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Introduction

1. Introduction

1.1 Multiple sclerosis

Multiple sclerosis (MS), a chronic inflammatory dgstinating disease of the central nervous
system (CNS), affects approximately 2.5 million pleoworldwide. Because of its high
prevalence, MS is the leading cause of non-trawmegurologic disability in young adults in
the United States and Europe. Women suffer fromtiviSe as often as men (Sospedra and
Martin 2005; Pugliatti et al., 2006). Jean-Martihatcot, who named the condition “Sclérose
en plaques” recognized MS as a distinct diseasar(@h 1868). Clinically, there are four
main subtypes of multiple sclerosis: relapsing-teng (RRMS), secondary-progressive
(SPMS), primary-progressive (PPMS), and progresslapsing (PRMS) (Lublin and
Reingold, 1996).

Common histophatological hallmarks of MS are inflaatory plagues with multifocal
perivascular infiltration of mononuclear cells inding T cells, B cells, and macrophages,
glial scar formation, loss of myelinating cellsigadendrocytes), subsequent breakdown of
myelin, and axonal damage/loss, which is the megoise of irreversible disability in patients
with MS (Lassmann et al., 2001). To date, MS isstdered to be primarily an autoimmune
disease with myelin specific T and B cell reacyivitnultiple genetic susceptibility loci, and
as yet not defined environmental risk factors (V@kanker, 1996; Lipton et al., 2007; Haines
et al., 1996; Lincoln et al., 2005; Sawcer et 2004, 2008). The mechanisms underlying
chronic neurological deficits are still not complgt understood and the main cause of
multiple sclerosis remains unknown.

Demyelinating lesions are primarily found in theit@hmatter of periventricular areas of the
brain stem, cerebellum, optic nerve, and spinall ¢hloseworthy et al., 2000). Recent studies
have shown that demyelination affects also thebralt@and cerebellar cortex (Gilmore et al.,
2008; Kutzelnigg et al.,, 2007; Kutzelnigg et alQ03; Albert et al., 2007). Cortical
demyelination is particularly prominent in primaagd secondary progressive MS, but is rare
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in the acute or relapsing form (Kutzelnigg et @D07). The underlying pathophysiological
mechanisms seem to differ between white and greftemaince cortical demyelinating
lesions are associated with an intact blood bramidr, alleviated infiltration of lymphocytes,
and mild astrogliosis (Bo et al., 2003; van Horsssnal., 2007). Furthermore, the
remyelinating capacity of grey matter lesions seémnbe higher compared to white matter
lesions (Albert et al., 2007). Demyelinating lesi@an also arise within the hippocampus, the
part of the limbic system functionally implicatex ithe processes of learning and memory
(Papadopoulos et al., 2009; Moscovitch et al., 20Rguire et al., 2004) and cerebellum
(Kutzelnigg et al., 2005; 2007; Gilmore et al., 800However, demyelination is not always
permanent in MS. Spontaneous remyelination ocaeguently after demyelinating events
but is often not complete (Lassmann et al., 1988 chinetti et al., 1999; Raine and Wu,
1993). Remyelination corresponds with the appea&aholigodendrocytes (Lassmann, 1983;
Prineas et al., 1984; Prineas et al., 1993a; Bmriclal., 1994; Lucchinetti et al., 1999).
Completely remyelinated plaques, so called shadagues, are extensive in a considerable
proportion of multiple sclerosis patients. Remyadion is not restricted to early stages of the
disease and occurs in all manifestations of theadis, including primary progressive MS
(Patrikios et al., 2006; Patani et al., 2007; Alletral., 2007). However, remyelinated shadow
plaques may become affected by new bouts of denmatein (Prineas et al., 1993b) and
remyelination is not an invariant response to a \@dmating event in MS, even though
oligodendrocyte precursor cells (OPCs) can be ptasehe demyelinated lesions (Chang et
al., 2001; Maeda et al., 2001). To understand teehanisms of remyelination there is a large

body of experimental data derived framvitro cell culture models and from animal studies.
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1.2 Animal models for experimental demyelination

To induce experimental demyelination there are fdifferent experimental approaches:
genetic myelin mutation, autoimmune inflammatorgunoed demyelination (experimental
autoimmune encephalomyelitis, EAE), viral induceangelination (e.g. Theiler-Virus), and
toxic induced demyelination (e.g. cuprizone, etlmdibromide, or lysolecithin). All these

models mimic only a part of MS pathology (Fig. 1).

Toxic

Lysolecithin
Ethidium bromide

Autoimmune Genetic

Experimental autoimmune Shiverer

Figure 1. Experimental animal models mimic only a part of p&hology

EAE, which reflects the inflammatory compound of 4Svidely used model to study T cell
mediated inflammatory demyelination in the C{@Bitsky und Yager, 1949; Gold et al., 2000)
EAE can be induced by injection of whole spinaldctysate, purified myelin, or different
myelin proteins such as myelin oligodendrocyte gprotein (MOG) or proteolipid protein
(PLP), or their encephalitogenic peptides. The sgvef demyelination and inflammation in
EAE lesions are variable and depend on the gebatikground of animals and the injected
antigen (Hemmer et al., 2002). Viral-induced denmglon models are also available to
study inflammatory mediated demyelination. Intera,ala mouse natural pathogen, the
Theiler's murine encephalomyelitis virus (TMEV), used to induce CNS demyelination.
Both models are characterized by scattered lesesak down of the blood-brain barrier, and

severe inflammation including T cells infiltration.
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Toxic demyelination models include lysolecithinhidium bromide, and cuprizone. These
models are characterized by good reproducibilitg predefined areas of demyelination. In
lysolecithin and ethidium bromide models, a foeidn is induced by stereotactic injection
of the compound into the rodent CNS (Yajima anduRyz1979; Woodruff and Franklin,
1999). The toxic effect of lysolecithin is considérto be selective on myelin producing cells
while ethidium bromide is toxic for all nucleolusrdaining cells (Woodruff und Franklin,
1999). Moreover, the stereotactic injection of texat least partially opens the blood-brain
barrier and infiltration of peripheral inflammatorgells can not be excluded. The
heterogeneity of myelinating cells, consisting bf@dendrocytes and Schwann cells, leads to
increased complexity of this kind of demyelinateomd remyelination mechanisms (Woodruff
und Franklin, 1999).

The cuprizone model is widely used to study toxduced demyelination. In this model
young adult mice are fed with the copper chelataprizone (bis-cyclohexanone
oxaldihydrazone) for several weeks leading to & loisoligodendrocytes and a subsequent
demyelination accompanied by a strong microgli@sid astrogliosis. After cessation of the
toxin, remyelination occurs within weeks. This mbdereliable and has the advantage of
good reproducibility regarding the amount and sitelemyelination (Hiremath et al., 1998;
Matsushima and Morell, 2001). Furthermore, the tHbaain barrier stays intact (Bakker and
Ludwin, 1987) and remyelination can be analyzedheut infiltration of T cells and
peripheral macrophages, implying a reduction incbraplexity of the system.

The mechanism of selective damage of oligodendescys still not understood. The
cuprizone induced disturbance of energy metabaiisoligodendrocytes was suggested as a
main cause of oligodendrocyte death (Matsushimahaotll, 2001). The extent of de- and
remyelination is strongly influenced by mouse agender, strain as well as the dose of
cuprizone (Matsushima and Morell, 2001; Ludwin, @9&rmstrong et al., 2002; Blakemore,

1972).
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The cuprizone model has already been used for dec@daidwin, 1978; Blakemore, 1981).
Early studies were mainly focused on de- and remgebn in the superior cerebellar
peduncles and in the corpus callosum (Arnett et 2004). Recently, severe de- and
remyelination processes were also described in grayer structures such as cerebral and
cerebellar cortex, and hippocampus (Skripuletd.e2808, 2010; Koutsoudaki et al., 2009).
Therefore, using the cuprizone model mechanisnteeofind remyelination in both grey and

white matter can be analyzed.

