</td>
</tr>
<tr>
<td>Max</td>
<td>41,68</td>
<td>35,46</td>
<td>35,46</td>
<td>41,68</td>
</tr>
<tr>
<td>RI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>1,02 ± 0,06</td>
<td>1,04 ± 0,03</td>
<td>1,04 ± 0,03</td>
<td>1,04 ± 0,03</td>
</tr>
<tr>
<td>Min</td>
<td>0,97</td>
<td>1,01</td>
<td>0,97</td>
<td>0,97</td>
</tr>
<tr>
<td>Max</td>
<td>1,25</td>
<td>1,32</td>
<td>1,32</td>
<td>1,28</td>
</tr>
<tr>
<td>Sieben Tage nach Ovulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAMV [cm/s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>15,85 ± 4,76</td>
<td>12,54 ± 3,16</td>
<td>12,47 ± 3,38</td>
<td>17,39 ± 4,41</td>
</tr>
<tr>
<td>Min</td>
<td>4,39</td>
<td>8,38</td>
<td>7,41</td>
<td>4,91</td>
</tr>
<tr>
<td>Max</td>
<td>30,72</td>
<td>26,22</td>
<td>26,22</td>
<td>30,72</td>
</tr>
<tr>
<td>RI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ± MAD</td>
<td>1,10 ± 0,09</td>
<td>1,05 ± 0,04</td>
<td>1,13 ± 0,09</td>
<td>1,02 ± 0,01</td>
</tr>
<tr>
<td>Min</td>
<td>1,01</td>
<td>1,01</td>
<td>1,01</td>
<td>1,01</td>
</tr>
<tr>
<td>Max</td>
<td>1,31</td>
<td>1,27</td>
<td>1,27</td>
<td>1,31</td>
</tr>
</tbody>
</table>

M = Median; MAD = Medianabweichung; Min = Minimum; Max = Maximum; TAMV = uterine Blutflussgeschwindigkeit; PI = uteriner Blutflusswiderstand, Pulsatily Index; n = Anzahl der Tiere.
Tabelle 9.5: Geräteinstellungen des verwendeten Farbdopplersonographen LOGIQ™ Book XP der Firma GE Medical Systems (General Electrics Medical Systems, China) der unterschiedlichen Modi