1.3 Neurotrophic factors and their role in de- andemyelination

Differentiation of OPCs in demyelinating lesiongses to be the key determinant of efficient
remyelination in MS. Inhibition of oligodendrocy#xon interaction is also suggested to be a
factor contributing to the failure of remyelinatigi&ranklin, 2002; Lubetzki et al., 2005;
Charles et al., 2000). Therefore, successful reimgtbn is the result of successful migration,
proliferation, and differentiation of OPCs, contagth axons, and finally building of myelin
sheaths (Fig. 2)

Pro- Immature Mature
Precursor Progenitor Oligodendrocyte Oligodendrocyte  Oligodendrocyte

o 4 el

\
PDGFa-R A2B5 04 o1 01, 04, GalC
Nestin PDGFa-R GD3 04 CNPase, MBP,
PSA- GD3 NG2 GalC PLP
NCAM NG2 CNPase
| Migration |
I . | Myelination
| Proliferation

| Differentiation |

Figure 2. Stages and marker characteristic for developmenhefoligodendroglial lineage (modified from

Stangel and Hartung, 2002, Progress in Neurobidlogy
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Neurotrophic factors are known to modulate migratiproliferation, and differentiation of
OPCs, regulate oligodendrocyte-axon interaction thiett myelination by a direct action on
myelinating glial cells and, secondly, indirectly imfluencing axonal signals. Neurotrophins,
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and
neurotrophin-3 (NT-3) interact with two distinct types of transmembraeeeptors, the Trks
(tropomyosin related kinases) and p75NTR, whiclk lac intrinsic catalytic activity (Chao
and Hempstead 1995; Teng and Hempstead, 2004). Nds3been reported to enhance
proliferation and differentiation of OPCs, to suppthe survival of adult oligodendrocytes,
and to promote myelinatiom vitro andin vivo (Cohen et al., 1996; Kumar et al., 1998;
McTigue et al., 1998; Heinrich et al., 1999; Ruleibal., 2004). BDNF shows beneficial
effects on proliferation and differentiation of O$&@nd Schwann cells, and thus on
myelination in the central and peripheral nervoystean (McTigue et al., 1998; Tolwani et
al., 2004). In EAE, BDNF delivery reduces demydima and increases remyelination
(Makar et al., 2009). Probably, BDNF also moduldévelopmental myelination of optic
nerve (Cellerino et al., 1997). In MS lesions, BDNB present in T cells,
macrophages/microglia, and reactive astrocytesBTtke full length receptor for BDNF, has
been found on neurons and reactive astrocytes €fatadn et al., 2002). NGF, NT-3 and
BDNF promote differentiation of basal forebraingoldendrocytes. However, only NGF and
NT-3 treatment increase the amount of MBP+ cellsragnthe cortical OPCs population (Du
et al., 2003). Maturation of dorsal root gangli@RG) OPCs is even inhibited by NGF (Chan
et al., 2004). The survival of mature oligdendrad¢eived from rodent brains is supported by
NGF and NT-3 (Cohen et al., 1996). Additionally, NG involved in myelinating cell - axon
interaction and promotes myelination of TrkA-exmiag DRG neurons by Schwann cells,
while it inhibits oligodendrocytesn vitro (Chan et al., 2004)Recent studies have been
revealed that via TrkA NGF can induce the axongregsion of LINGO-1, one of known

inhibitors of oligodendrocyte differentiation (Mi al., 2004; Lee et al., 2007).
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Epidermal growth factor (EGF) was reported to stimulate migration and prolifieratof
murine progenitor cells transplanted in adult ratagim (Fricker-Gates et al., 2000) and
expand the number of progenitors derived from th& $rimary progenitors which migrate
and differentiate into oligodendroglial cells (Galez-Perez et al., 2009).

The influence ofbasic fibroblast growth factor (FGF-2) and platelet-derived growth
factor alpha (PDGF-A), as potent mitogens for OPC (McKinnon et al., 198ng et al.,
2001; McMorris and McKinnon, 1996; Wolswijk and Nep1992) has been studied in vitro
and in a number of animal models (Liu et al., 1998ks and Franklin, 1999; Messersmith et
al., 2000; Armstrong et al., 2002; 2006; Woodrufak, 2004). In MS PDGFR-A expressing
OPCs have been found within demyelinating lesidfiseda et al., 2001).

Hepatocyte growth factor (HGF) is a pleiotrophic cytokine that can trigger pretdtion,
migration, and differentiation of various cell tygdt has been reported that the functional
HGF/c-Met system, which can influence proliferatiodevelopment, and cytoskeletal
organization, is present in oligodendrocytes (Yawd &ivkees, 2002). HGF can induce
chemotaxis of OP@ vitro (Lalive et al., 2005).

The impact ofNeuregulin 1 (NRG 1)on the oligodendrocyte lineage and particularly on
remyelination has been studied in several animalaiso Systemic delivery of NRG 1 to mice
exposed to EAE delayed signs of the disease, dmmethe severity, and resulted in
significant reduction in relapse rate (Cannellaakt 1998; Marchionni et al., 1999).
Moreover, NRG 1 treated groups exhibited increasmalyelination in CNS lesions than in
controls. In contrast to EAE, in toxin-induced desinyation application of NRG 1 into
demyelinated areas did not improve remyelinatien(feris et al., 2003).

The myelination promoting effects gfial cell-derived neurotrophic factor (GDNF) have
been predominantly demonstrated in spinal cordryngnimal models, in the peripheral
nervous systerm vitro by acting on Schwann cells and on neurons, andutatidg Schwann

cell — axon interactions (Zhang et al., 2009; Iweisal., 2005; Hoke et al., 2003).
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Transforming growth factor-beta (TGF-[31) andInsulin-like growth factor | (IGF-I) are
considered to be the key regulators of oligodengescdifferentiation. TGF-31 is one of the
essential TH2/TH3 cytokines and a potent immunoseggor that can prevent EAE and
suppress disease (Preller et al., 2007; Steinbrexthed., 2001; Racke et al., 1991). TGF-31
inhibits proliferation of OPCs, promotes oligodemdyte development (McKinnon et al.,
1993), and enhances myelinogenesis (Diemel eR@03). It is over-expressed by reactive
astrocytes within MS lesions (Peress et al., 1996).

Insulin-like growth factor | (IGF-1) seems to plalge crucial role in the oligodendrocytes
differentiation, survival of oligodendrocytes, amyelination (Mozell and McMorris, 1991;
Barres et al.,, 1992; Ye and D’Ercole, 1999; Goddeatré@l., 1999). IGF-1 over-expressing
mice show a significant increase of the number gklmated axons and of the myelin
thickness (Ye et al.,, 1995). IGF-I knock-out (KO)ce exhibit a decreased number of
oligodendrocytes and myelinated axons in the commi®sum and anterior commissure
(Beck et al., 1995). Beneficial effects of IGF-1 mmyelination have been studied in various
experimental demyelination models (Yao et al., 198&son et al., 2003).