<table>
<thead>
<tr>
<th>B-Mode</th>
<th>Einstellung</th>
<th>Follikel-Doppler</th>
<th>CL-Doppler</th>
<th>A.uterina-Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bild-Umkehr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Farbe</td>
<td>Color Tab C</td>
<td>Color Tab C</td>
<td>Color Tab C</td>
<td></td>
</tr>
<tr>
<td>Therm. Index</td>
<td>Tls</td>
<td>Tls</td>
<td>Tls</td>
<td></td>
</tr>
<tr>
<td>Softener</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Fokusanzahl</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fokusweite</td>
<td>Middle</td>
<td>Middle</td>
<td>Middle</td>
<td></td>
</tr>
<tr>
<td>Fokustiefe</td>
<td>50</td>
<td>32</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Tiefe</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Kompression</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Liniendichte</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bildrate-Zoom</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Unterdrückung</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Frame-Average</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Konturanhebung</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Breite</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Grauwert</td>
<td>Bc_GraysS</td>
<td>Bc_GraysS</td>
<td>Bc_GraysS</td>
<td></td>
</tr>
<tr>
<td>Verstärkung</td>
<td>46</td>
<td>54</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Dynamik</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Unterdrückung</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Frequenz</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Auto Line D</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CF-Mode</th>
<th>Einstellung</th>
<th>Follikel-Doppler</th>
<th>CL-Doppler</th>
<th>A.uterina-Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nulllinie</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Umkehr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF/PDI F.</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>CF/PDI/ACE</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CF/PDI Sendel.</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>PD/-CF Winkel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Paketg.</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Liniend.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bildrate-Zoom</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Frame-Av.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geschw.</td>
<td>9,9</td>
<td>10,9</td>
<td>13,2</td>
<td></td>
</tr>
<tr>
<td>Rauml. Fil.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Transp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Verstärkung</td>
<td>21,5</td>
<td>23,5</td>
<td>13,5</td>
<td></td>
</tr>
<tr>
<td>Wandfilter</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CF/…Breite</td>
<td>0,4</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Vertikale G.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mittlere Tiefe</td>
<td>2,5</td>
<td>2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Frequenz</td>
<td>5</td>
<td>4,4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Farbst.</td>
<td>VO</td>
<td>VO</td>
<td>VO</td>
<td></td>
</tr>
<tr>
<td>Schwellenwert</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Auto Line D</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>CF-…Ratio</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pulsed-Wave</td>
<td>Einstellung</td>
<td>Follikel-Doppler</td>
<td>CL-Doppler</td>
<td>A.uterina-Doppler</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Grauwert T</td>
<td>DC_Gray A</td>
<td>36</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Dynamik</td>
<td></td>
<td></td>
<td></td>
<td>-90</td>
</tr>
<tr>
<td>Nulllinie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV-Gate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winkelkor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektralf.</td>
<td></td>
<td>Color Tab A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW Sweep S.</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umkehr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/PW Anzeige</td>
<td></td>
<td>Horiz.1/2 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akust. S.</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektral M.</td>
<td></td>
<td>Aus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitauf.</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autom. Kalk.</td>
<td></td>
<td>Aus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umfahr.</td>
<td></td>
<td>Beides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umfahrmeth.</td>
<td></td>
<td>Aus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterdrückung</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verstärk.</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wandf.</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW-F.</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD/CF Winkel</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschw.</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV-Tiefe</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abh. Triplex M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensit. H</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF/PD- Ratio</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PDI</th>
<th>Einstellung</th>
<th>Follikel-Doppler</th>
<th>CL-Doppler</th>
<th>A.uterina-Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Skala</td>
<td>P0</td>
<td>P9</td>
<td>P0</td>
</tr>
<tr>
<td></td>
<td>PD..PDI Winkel.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pak.etgröße</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Liniendichte</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bildrate-Zoom</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Frame Average</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Geschw.</td>
<td>21,2</td>
<td>21,2</td>
<td>21,2</td>
</tr>
<tr>
<td></td>
<td>Schwellenwert</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Räuml. Filter</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Verstärkung</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Wandfilter</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Auto Line Dens.</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Transparenz-A.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabellen 9.6: Korrelationen zwischen den uterinen Perfusionsparametern uterine Blutflussgeschwindigkeit (TAMV), uteriner Blutflusswiderstand (PI), der Gesamtöstrogenkonzentration (E$_{\text{ges}}$) und der Genexpression des Östrogenreceptors-α, -β, des Progesteronreceptors und des Oxytozinreceptors 24 Stunden vor Ovulation aller Studientiere (n = 19).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TAMV [cm/s]</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>E_{ges} [pmol/ml]</td>
<td>0,000</td>
<td>1,00</td>
</tr>
<tr>
<td>Östrogenrezeptor-α [ΔCP]</td>
<td>0,43</td>
<td>0,16</td>
</tr>
<tr>
<td>Östrogenrezeptor-β [ΔCP]</td>
<td>0,19</td>
<td>0,55</td>
</tr>
<tr>
<td>Progesteronrezeptor [ΔCP]</td>
<td>0,52</td>
<td>0,09</td>
</tr>
<tr>
<td>Oxytozinrezeptor [ΔCP]</td>
<td>-0,04</td>
<td>0,91</td>
</tr>
</tbody>
</table>

r = Korrelationskoeffizient nach Spearman; p = Irrtumswahrscheinlichkeit; TAMV = uterine Blutflussgeschwindigkeit; PI = uteriner Blutflusswiderstand, Pulsatility Index; E_{ges} = Gesamtöstrogenkonzentration; n = Anzahl der Tiere.
Tabelle 9.7: Korrelationen zwischen den uterinen Perfusionsparametern uterine Blutflussgeschwindigkeit (TAMV), uteriner Blutflusswiderstand (PI), der Plasmaprogesteronkonzentration (P₄) und der Genexpression des Östrogenrezeptors-α, -β, des Progesteronrezeptors und des Oxytozinrezeptors sieben Tage nach Ovulation aller Studientiere (n = 19).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TAMV [cm/s]</th>
<th>Pl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>P₄ [pmol/ml]</td>
<td>-0,11</td>
<td>0,66</td>
</tr>
<tr>
<td>Östrogenrezeptor-α</td>
<td>-0,36</td>
<td>0,27</td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Östrogenrezeptor-β</td>
<td>0,26</td>
<td>0,45</td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progesteronrezeptor</td>
<td>-0,22</td>
<td>0,52</td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxytozinrezeptor</td>
<td>-0,04</td>
<td>0,92</td>
</tr>
<tr>
<td>[ΔCP]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r = Korrelationskoeffizient nach Spearman; p = Irrtumswahrscheinlichkeit; TAMV = uterine Blutflussgeschwindigkeit; PI = uteriner Blutflusswiderstand, Pulsatily Index; P₄ = Plasmaprogesteronkonzentration; n = Anzahl der Tiere.
9.2 Literaturverzeichnis

Altered endometrial progesterone/oestrogen receptor ratio in luteal phase defect.
Dis Markers 13, 107-116

ACOSTA, T. J., E. L. GASTAL, M. O. GASTAL, M. A. BEG u. O. J. GINther (2004):
Differential blood flow changes between the future dominant and subordinate follicles
precede diameter changes during follicle selection in mares.
Biol Reprod 71, 502-507

Changes in follicular vascularity during the first follicular wave in lactating cows.

Local changes in blood flow within the preovulatory follicle wall and early corpus
luteum in cows.
Reproduction 125, 759-767

Local changes in blood flow within the early and midcycle corpus luteum after
prostaglandin F(2 alpha) injection in the cow.
Biol Reprod 66, 651-658

Association between surges of follicle-stimulating hormone and the emergence of
follicular waves in heifers.
J Reprod Fertil 94, 177-188

AMBROSE, J. D., M. F. A. PIRES, F. MOREIRA, T. DIAZ, M. BINELLI u. W. W.
THATCHER (1998):
Influence of Deslorelin (GnRH-agonist) implant on plasma progesterone, first wave
dominant follicle and pregnancy in dairy cattle.
Theriogenology 50, 1157-1170

Fruchtbarkeitsstörungen.
In: Buiatrik Band 1
Grunert, E., S. 217-242

AYABE, T., O. TSUTSUMI, M. MOMOEDA, T. YANO, N. MITSUHASHI u. Y.
TAKETANI (1994):
Impaired follicular growth and abnormal luteinizing hormone surge in luteal phase
defect.
Fertil Steril 61, 652-656
Farbdopplersonographische Untersuchung der Arteria uterina
und des Corpus luteum beim Rind
Vet. Med. Diss., München

BATTAGLIA, C., A. D. GENAZZANI, G. REGNANI, M. R. PRIMAVERA, F.
PETRAGLIA u. A. VOLPE (2000):
Perifollicular Doppler flow and follicular fluid vascular endothelial growth factor
concentrations in poor responders.
Fertil Steril 74, 809-812

Surges of FSH during the follicular and early luteal phases of the estrous cycle in
heifers.
Theriogenology 48, 757-768

BOLLWEIN, H., H. H. D. MEYER, J. MAIERL, F. WEBER, U. BAUMGARTNER u. R.
STOLLA (2000):
Transrectal Doppler sonography of uterine blood flow in cows during the estrous
cycle.
Theriogenology 53, 1541-1552

Immunohistochemical assessment of oestrogen receptor and progesterone receptor
distribution in biopsy samples of the bovine endometrium collected throughout the
estrous cycle.
Anim Reprod Sci 44, 11-21

Qualität gewonnener Embryonen und Eizellen in bezug auf die Mikromorphologie
des Endometriums von Spenderkühen.
Fertilität 5, 192-196

BORINI, A., A. MACCOLINI, A. TALLARINI, M. A. BONU, R. SCIAJNO u. C.
FLAMIGNI (2001):
Perifollicular vascularity and its relationship with oocyte maturity and IVF outcome.
Ann N Y Acad Sci 943, 64-67