Despite of IGF-1 and TGF-R1 alsaliary neurotrophic factor (CNTF) and leukaemia
inhibitory factor (LIF) seem to be strongly involved in the regulationthef oligodendrocyte
lineage. Both molecules act via gpl30 receptors emald enhance the generation of
oligodendrocytes in cultures of dividing O-2A progers and promote oligodendrocyte
maturation, as determined by expression of myedisidoprotein (Mayer et al., 1994). CNTF
promotes genesis, differentiation, maturation, amcvival of oligodendrocytes derived from
developing and adult CNS (Mayer et al.,, 1994; Bare al., 1996; Marmur et al., 1998;
Talbott et al., 2007). Moreover, CNTF has been shdw enhance myelination in vitro
(Stankoff et al.,, 2002). The promyelinating effedft CNTF is proposed to be mediated
through the JAK/Stat pathway (Stankoff et al., 20@NTF, but also LIF, can prevent death

of oligodendrocytes under pro-inflammatory condison vitro (Louis et al., 1993; Vartanian
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et al.,, 1995). LIFR is expressed on oligodendrocytes and is activatedffected tissue
(Butzkueven et al., 2002). There are also repbds ltIF is involved in the differentiation of
oligodendrocytesn vivo (Ishibashi et al., 2009). In cuprizone induced yelmation LIF-
knock-out mice display more severe demyelinatiod anpaired remyelination, although
oligodendrocyte replenishment is not significammympromised (Marriott et al., 2008). In the
EAE, LIF receptor signalling limits the severity ioflammatory demyelination (Butzkueven
et al., 2002). This study shows that LIF directigyents oligodendrocyte death in EAE.
Understanding the role of individual growth factersd their complex interplay during de-

and remyelination will open new opportunities tovelep successful MS therapies (Fig. 3).

Oligodendrocyte
differentiation and myelination

Oligodendrocyte
progenitor 3 Health
migration and proliferation

Developmental myelination -

stem cell > Efty 4 = Fis s
. VT — O~
- T — ) =
bFGF/EGF PDGF, bFGF ’\ S
\*L\f LINGO-1
O O PDGF, bFGF/ & CNTF/NT3 /QJ BEA TOAT

Notch

LINGO-1
PSA NCAM
Notch

Netrin-1
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_/OX A T—
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/ ‘\Mvelln loss
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“*%\\ |

Differentiation Myelination

Figure 3. Myelination by oligodendrocytes in the CNS restiitsm a sequential series of events, which are
regulated by several factors. Successful myelimirgfgreen sheaths, bottom left) requires the ritdagion of
the developmental stages with migration, differaian and myelination by OPCs recruited from thela@NS.
Perturbation of critical steps at any stage widldeo a failure of myelin repair (modified from Nt and Mi,

2007, Nature Neuroscience).
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1.4 Clinical trials and possible therapies

The primary cause of MS is still not known. Sincgsfdnctions of the immune system are
supposed to be the main compound in the patholdgyl® most clinical trials focused on
immunomodulatory therapies. The currently availaid® therapies are also aligned to control
the immunmediated mechanisms. These include imnupposssive agents and
immunomodulatory agents like several recombinantsivas of cytokine Interferon beta
(Johnson et al., 1990). Another approved drug &irgimer acetate (GA, Copaxone®©, Teva
Pharmaceuticals, Petah Tikva, Israel), a syntleolymer of glutamic acid, lysine, alanine and
tyrosine. New therapies, like treatment with Natahab (Tysabri©, Biogen Idec,
Massachusetts, USA), antibodies to alpha 4 integrnnMitoxantrone (Novantrone©, OSI
Pharmaceuticals, New York, USA), an antineoplastgent that inhibits DNA and RNA
synthesis of B and T cells are also directed towhsd alleviation of autoimmune response.
Currently, several clinical trials are approachirmhancement of remyelination and
neuroprotection.

Fumaric acid esters (FAE) are a group of compouwvitish are currently investigated as an
alternative oral drug for the treatment of relagsiemitting multiple sclerosis. In the placebo-
controlled phase Il study treatment with FAE resdilin a significant improvement of various
MRI parameters in MS patients with relapsing-reimgitMS (Kappos et al., 2008). The
precise mechanism of FAE action is not yet clea, lloth an immunomodulatory and a
neuroprotective effects are suggested (Linker.e2@0D8).

In in vitro studies, immunomodulatory effects of FAE were obsg on T cells (Treumer et

al., 2003), B cells (Mrowietz and Asadullah, 200&)d dendritic cells (Litjens et al., 2004,
Zhu and Mrowietz, 2001). In the EAE animal modetatment with FAE led to a significant
therapeutic effect on the disease course. Furthrermia the inflammatory lesions the

numbers of microglia/macrophages but not of T celise reduced.
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Beside its immunomodulatory effects FAE showed pgheential for a cell protective effects
via activation of detoxifying pathways in differegital cellsin vitro (Wierinckx et al., 2005).
In human peripheral blood mononuclear cells (PBNHBE induced an increase of the anti
stress protein heme oxygenasel (HO-1), which ledatoeduction of the intracellular
glutathione content (Lehmann et al., 2007).

Minocycline, an antibiotic of the second generatietracycline showed immunomodulatory
and neuroprotective properties like inhibition ofcéll proliferation (Kloppenburg et al.,
1995), microglial activation and proliferation (#nheikki et al., 1999; Dommergues et al.,
2003; Fan et al., 2007). The decrease of microgialvation induced by minocycline has
been postulated to be a neuroprotective mechanismschaemic models of stroke
(Yrjanheikki et al., 1999). The effects of minodpel were also tested in EAE, where
minocycline led to beneficial effects on inflamneaj demyelination, and disease activity

(Popovic et al., 2002).
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2. Aims

In multiple sclerosis the pathomechanisms leading to demyelination seem to be different in
grey and white matter since there are only mild lymphocytic infiltrates in the cortical MS
lesons compared to the white matter lesions. Although new aspects of underlying
pathomechanisms leading to demyelination are being discovered continuously, the complex
biological interactions are far from being completely understood. Therefore, anima models
like the cuprizone model may be helpful in exploring the different mechanisms.

The main aim of this study was to perform detailed analysis of cuprizone induced CNS
demyelination in the grey and white matter. The dynamics of cuprizone induced
demyelination and glial reactions were studied in different CNS regions including corpus
callosum, cerebral cortex, hippocampus, cerebellar white matter, and cerebellar cortex.
Growth factors are known to play a crucial role in the development of the oligodendroglial
lineage. Thus, in the next step it was aimed to analyze the mRNA expression pattern during
de- and remyelination in grey and white matter regions of the cerebrum.

Currently, all available M S therapies are aligned to modul ate the immune mechanisms. There
is no reliable therapy is available that could support remyelination or promote repair. Thus,
development of new regenerative therapies is an important issue in the MS research. In this
study we investigated the impact of fumarc acid esthers (FAE) and minocycline on cuprizone

induced de- and remyelination.
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Chapter |

Regional differences between grey and white mattem

cuprizone induced demyelination

Viktoria Gudi-?", Darius Moharregh-Khiabahi, Thomas Skripulefz Paraskevi N.
Koutsoudaki? Alexandra Kotsiafi Jelena Skuljéc, Corinna Trebst and Martin Stangéf

! Department of Neurology, Hannover Medical Schbtainnover, Germany
2 Center for Systems Neuroscience, Hannover, Germany
Both authors contributed equally

Brain Research, 2009

Preface — about this manuscript

Cuprizone feeding is a commonly used model to saxgberimental de- and remyelination.

In the first part of the dissertation, we analysi®el dynamics of de- and remyelination in the
cerebral cortex and the corpus callosum. Demyeatinatn the cortex was delayed as

compared to the corpus callosum. Remyelinatiohendorpus callosum was observed even
before the termination of cuprizone administratiorhe cellular response during the

demyelination process was stronger in the corpul®sten as compared to the cortex.

Overall, the cuprizone model is an excellent taoinvestigate de-and remyelination in both

white and grey matter and to uncover the regior@enular differences.