BORMAN, J. M., R. P. RADCLIFF, B. L. MCCORMACK, F. N. KOJIMA, D. J.
Synchronisation of oestrus in dairy cows using prostaglandin F-2 alpha,
gonadotrophin-releasing hormone, and oestriadiol cypionate.
Anim Reprod Sci 76, 163-176

BUKULMEZ, O. u. A. ARICI (2004):
Luteal phase defect: myth or reality.
Obstet Gynecol Clin North Am 31, 727-744, ix
Effects of maturity of the potential ovulatory follicle on induction of oestrus and ovulation in cattle with oestradiol benzoate.
Anim Reprod Sci 66, 161-174

Evidence of interplay between plasma endothelin-1 and 17 beta-estradiol in regulation of uterine blood flow and endometrial growth in infertile women.
Fertil Steril 67, 883-888

CACCIATORE, B. u. A. TIITINEN (1996):
Does ovarian stimulation affect uterine artery impedance?
J Assist Reprod Genet 13, 15-18

CHAGAS E SILVA, J. u. L. LOPES DA COSTA (2005):
Luteotrophic influence of early bovine embryos and the relationship between plasma progesterone concentrations and embryo survival.
Theriogenology 64, 49-60

CHAN, J. (1997)
Differenzierung von Follikel-Theka- und Follikel-Lutein-Zysten des Rindes mittels B-Bild-Sonographie, Milchprogesteronbestimmung und Farbdopplersonographie
Vet. Med. Diss., München

CHRISTENSEN, B. u. A. E. SCHINDLER (1997): [Luteal defect in pregnancy as the cause of habitual abortion].
Zentralbl Gynakol 119, 462-466

CHRYSSIKOPOULOS, A., O. GREGORIOU, N. VITORATOS u. A. LIAPIS (1990):
The diagnosis of luteal phase defect using different diagnostic criteria.
Gynecol Endocrinol 4, 193-204

Follicular vascularity--the predictive value of transvaginal power Doppler ultrasonography in an in-vitro fertilization programme: a preliminary study.
Hum Reprod 12, 191-196

Regulation of estrogen receptor replenishment by progesterone.
Ann N Y Acad Sci 286, 161-179

Colour Doppler indices of follicular blood flow as predictors of pregnancy after in-vitro fertilization and embryo transfer.
Hum Reprod 14, 1979-1982

Luteal phase defect. Etiology, diagnosis, and management.
Endocrinol Metab Clin North Am 21, 85-104

Temporal associations among ovarian events in cattle during oestrous cycles with two and three follicular waves.
J Reprod Fertil 87, 223-230

Color flow pulsed Doppler ultrasound in diagnosing luteal phase defect.
Fertil Steril 64, 500-504

Doppler ultrasound studies of the uterine artery in spontaneous ovarian cycles.
Hum Reprod 3, 721-726

Decreased uterine perfusion—a cause of infertility.
Hum Reprod 3, 955-959

GRUNERT, E. (1990):
Weiblicher Geschlechtsapparat.

GRUNERT, E. (1999):
Physiologie der Fortpflanzung - Geschlechtsreife, Zuchtreife und Erstkalbealter.
In: Fertilitätsstörungen beim weiblichen Rind
3, Kruif, A. D., Berlin, S. 1-3

GUILLAUME, A. J., F. BENJAMIN, B. SICURANZA, S. DEUTSCH u. M. SPITZER
(1995):
Luteal phase defects and ectopic pregnancy.
Fertil Steril 63, 30-33

GUZICK, D. S. u. A. ZELEZNIK (1990):
Fertil Steril 54, 206-210

Supplementing previously treated anestrous dairy cows with progesterone does not increase first-service conception rate.
Theriogenology 63, 239-245
The effect of hCG administration five days after insemination on the first service conception rate of anestrous dairy cows.
Theriogenology 63, 1938-1945

Physiology of the Estrous-Cycle.
Journal of Animal Science 57, 404-424

Effect of the dominant follicle aspiration before or after luteinizing hormone surge on the corpus luteum formation in the cow.