The text of the original publication can be fouretén Brain Research 2009, Volume 1283,
Pages 127-138.
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Chapter Il

Temporal analysis of growth factor mRNA expressionn
the white and grey matter during cuprizone induced

demyelination and remyelination

Viktoria Gudi?, Jelena Skuljed, Ozlem YildiZ, Konstantin Fricheft Darius Moharregh-
Khiabant, Thomas Skripulefz Kirsten Wisset®, Roland Seifef{ Sabine Wolte'

and Martin Stangéf

! Department of Neurology, Hannover Medical Schetannover, Germany

2 Center for Systems Neuroscience, Hannover, Germany

3 Department of Otolaryngology, Hannover Medical Shblannover, Germany

* Department of Pharmacology, Hannover Medical Sghdahnover, Germany

In preparation
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Abstract

Growth factors are crucial for the development amaintenance of glial cells and are also
strongly involved in the regulation of glial resp@s in various pathological conditions including
de- and remyelination in the central nervous systetoncert of signals and their temporal and
spatial expression are not well characterized. Heeehave analyzed the temporal mRNA
expression profile of thirteen growth factors dgricuprizone induced de- and remyelination
using laser microdissection and real-time PCR teglas from the corpus callosum and cerebral
cortex. When corpus callosum and cortex were coetpaa similar pattern of growth factor
MRNA expression was observed for demyelination Weandfl a strong up-regulation of
neuregulin 1 (NRG 1) and glial cell-derived neuoptric factor (GDNF) and slightly increase of
ciliary neurotrophic factor (CNTF) and epidermabgth factor (EGF) in the first week of
cuprizone treatment in both the corpus callosum #oed cortex. Hepatocyte growth factor
(HGF), basic fibroblast growth factor (FGF-2), itsdike growth factor | (IGF-1), and
transforming growth factor-beta 1 (TGF-R1) were regulated mainly during peak of
demyelination at weeks 3-4.5. For remyelinatiorfedént growth factor mRNA expression
levels were detected in the regions analyzed. mRiNAls of GDNF, CNTF, HGF, FGF-2, and
brain-derived neurotrophic factor (BDNF) were eledain the corpus callosum but not in the
cortex, suggesting differences in molecular regutabf remyelination in the white and grey
matter. The knowledge of factors promoting sucegssimyelination may be a prerequisite for
the design of therapeutic strategies for remyabmain MS. This study confirms a role of FGF-
2, TGF-R1, IGF-1, CNTF, and LIF also in cuprizonduced demyelination in both white and
grey matter. Furthermore, new factors such as NRGONF, and HGF could be identified as
possible modulators of de- and remyelination asl gkl responses in this animal model.
MRNA expression of nerve growth factor (NGF), brderived neurotrophic factor (BDNF),
neurotrophin-3 (NT-3) was on the control level dgride- and remyelination in the cortex.
Neurotrophins seem not to be involved in the caltide- and remyelination. In contrast,
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different mMRNA expression pattern were seen fomgigrotrophins during de- and remyelination

in the corpus callosum, suggesting different mdecregulation of de- and remyelination in

white and grey matter.
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Introduction

Multiple sclerosis (MS) is a chronic, immune-meddit demyelinating, neurodegenerative
disease of the central nervous system (CNS) afiggiredominantly young adults. The
primary cause of MS is still unknown. The undertyipathophysiological mechanisms seem
to differ between white and grey matter since cattdemyelinating lesions are associated
with an intact blood brain barrier, alleviated fméition of lymphocytes, and mild astrogliosis
(Bo et al., 2003; van Horssen et al., 2007). Ien¢gears a bunch of neurotrophic factors has
been characterized to be involved in the patholoigMS (Mirowska-Guzel, 2009; Frota et
al., 2009). Neurotrophins, such as nerve growthofa(NGF), brain-derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), neuropoietigtokines, ciliary neurotrophic factor
(CNTF), transforming growth factor-b (TGF-31), leghnia inhibitory factor (LIF), and other
growth factors such as hepatocyte growth factorKH@latelet-derived growth factor alpha
(PDGF-A), basic fibroblast growth factor (FGF-2psulin-like growth factor | (IGF-I),
epidermal growth factor (EGF), glial cell-derivedeunotrophic factor (GDNF), and
neuregulin 1 (NRG 1) are suggested to support magraproliferation, and differentiation of
glial cells and to regulate myelin synthesis (rexad by Althaus et al., 2008; Rosenberg et al,.
2006;Butt and Berry, 2002). Using these powerful ageatprotect glial cells and neurons
from damage or enhance remyelination may open mppertunities for MS therapy.

Animal models like the murine cuprizone model apenmonly used to study experimental
de- and remyelination. Cuprizone (bis-cyclohexanamaldihydrazone) feeding leads to
oligodendrocyte death and a subsequent reversdntgyelination in the corpus callosum and
cortex (Skripuletz et al., 2008; Torkildsen et &008). Recently, we have shown that the
temporal course and dynamics of de- and remyetinatiiffer in the corpus callosum and
cortex (Gudi et al., 2009). To further investigéihese differences and the implication of
growth factors during de- and remyelination thefgeral and spatial profile of growth factors
was analyzed for mRNA expression levels in the @Ni8e and grey matter.
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Experimental procedures

Animals, induction of demyelination, tissue preparéon

C57BL/6 male mice were obtained from Charles Riy8ulzfeld, Germany). Animals

underwent routine cage maintenance once a weekwane microbiologically monitored

according to Federation of European Laboratory AhimScience Associations
recommendations (Rehbinder et al., 1996). Food veaieer were available ad libitum. All

research and animal care procedures were approyveédebReview Board for the Care of
Animal Subjects of the district government (Loweax8ny, Germany) and performed
according to international guidelines on the uskabbratory animals.

Demyelination was induced in 8-week-old male C5@hiice by feeding 0.2% cuprizone
(bis-cyclohexanone oxaldihydrazone, Sigma-Aldrich.| St.Louis, MO, USA) mixed into a
ground standard rodent chow for 4.5 weeks. For edimgtion animals were returned to

normal chow for an additional 1.5 weeks.

Tissue preparation

At different time points (weeks 1, 2, 3, 3.5, &4 for demyelination, weeks 5, 5.5, and 6 for
remyelination) mice were sacrificed and perfuseal thie left cardiac ventricle with RNAse
free phosphate buffered saline (PBS) for gene egme analysis or with 4%
paraformaldehyde (PFA) in phosphate buffer for imohistochemistry studies. A group size
of four or five animals was investigated at eaahetipoint. For gene expression analysis the
brains were removed and immediately embedded isu€igek® Compound (Sacura, USA),
frozen in liquid nitrogen and stored at -80°C untle. Under RNase free conditions, serial
coronal sections (bregma 0.98 to -2.46; PaxinosFaadklin, 2001) with a thickness of 30um
were cut at -20° C. The sections were mounted tyetitylene-naphthalate (PEN) membrane
slides (Carl Zeiss Microlmaging GmbH, Germany)getixfor 2 min in 70% icecold ethanol,
rinsed with DEPC-treated water, and stained fos@®0in 1% cresyl violet acetate solution
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(Sigma-Aldrich, Germany) in 50% ethanol. Afterwardsctions were dehydrated in a graded
ethanol series (70% and 100% ethanol) and finadlgréed for several minutes. All solutions
were prepared with DEPC-treated water.

For immunohistochemistry brains were postfixed # #£FA in PBS at 4°C overnight,
cryoprotected in 30% sucrose in PBS for 24 h foddwby embedding in tissue-freezing
medium and flash-freezing on dry ice. For light ragcopy, 10 pm coronal serial frozen
sections were cut. Sections between bregma -0.78ntm1.46mm (according to mouse atlas

by Paxinos and Franklin, 2001) were analysed.

Laser microdissection

The PalIm® MicroBeam System (Carl Zeiss Microlmag®dmbH, Germany) was used to
precisely excise the cerebral cortex and medidlgiaghe corpus callosum from coronal brain
sections of pre-treated and age matched contra fsiee Fig. 1). Dissected brain regions of
the corpus callosum and cortex were collected seglgrwith a sterile 21-gauge needle and

stored until RNA extraction at -80°C.

RNA isolation and real-time quantitative RT-PCR

According to the manufacturer's recommendationsaltoRNA was extracted from
microdissected cortex and corpus callosum usingRiNeasy®Mini Kit (Qiagen, Germany)
and RNeasy® Micro Kit (Qiagen, Germany) respectivelhe RNA concentration was
measured with NanoDrop 1000 devise (Thermo FishaenSfic, USA). cDNA was
synthesized using the High Capacity cDNA Reversn3cription Kit (Applied Biosystems,
USA). RNA samples from a selected set of cupriziveated and age matched control mice
(cortex n=4, corpus callosum n=5) were parallelcpssed under the same conditions. Real-

time quantitative RT-PCR analysis was performecgighe StepOne™ Real-Time PCR
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System and appropriate TagMan assays (Applied Biesys, USA). All primers were intron-
spanning (Table 1). A negative control containif@RPamplification mix without reverse
transcribed cDNA template was included for each Ril&e. Gene expressions of NGF,
BDNF, NT-3, CNTF, IGF-1, NRG 1, NGF, EGF, FGF-2, 8B, PDGF-A, LIF, and TGB1
were analyzed in the corpus callosum and the cateéx time points (demyelination phase:
weeks 1, 2, 3, 3.5, 4, 4.5; remyelination phaseekse, 5.5, and 6). THRACt method was
used to determine differences in expression betwagirizone treated and age-matched
control mice. Changes in mRNA expression level weatculated after normalization to

Hypoxanthin Phosphoribosyltransferds#RT).

Histology and immunohistochemistry

Frozen sections were air dried at room temperdtur20 min. For inhibition of endogenous
peroxidase activity, sections were treated with B%, then blocked for 1 h with PBS
containing 3% normal goat serum, 0.1% Triton X-189¢ incubated with primary antibody
at 4°C overnight. Anti-proteolipid protein (PLP):%00, mouse 1gG, Serotec, Germany) and
anti-Nogo-A (1:750, rabbit, polyclonal, Chemicongne used as markers for myelin protein
PLP and oligodendrocytes respectively. After waghisections were incubated with
biotinylated secondary antibody (1:500, anti ralbbituse/rat IgG (H+L), Vector
Laboratories, UK) for 1 h, followed by peroxidasmipled avidin-biotin complex (ABC Kit,
Vector Laboratories, UK). Reactivity was visualizedth diamino-3,3’ benzidine (DAB,
Dako Cytomation, Germany).

Activated microglia were detected using lectin ms communis agglutinin 1 (RCA-1)
(2:1000, fluorescein coupled, Vector Laboratorigs)ial fibrillary acidic protein (GFAP)
(1:200, mouse IgG, Millipore, USA or rabbit polyol, Dako Cytomation, Germany) was

selected as a marker for astrocytes.
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Determination of de- and remyelination in the cort& and corpus callosum

The extent of cortical demyelination was studieddascribed previously (Skripuletz et al.,
2008). In particular, myelin protein-stained seasiofor PLP were scored using a light
microscope (Olympus DP 72, Germany). Scoring of yidimation was performed by three
blinded observers, using a scale from 0 (complatk lof myelin) to 4 (normal myelin)

(Skripuletz et al., 2008). For determination of gefmation in the corpus callosum PLP
stained sections were scored on a scale from Ogledendemyelination) to 3 (normal myelin)

by three blinded investigators (Lindner et al., 200

Statistical analysis

Statistical analysis was performed using one-wa}yais of variance (ANOVA) followed by
the Fisher-PLSD-test or Dunnett test for post hmogarison. LIF mRNA was not detected in
the control animals in both the corpus callosum taedcortex. The normalization for LIF was
done with the data from week 6. All data are giasrarithmetic means + standard error of the
mean (SEM).P values of the different ANOVAs are given in the uks, while group
comparisons derived from post hoc analysis areigeolvin the figures. In the latter cases,
significant effects are indicated by asterisks (parad to the preceding time point) or rhombs

(compared to control,”p < 0.05; ***p < 0.01; ***** < 0.001).
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Results

De- and remyelination induced by cuprizone feeding

To determine the de- and remyelination pattern ésponse to 4.5 weeks of cuprizone
treatment, immunohistochemical stainings and riea PCR analyses for the myelin protein
PLP were performed. As demonstrated in figure 2eieloss of PLP was observed in the
corpus callosum after 4.5 weeks of cuprizone fegp@px0.0001) (Fig. 2C-F, K). At week 6

(after 1.5 weeks of remyelination on normal choim)munoreactivity for PLP was nearly

completely recovered in the corpus callosum (Fig. B). mRNA expression for PLP was

strongly down regulated from the first week and aerad at low levels during the following

weeks of cuprizone treatment (Fig. 2M). After caprie withdrawal from the diet, PLP

MRNA expression returned to normal level.

In the cortex, severe loss of PLP was detectedeaks/5 and 6 (p<0.0001) (Fig. 2G-J, L).
PLP mRNA expression was massively decreased franfitst week and continued at low
levels during whole cuprizone diet (Fig. 2N). Thermalization of PLP mRNA expression

was achieved at weeks 5.5 and 6, approximately vBek later than in the corpus callosum.

Glial reactions during cuprizone treatment

To follow the oligodendroglial cellular response doprizone feeding we used the marker
Nogo-A. After 4.5 weeks of cuprizone treatment nogbtA positive cells were visible
neither in the medial corpus callosum nor in theteco (Fig. 3B, F). Oligodendrocytes
reappeared first in the corpus callosum at weeki&. BC). In the cortexiNogo-A positive
cells were seen only sporadically at week 5. Irsedaamounts of Nogo-A positive cells were

detected in the cortex at week 6 (Fig. 3G, H).

Accumulation of activated microglia was studiedBgA-1 staining. In the corpus callosum
RCA-1 positive cells were detected already aftevezks of cuprizone feeding. During the

following 2.5 weeks the amount of activated micraghcreased and reached a peak at week
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4.5 concomitant with the demyelination peak (Fid). ¥hereafter, a continuous decrease of
activated microglia was observed (Fig. 3K, L). e tcortex, microgliosis occurred in an
obviously reduced density compared to the corpu®stan. Within the cortex a small
extended infiltration of activated microglia wasifa at weeks 3.5, 4.5, and 5 (Fig. 3N-P). At
week 6 microglia were only sporadically found ie tortex (Fig. 3P).

Astrogliosis was studied by GFAP immunostainingn§istent to our previous resu{Gudi

et al., 2009)few GFAP positive astrocytes were seen in the comgallosum in untreated
controls, while in the cortex GFAP positive astiasywere found sporadically (Fig. 3Q, U).
After 2 weeks of cuprizone treatment a strong g$iteis was observed in the cortex.
However, in the corpus callosum astrogliosis o@mlidelayed, particularly at the week 3, and
was still detectable in both regions until weekuBirnlg remyelination (Fig. 3R-T, V-X).

Nestin positive cells were detected in the cortetha week 2 (Fig. 4C). These cells showed
astrocytic shape and were double positive for th&oaytic marker, GFAP (Fig. 4G).
Interestingly, nestin positive cells were situatadstly in the fourth cellular layer of the
lateral cortex. At the following weeks nestin po&t cells were sporadically seen in the
cortex, mainly in the fifth and sixth cellular léW&udi et al., 2009). In the corpus callosum
nestin positive cells occurred only by some aninsgeradically at the week 2. The main
amount of these cells were observed at the weeltsg3 4D, H), 4, and 4.5 followed by

gradually decrease, as described previously (Guali,62009)

Analysis of growth factor mRNA expression profile diring de- and remyelination in
corpus callosum and cortex

To identify growth factors secreted in the whitel gmey matter during de- and remyelination,
MRNA expression of thirteen growth factors was ®ddn the medial corpus callosum and
the lateral cerebral cortex of cuprizone treatedemfs shown in figures 5, 6, and 7 different

pattern of growth factor mRNA expression could 8entified. NRG 1 and GDNF mRNA
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expression was massively up-regulated after tis¢ Week of cuprizone feeding in both the
corpus callosum and cortex (for both p<0.0001).imypithe following weeks NRG 1 and
GDNF mRNA expression normalized (Fig. 5C, D, E,Frallel to the remyelination start the
amount of GDNF mRNA increased again in the copuescan (approx. 8 times) though
failed to be significant.