Plasma estrogen and progesterone levels in cows prior to and during estrus.
Endocrinology 89, 1350-1355

Serum luteinizing hormone and plasma progesterone levels during the estrous cycle and early pregnancy in cows.
Biol Reprod 2, 346-351

Conception rates and serum progesterone concentration in dairy cattle administered gonadotropin releasing hormone 5 days after artificial insemination.
Anim Reprod Sci 95, 224-233

Perifollicular blood flow Doppler indices, but not follicular pO2, pCO2, or pH, predict oocyte developmental competence in in vitro fertilization.
Fertil Steril 72, 707-712

Regulation of the oxytocin receptor in bovine reproductive tissues and the role of steroids.
Reprod Domest Anim 35, 134-141

Uterine oxytocin receptors in cyclic and pregnant cows.
J Reprod Fertil 91, 49-58

Possibilities with today's reproductive technologies.
Theriogenology 64, 639-656
JONES, G. S. (1991):
Luteal phase defect: a review of pathophysiology.
Curr Opin Obstet Gynecol 3, 641-648

Comparison of two timed artificial insemination (TAI) protocols for management of first insemination postpartum.
J Dairy Sci 85, 1002-1008

Ultraschalldiagnostik an Uterus, Fetus, und Ovarien.
In: U. Braun (Hrsg.): Atlas und Lehrbuch der Ultraschalldiagnostik beim Rind
Verlag Paul Parey, Berlin, Hamburg, S 207-224

Transvaginal Doppler ultrasound with color flow imaging in the diagnosis of luteal phase defect (LPD).
Clin Exp Obstet Gynecol 24, 95-97

Perifollicular vascularity in poor ovarian responders during IVF.
Hum Reprod 21, 1539-1544

Relationship between metabolic hormones and ovulation of dominant follicle during the first follicular wave post-partum in high-producing dairy cows.
Reproduction 133, 155-163

Oestrous cycle and pregnancy effects on the distribution of oestrogen and progesterone receptors in bovine endometrium.
Placenta 22, 742-748

[Synchronization of ovulation (OVSYNCH) in high-producing dairy cattle herds. I. Fertility parameters, body condition score and plasma progesterone concentration].
Dtsch Tierarztl Wochenschr 108, 11-19

Ovarian superstimulation after follicular wave synchronization with GnRH at two different stages of the estrous cycle in cattle.
Theriogenology 49, 1175-1186

Pregnancy rates in lactating dairy cattle following supplementation of progesterone after artificial insemination.
Anim Reprod Sci

LEVI-SETTI, P. E., G. ROGNONI, M. BOZZO, G. RAGUSA, P. SULPIZIO, E.
FERRAZZI u. G. PARDI (1995):
Color-Doppler Velocimetry of Uterine Arteries in Pregnant and Nonpregnant Patients during Multiovulation Induction for Ivf.
Journal of Assisted Reproduction and Genetics 12, 413-417

Progesterone supplementation during the early fetal period reduces pregnancy loss in high-yielding dairy cattle.
Theriogenology 62, 1529-1535

Effects of an agonist of gonadotropin-releasing hormone on ovarian follicles in cattle.
Biol Reprod 45, 883-889

MARSAL, K. (1993):
Doppler ultrasonography: techniques.
In: The circulation
A. HANSON, J. A. D. SPENCER and C. H. RODECK S. 296-322

MAWHINNEY, I., H. BIGGADIKE u. B. DREW (1999):
Field trial of a planned breeding regimen for dairy cows, using gonadotrophin-
releasing hormone and prostaglandin F2alpha.
Vet Rec 145, 551-554

MAYER, R. C. (1999)
Farbdopplersonographische Untersuchung der Arteria uterina und des Corpus luteum während des Zyklus und der Frühgravidität der Stute
Vet. Med. Diss., München

MEIKLE, A., L. SAHLIN, A. FERRARIS, B. MASIRONI, J. E. BLANC, M.
RODRIGUEZ-IRAZOQUI, M. RODRIGUEZ-PINON, H. KINDAHL u. M. FORSBERG
(2001):
Endometrial mRNA expression of oestrogen receptor alpha, progesterone receptor and insulin-like growth factor-I (IGF-I) throughout the bovine oestrous cycle.
Anim Reprod Sci 68, 45-56