MRNA production of CNTF and EGF showed significeh&anges mostly in the white matter
(corpus callosum: for both p<0.0001; cortex: for TNp=0.01; EGF p=0.05). Both factors
were slightly up-regulated after the first weekdeimyelination (CNTF approx. 4 times in the
corpus callosum and 2.5 times in the cortex; EGhr@p 2.5 times in the corpus callosum
and 3.6 times in the cortex). Towards the end ef rdmyelination phase CNTF and EGF
MRNA were strongly elevated in the white matterydiig. 5G, H, 1, J).

Upon cuprizone treatment TGF-R1 and IGF-1 mRNA esgion increased significantly and
reached its peak after 4.5 weeks in both invesidhadreas (for both p<0.0001). With
progressing remyelination, mRNA expression of theae factors decreased gradually (Fig.
6C, D, E, F).

The mRNA syntheses of HGF and FGF-2 were stronglaggd in both white and grey matter
during the whole experimental time window (corpadlasum: for both factors p<0.0001;
cortex: FGF-2 p<0.0001; HGF p=0.05) (Fig. 6G, HJ), Whereas in the cortex FGF-2
MRNA was increased at a constant level during thelevdemyelination phase there was a
peak of mMRNA elevation at weeks 4 and 4.5 in thg@u® callosum. During remyelination
MRNA of HGF and FGF-2 continued to be elevatechan¢orpus callosum in contrast to the
cortex where mRNA expression of these two factoas wn control level. Upon cuprizone
treatment mMRNA expression of NT-3 and NGF decreasggdficantly (for both p<0.0001) in
the corpus callosum (Fig. 7 C, E). With the cessatf the cuprizone diet NT-3 and NGF

MRNA expression returned to normal level.

24



Results Chapter I

BDNF mRNA synthesis was only slightly elevatedhe torpus callosum during the first 3.5
weeks of cuprizone feeding, and normalized wittha tollowing weeks including maximal

demyelination. During the remyelination phase mRNRpression of BDNF increased

significantly (p =0.001) in the corpus callosumgF7G). In the cortex, mMRNA expression
levels of NT-3, NGF, and BDNF did not change andsiséed on levels comparable to
controls during both de- and remyelination phases (/D, F, H).

PDGF-A mRNA synthesis was not changed during del rmyelination in both regions

(Fig. 71, J).

The expression of LIF mRNA in both the corpus callm and the cortex was hardly
detectable. Thus, these mRNA expressions were lagdcuin comparison to the mRNA

expression at week 6. In the white matter, LIF mRN&s particularly increased at weeks 2
and 3 of cuprizone feeding (p=0.05) (Fig. 7K). he grey matter, LIF mRNA synthesis was
strongly increased during the first weeks (p=0.082¢l at the peak of demyelination (Fig.

7L). Results for different mRNA expression pattara summarized in the table 2.
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Discussion

We have previously reported that the time courseupfizone induced de- and remyelination
differs in the corpus callosum and cortex (Gudalet2009). We hypothesised, that different
growth factors may influence de- and remyelinaiiothe white and grey matter. Therefore,
we analyzed the mRNA expression of thirteen neaptiic factors during cuprizone induced
demyelination and the subsequent remyelinatiohencorpus callosum and cerebral cortex in
detail. Especially during remyelination differendestween the corpus callosum and cortex
were found in the profile of growth factor expressi suggesting regional differences in the
regulation of remyelination.

As previously described (Hesse et al., 2009), dshied numbers of mature oligodendrocytes
were detectable already after 1 week of cuprizozatinent. Subsequently, in both the corpus
callosum and the cortex severe loss of myelin piet&vas observed after 4-4.5 weeks of
cuprizone feeding. Due to the termination of thpraone diet at week 4.5 newly generated
oligodendrocytes, which were numerously preserdadly at weeks 5 and 5.5 in the corpus
callosum and at weeks 5.5-6 in the cortex promthiedexpression of myelin proteins. The
myelin protein changes could be confirmed by remét PCR data for PLP that showed
diminished mRNA levels during demyelination andregulated levels during remyelination.
When cortex and corpus callosum were comparedtdhmporal myelination pattern was
different in both regions, and maximal loss of nygroteins occurred delayed in the cortex.
Along with demyelination, microglial infiltration as observed in both regions analyzed and
was remarkably increased in the white matter ofctimpus callosum compared to the cortical
areas, which is consistent with previous reportsefHath et al., 1998; Gudi et al., 2009).
According to previous data, astrogliosis was asniment in the cortex and as it was in the
corpus callosum during de- and remyelination (SKefz et al., 2008; Gudi et al., 2009). The
role of astrogliosis in cuprizone induced demydlora is not completely understood.
Reactive astrocytes are known to be powerful pergaf growth factors. The expression of
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CNTF and its receptor, CNTFRa, can also be detentadtrocytes following brain injury (Ip
et al., 1993; Rudge et al., 1994; Asada et al.51Rfsch et al., 1998). Since application of
exogenous CNTF induces reactive astrogliosis armd up-regulation of GFAP mRNA
expression (Kahn, et al., 1997), CNTF is suggetidoe a key player in astrogliosis. In our
present work CNTF mRNA expression was up-regulatetie first two weeks of cuprizone
feeding in both the corpus callosum and cortex mwag account for the astrogliosis during
demyelination.

For GDNF and NRG 1 mRNA expression we observedangtup-regulation only after the
first two weeks of callosal and cortical demyelioat In the human brain, the membrane
associated form of NRG 1 was identified in cortioalirons, while released soluble NRG 1
activity was found on astrocytes in the white nrafankonin et al., 2009). It can be possible
that neurons produce this factor, which stimulasgocytes to subsequently secrete other
growth factors. GDNF has a proliferative effect @6 glioma cells (Suter-Crazzolara and
Unsicker, 1996) and it has been demonstrated tBdNFSis up-regulated in astrocytes during
pathophysiological conditions such as spinal copary (Satake, 2000; Ikeda et al., 2002; Lee
et al., 2006; Miyazaki et al., 2001). Thus, theragulation of GDNF may provide another
activating signal for astrocytes. Such an early MARN-regulation of these three growth
factors suggests that CNTF, GDNF, and NRG 1 mayesgmt the key molecules to drive
astrogliosis and microgliosis in the cuprizone nmodais assumption can be supported with
our observation of nestin expressing astroglia aekv2 in the cortex. Nestin expressing
astroglia were seen in the corpus callosum spaxligliat the week 2 with a clear increase at
week 3 and 4.

CNTF, GDNF, and EGF showed a second peak in mRNpression by the onset of
remyelination in the corpus callosum, but not ie ttortex. The involvement of GDNF in
myelination has been predominantly described fanadpcord injury and in the peripheral

nervous system, and vitro by acting on Schwann cells and neurons (Zhany24G9; lwase
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et al., 2005; Hoke et al., 2003). CNTF was showpramote OPCs differentiation in optic
nerve, but it is not supportive for differentiatioh cortical OPCs (Power et al., 2002). In
addition, CNTF and CNTF receptor alpha expressiattem differ between white and grey
matter astrocytes (Dallner et al., 2002). Generd&lINTF promotes genesis, differentiation,
maturation, and survival of oligodendrocytes detift®m developing and adult CNS (Mayer
et al. 1994; Barres et al. 1996; Marmur et al. 19B8lbott et al. 2007). Unddn vitro
conditions an enhancement of myelination was sh@tankoff et al. 2002). CNTF has been
detected in astrocytes in the remyelinating phé&se aral-induced spinal cord demyelination
(Albrecht et al., 2003). However, CNTF mRNA has hetn detected in the lysolecithin rat
animal model (Hinks and Franklin, 1999). Also exogeasly applied recombinant CNTF has
not shown any beneficial effects on OPC prolifenati differentiation, and survival in
ethidium bromide induced demyelination (Talbottatt, 2007). The differences between
CNTF effects on remyelination in different regicarsd demyelination models may be due to
heterogeneity of OPC populations and involvemenpeaipheral inflammatory cells in the
lysolecithin and ethidium bromide models.

BDNF mRNA expression was increased only in the gsrgallosum in the first 3.5 weeks of
cuprizone feeding and showed a second peak duemgelination. In the cortex no changes
of BDNF mRNA expression were observed. BDNF haswshdeneficial effects on
differentiation and myelination of OPCs and can ucsl demyelination and increase
remyelination (Makar et al., 2009). Moreover, itshileen suggested, that astrocytes and
oligodendrocytes may exist as a heterogeneous aiigulof cells, expressing different
neurotrophin receptors in various combinations epasately. Since cortical OPCs do not
express the full-length BDNF receptor, trkB, BDNBEncnot promote differentiation of
cortical oligodendrocytes (Du et al., 2003). Prdpabortical OPCs do not require BDNF
support for their differentiation, explaining obged BDNF mRNA expression differences in

the white and grey matter.
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NT-3 and NGF mRNA expression was significantly denggulated in the corpus callosum
after 2 weeks of cuprizone feeding. In the cortdkanalyzed neurotrophins seem not to play
a role during either demyelination or remyelinatidine mMRNA expression of these three
neurotrophic factors did not change during the whedperiment.

Since elevated TGF-[31 expression was found in edjuorain and in neurodegenerative
diseases including MS, it was suggested that TGR¥&Y play an important role in
inflammatory processes. (Nichols et al., 1991; Kierat al., 1992; Kiefer et al.,1993a,b;
Logan et al., 1994; Laping et al., 1994). Astrocyxpression of IGF-1 is markedly increased
during and/or after a variety of CNS injuries (Q{o@n et al., 1992; Lee et al., 1996; Liu et
al., 1994; Garcia-Estrada et al., 1992; Komolyletl®92; Yao et al., 1995). In our study, the
dynamics of IGF-1 and TGF-B1 mRNA expression wittadgal elevation of mRNA
expression with a peak at week 4.5 (the time pofirgevere demyelination, especially in the
corpus callousum) were similar in both regions ®ddThis is in line with data from other
experimental demyelination models where IGF-1 ar@F-R1 are strongly up-regulated
during demyelination in different animal models rfks and Franklin, 1999; Fushimi and
Shirabe, 2004). The time course of IGF-1 mRNA eggpien is consistent with the studies of
Mason (Mason et al., 2000), where the whole brames were studied. Here we examined
the IGF-1 mRNA expression separately in the corpadosum and the cortex. During
remyelination IGF-1 and TGF-B1 mRNA expression ca@d to be elevated in both the
corpus callosum and the cortex. This finding issistent with studies in lysolecithin induced
demyelination in rats (Hinks and Franklin, 1999asBd on data from different animal models
and in vitro studies, IGF-1 is considered to be a key modulatbroligodendrocyte
differentiation and myelination (McMorris et al.986; Saneto et al., 1988; Mozell and
McMorris, 1991; Barres et al., 1992; Goddard etE99; Ye et al., 1995; Beck et al., 1995).
MRNA expression of HGF and FGF-2 was slightly eledaduring demyelination, primarily

in the corpus callosum. HGF expression has beeatet during acute demyelination in EAE
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(Moransard et al., 2009). It has also been repdhata functional HGF/c-Met system, which
can influence the proliferation, development, amtbbskeletal organization, is present in
oligodendrocytes (Yan and Rivkees, 2002). HGF ieduthemotaxis of OPQs vitro (Lalive

et al., 2005). Since FGF-2 expression is up-regdlat nearly every model of experimental
CNS demyelination (Armstrong et al.,, 2002; Liu ét 4998; Hinks and Franklin, 1999;
Messersmith et al.,, 2000) it seems to be stronglolved in the regulation of distinct
processes during demyelination. FGF-2 is consideoetbe a potent mitogen for OPCs
(McKinnon et al., 1990; Jiang et al., 2001; McMsreand McKinnon, 1996; Wolswijk and
Noble, 1992). In our previous study, we alreadyortgrl that the strongest proliferating
activity of OPCs was observed at weeks 4 and 416ngl the peak of demyelination (Gudi et
al., 2009). In contrast to the cortex, where mRNx@els of FGF-2 and HGF returned to that
of controls, an increase of FGF-2 and HGF mRNA espion was observed in the corpus
callosum also during remyelination. HGF producing@3 were present in spinal cord EAE
lesions during the recovery phase, but not in tuteastage of disease (Lalive et al., 2002).
For FGF-2 a significant inhibitory effect on progen differentiation and myelination has
been shown (Bansal and Pfeiffer, 1997; Goddard. e2@01; Armstrong et al., 2002, 2006).
Thus, we assume that the down-regulation of FGikthe cortex allows OPC differentiation
and thus myelin formation. However, a differenuatton seems to be in the corpus callosum.
Up-regulation of FGF-2 during remyelination has rbeeported in lysolecithin induced
demyelination (Hinks and Franklin, 1999) and alseitro, in myelinating aggregate cultures
(Copelman et al., 2000). It can only be speculabed FGF-2 possesses multiple functions
and acts not only directly on oligodendrocytes d&ab influences other cell types promoting
myelination indirectly.

Further, based on the literature and our resulis1GFGF-2, and TGF-31 may also regulate

migration, proliferation, and differentiation of GB. The peaks of IGF-1, FGF-2, and TGF-
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31 mRNA expression corresponded, especially incttipus callosum, with the phase of
proliferation of OPCs and the start their differation.

In summary,the dynamics of growth factor expression differ the corpus callosum
compared to that in the cortex. During remyelinattRNA expression of CNTF, FGF-2,
HGF, BDNF, and GDNF were up-regulated in the corpallosum but not in the cortex,
suggesting different regulation of remyelinationtie white and grey matter. Taking our
results and the published data in consideratio® ftbllowing scenario of de- and
remyelination orchestration in the corpus callosand the cortex could be suggested: NRG 1,
GDNF, and CNTF induce astrogliosis. In turn, reactastrocytes produce TGF-I3 or LIF that
further support astrogliosis and are chemotactidofith astrocytes and microglia. Activated
microglia and reactive astroglia may release IGA-GF-2, and HGF, which support
migration, proliferation, and finally initiate totieer with TGF-31 differentiation of OPCs.
CNTF, GDNF, but also FGF-2, BDNF and HGF are suggkso be the key players in
promotion of remyelination in the corpus calloswether directly or indirectly. In the cortex,
possibly due to differences in astroglia and OP@ugations and the involvement of neurons,

these latter factors may not be required or adifferent time windows
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Table legends

Growth Faktor Assay number

NGF MmO00443039 m1
BDNF MmO01334042_m1
NT-3 Mm01182924 m1l
GDNF MmO00599849 m1
NRG 1 Mm00626552 m1
CNTF MmO00446373 m1l
IGF-1 MmO00439560 m1
TGF-R31 Mm00441724 ml
FGF-2 MmO00433287 _m1
HGF MmO01135184 ml
LIF MmO00434761 m1
PDGF-A MmO01205760 m1
EGF Mm01316968 m1
HPRT MmO00446968 m1

Table 1.Following TagMan® Gene Expression Assays were ts@ivestigate mRNA
expression for different growth factors
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Growth
factors

Early
demyelination
(weeks 1-3)

Severe
demyelination
(weeks 3.5-4.5)

Early
remyelination
(weeks 5, 5.5)

Remyelination

(week 6)