Dynamics of Oxytocin, Estrogen and Progestin Receptors in the Bovine Endometrium during the Estrous-Cycle.
Acta Endocrinol-Cop 118, 96-104

STAPLEY, L. (2001):
Treatment of luteal phase defect by ovarian stimulation.
Trends Endocrinol Metab 12, 146

Midluteal-phase vaginal color Doppler assessment of uterine artery impedance in a subfertile population.
Fertil Steril 61, 53-58

Doppler sonographic findings and their correlation with implantation in an in vitro fertilization program.
Fertil Steril 52, 825-828

Altering conception of dairy cattle by gonadotropin-releasing hormone preceding luteolysis induced by prostaglandin F2 alpha.
J Dairy Sci 79, 402-410

Reproductive performance of dairy cows in various programmed breeding systems including OvSynch and combinations of gonadotropin-releasing hormone and prostaglandin F2 alpha.
J Dairy Sci 82, 506-515

STEVENSON, J. S. (2005):
Breeding strategies to optimize reproductive efficiency in dairy herds.

STÖBER, M. (1990):
Kennzeichen, Anamnese, Grundregeln der Untersuchungstechnik, Allgemeine Untersuchung.
Verlag Paul Parey, Berlin, Hamburg, 3. Auflage, S. 75-138

Estrus synchronization in dairy cattle with PGF(2 alpha) and GnRH.
Tierarztl Prax G N 26, 187-192

Modifications in Uterine and Intraovarian Artery Impedance in Cycles of Treatment with Exogenous Gonadotropins - Effects of Luteal-Phase Support.
Fertility and Sterility 64, 76-80

[Luteal phase defect].
Nippon Rinsho 64 Suppl 4, 440-446
Altered luteinizing hormone pulse frequency in early follicular phase of the menstrual cycle with luteal phase defect patients in women.
Fertil Steril 60, 800-805

Selection, dominance and atresia of follicles during the oestrous cycle of heifers.
J Reprod Fertil 101, 547-555

SURHOLT, R. (2001)
Vergleich dreier Fruchtbarkeitsprogramme zur Verbesserung der Herdenfruchtbarkeit in Milchviehbetrieben am Beispiel einer Milchviehanlage mit Fruchtbarkeitsstörungen
Vet. Med. Diss., Berlin

Induction of ovulation with gonadotropin-releasing hormone during proestrus in cattle: influence on subsequent follicular growth and luteal function.
Anim Reprod Sci 55, 91-105

Impact of ovarian stimulation on corpus luteum function and embryonic implantation.
J Reprod Immunol 55, 123-130

Blood flow changes in uterine and ovarian vasculature, and predictive value of transvaginal pulsed colour Doppler ultrasonography in an in-vitro fertilization programme.
Hum Reprod 10, 688-693

Comparison of uterine blood flow characteristics between spontaneous and stimulated cycles before embryo transfer.
Hum Reprod 11, 364-368

Comparison of timed AI after synchronized ovulation to AI at estrus: Reproductive and economic considerations.
J Dairy Sci 87, 85-94

Strategies for improving fertility in the modern dairy cow.
Theriogenology 65, 30-44

New Clinical Uses of Gnrh and Its Analogs in Cattle.
Anim Reprod Sci 33, 27-49
Control of ovarian follicular and corpus luteum development for the synchronization of ovulation in cattle.
Soc Reprod Fertil Suppl 64, 69-81

The role of vascularisation of the corpus luteum in the short luteal phase studied by Doppler ultrasound.
Acta Obstet Gynecol Scand 73, 321-323

UHRIN, V. (1984):
[Submicroscopic changes in the glandular epithelium of the endometrium in cows during the estrous cycle].
Vet Med (Praha) 29, 79-87

Expression and localisation of estrogen receptor alpha, estrogen receptor beta and progesterone receptor in the bovine oviduct in vivo and in vitro.
Journal of Steroid Biochemistry and Molecular Biology 84, 279–289.

Hyaluronan in the bovine oviduct – modulation of synthases and receptors during the estrous cycle.
Molecular and Cellular Endocrinology 214, 9–18.

Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate.
Theriogenology 56, 307-314

Synchronization rate, size of the ovulatory follicle, and pregnancy rate after synchronization of ovulation beginning on different days of the estrous cycle in lactating dairy cows.
Theriogenology 52, 1067-1078

Bovine Uterine, Cervical and Ovarian Estrogen and Progesterone-Receptor Concentrations.
Anim Reprod Sci 26, 61-71

VOLLMERHAUS, B. (1964):
Gefäßarchitektonische Untersuchungen am Geschlechtsapparat des weiblichen Hausrindes (Bos primigenius f. taurus L., 1758).
WAIBL, H. u. H. WILKENS (1996):
Arterien, Venen.
Verlag Paul Parey, Berlin, Hamburg, S. 74-275

Use of ultrasonic Doppler waveforms to estimate changes in uterine artery blood flow and vessel compliance.
J Anim Sci 68, 2450-2458

Pulsatile secretion of gonadotrophins, ovarian steroids and ovarian oxytocin during the periovulatory phase of the oestrous cycle in the cow.
J Reprod Fertil 71, 503-512

WALTON, J. S., G. W. HALBERT, N. A. ROBINSON u. K. E. LESLIE (1990):
Effects of progesterone and human chorionic gonadotrophin administration five days postinsemination on plasma and milk concentrations of progesterone and pregnancy rates of normal and repeat breeder dairy cows.
Can J Vet Res 54, 305-308

WATHES, D. C. (1992):
Embryonic mortality and the uterine environment.
J Endocrinol 134, 321-325

WATSON, E. D. (1985):
Opsonising ability of bovine uterine secretions during the oestrous cycle.
Vet Rec 117, 274-275

Assessment of ovarian and uterine blood flow by transvaginal color Doppler in ovarian-stimulated women: correlation with the number of follicles and steroid hormone levels.
Fertil Steril 59, 743-749

WEISSMAN, A. u. Z. SHOHAM (1996):
Doppler and luteal phase defect.
Fertil Steril 66, 166-167

The effect of a GnRH analogue on the dynamics of follicular development and synchronization of estrus in lactating cyclic dairy cows.
Theriogenology 42, 633-644

LH pulses and the corpus luteum: the luteal phase deficiency LPD).
Vitam Horm 63, 131-158

Danksagung

Mein ganz besonderer Dank gilt Frau Dr. med. vet. Änne Honnens für ihren unermüdlichen Einsatz bei der Anfertigung des schriftlichen Teiles, für ihre Unterstützung bei statistischen Problemen, für die Durchführung der Biopsieanalysen im fernen München sowie in allen schwierigen Zeiten der Arbeit. Durch ihren Einsatz hat sie einen wesentlichen Teil zur Fertigstellung dieser Arbeit beigetragen.

Ganz herzlich möchte ich mich bei Herrn Apl.-Prof. Dr. med. vet. H. Niemann und dem gesamten Team des ehemaligen Institutes für Tierzucht der Forschungsanstalt für Landwirtschaft (FAL) Mariensee (jetzt Institut für Nutztiergenetik des Bundesforschungsinstituts für Tiergesundheit des Friedrich-Loeffler-Instituts (FLI)) für die Unterstützung, die Bereitstellung ihrer Herde sowie die Unterbringung auf ihrem Gelände danken. Ganz besonderem Dank gelten Hans Georg, Gritt, Rolf, Klaus-Gerd und den gesamten Mitarbeitern im Rinderstall. Sie sind die entscheidenden Kräfte im Hintergrund, die sich stets für das Wohl der Kühe einsetzen und eine hochkarätige Forschung erst möglich machen.

Berend. Er hat mich stets in schwierigen Lagen aufgemuntert und stand mir als junger Kollege hilfreich zur Seite.

Bedanken möchte ich mich weiterhin bei dem Lehrstuhl für Physiologie der Technischen Universität München in Freising-Weihenstephan, insbesondere bei Frau Dr. med. vet. Susanne Ulbrich für die mRNA-Analysen der Biopsieproben im Rahmen dieser Arbeit.