FGF-2
Corpus callosun

~

~

~

~

FGE-2
Cortex

TGF-R31
Corpus callosunj

TGF-R1
Cortex

PDGF-A
Corpus callosun

PDGF-A
Cortex

HGF
Corpus callosunj

HGF
Cortex

LIF
Corpus callosun

LIF
Cortex

? 2 72 1 1 % 1 7|7

7 3 72 72 521 2 - 2

1 1. 172 3 1 22 -1

1 388 72 31 11 72 1

1
~
=

No change

l Down-regulation

Strong up-regulatiorn>(L0 times)

Mild up-regulation (<10 times)

Table 2. Schematic summary of mMRNA expression patter
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Figure legends

Figure 1
Laser microdissection. A)microdissected area of the corpus callos&nmicrodissected
area of the cortex¢) Overview of coronal section with the dissectedposrcallosum and the

cortex, stained with cresyl violet.
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Figure 2

Demyelination and remyelination in the corpus calleum and the cortex, studied by PLP
MmRNA and protein expression. A) Schematic diagram of the mouse brain in coronal
sections. The red line shows the investigated reigdit of corpus callosurB) The red line
marks the area of the investigated cort€xF) PLP-stained sections demonstrate severe
demyelination in the corpus callosum at week 4&mikgelination starts already at the week 5
and is almost complete at week®-J) PLP-stained sections show severe demyelination in
the cortex at weeks 4.5, 5, and 6. At week 6 the Binount increasek) PLP expression in
the corpus callosum. Score of O represents compigédin protein loss, score of 3 represents
normal myelin protein amount in the corpus callosujnPLP expression in the cortex. Score
of O represents complete loss of myelin proteioys®f 4 shows a normal amount PI\P),

MRNA expression of PLP in the corpus callostihmRNA expression of PLP in the cortex
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Figure 3

Oligodendrocyte, microglia, and astrocytes during pak demyelination (week 4.5) and
remyelination (weeks 5-6) in the corpus callosum a@hthe cortex. Representative sections
show oligodendrocytes in the corpus callos(/rD) and the corteXE-H) visualized with
anti-Nogo-A and DAB. No oligodendrocytes are seethe corpus callosum and the cortex at
week 4.5(B, F). Oligodendrocytes reappear at week 5 in bothctrpus callosum and the
cortex (C, G). Representative sections show microglia in thgpuercallosun(l-L ) and the
cortex (M-P), stained with fluorescein coupled anti-RCA-1 (imegn). The peak of
microgliosis was observed at week 4.5 in both tlepwes callosum and the cortex.
Astrogliosis is shown in the corpus callos@@T) and the corteXU-X), stained with anti-
GFAP and Alexa 555 secondary antibodies (in red)uritreated animals numerous GFAP
positive cells are found in the corpus callos(@) in contrast to only few GFAP positive
cells in the corteXU). Upon cuprizone treatment reactive astroglia appethe cortex and in
the corpus callosum. At week 4.5 hypertrophic a&stes are abundantly detected in both
areas(R, V). At weeks 5 and 6 astroglia are still presentethige numbers in the corpus
callosum and the cortex, however, the shape ob@ges alters and their processes become

thinner(S, T, W, X). For nucleus staining, slides were counterstaimeDAPI.
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Corpus callosum

Figure 4
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Figure 4

Astrocytic expression of nestin during early demyahation in the corpus callosum and
the cortex. A) Schematic diagram of the mouse brain in corondi@ecThe red line marks
the area of the investigated cort®.The red line shows the investigated middle pathef
corpus callosum. Nestin positive cells (in greene) @esent at week 2 of the cuprizone diet
the cortex(C) and at the week 3 in the corpus callos@id). GFAP stained activated
astrocytes (in red) are numerously present at vZeekthe cuprizone diet in the cort¢i)
and at the week 3 in the corpus callos{lih) Several nestin positive cells are double positive
for GFAP in both the cortexG) and the corpus callosufii) (Nestin is shown in green,

GFAP in red, nuclear staining with DAPI in blue)
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Figure 5

Expression of growth factor mRNA in the corpus calbsum and the cortex of mice
undergoing demyelination / remyelination. A)Schematic diagram of the mouse brain in
coronal section. The red line shows the investdyatéddle part of the corpus callosui)
The red line marks the area of the investigatetego€-J) Graphs show mRNA expression
fold changes of NRG1, GDNF, CNTF, and EGF in thepue callosum (C-l) and in the
cortex (D-J) compared to the age-matched controts riormalized with HPRT using the
AACt method. Significant changes are indicated byntb® (compared to control) or asterisks

(compared to the preceding time poifip € 0.05; ***p < 0.01; ***** < 0.001, ANOVA).

Figure 6

Expression of growth factor mRNA in the corpus calbsum and the cortex of mice
undergoing demyelination / remyelination. A)Schematic diagram of the mouse brain in
coronal section. The red line shows the investajaéddle part of the corpus callosuB)
The red line marks the area of the investigatetego€-J) Graphs show mRNA expression
fold changes of TGF-31, IGF-1, HGF, and FGF-2 i@ torpus callosum (C-l) and in the
cortex (D-J) compared to the age-matched contnads reormalized with HPRT usingthe
AACt method. Significant effects are indicated bymihs (compared to control) or asterisks

(compared to the preceding time poifip € 0.05; ***p < 0.01; ***** < 0.001, ANOVA).
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Figure 7

Expression of growth factor mRNA in the corpus calbsum and the cortex of mice
undergoing demyelination / remyelination. A)Schematic diagram of the mouse brain in
coronal section. The red line shows the investdyatéddle part of the corpus callosui)
The red line marks the area of the investigatetego€-L) Graphs show mRNA expression
fold changes of Nt-3, NGF, BDNF, PDGF, and LIF lre tcorpus callosum (C-K) and in the
cortex (D-L) compared to the age-matched contrat$ mormalized with HPRT usingthe
AACt method. Significant effects versus controls m@icated by rhombs or asterisks if

compared to the preceding time poirip € 0.05; ***p < 0.01; ****p < 0.001, ANOVA).
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Chapter Il

Cerebellar cortical demyelination in the murine

cuprizone model

Thomas Skripuletz*, Jens-Heiko Bussmann', Viktoria Gudi*?, Paraskevi N. K outsoudaki®?,
Refik Pul', Darius Moharregh-K hiabani®, Maren Lindner, and Martin Stangel*2

! Department of Neurology, Medical School Hannover, Hannover, Germany
2 Center for Systems Neuroscience, Hannover, Germany

Brain Pathology, 2010

Preface — about this manuscript

The current study provided adetailed analysis of the dynamics of de- and remyelination in the
cerebellar cortex and white matter. To induce demyelination, C57BL/6 mice were fed with a
0.2% cuprizone diet for 12 weeks followed by arecovery phase of 8 weeks. Significant loss
of myelin could be detected after 12 weeks of cuprizone feeding in cortical and white matter
structures of the cerebellum. Remyelination occurred after withdrawal of cuprizone but was
less prominent in the more caudal region of the cerebellum. Infiltration of activated microglia
was abundant in all analyzed cerebellar areas. Astrogliosis could also be observed but did not
reach the extent observed in the cerebrum. Demyelination, microglia, and astrocyte changes
were different in the cerebellum as compared to the cerebrum suggesting region-dependent

different pathomechanisms.

Brain Pathology 2010, Volume 20, Issue 2, Pages 301-312.
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Chapter IV

Demyelination of the hippocampus is prominent in tle

cuprizone model

Paraskevi N. Koutsoudaki?, Thomas Skripuletz, Viktoria Gudi*?, Darius Moharregh-
Khiabani*, Herbert Hildebrandt®®, Corinna Trebst', and Martin Stangel*?

! Department of Neurology, Medical School Hannover, Hannover, Germany
2 Center for Systems Neuroscience, Hannover, Germany
3 Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany

Neur oscience Letters, 2009

Preface — about this manuscript

The current study provides a detailed characterization of hippocampa demyelination in the
cuprizone model. Demyelination affected all hippocampal structures analyzed and was
accompanied by astrogliosis and microgliosis. However, between the distinct hippocampal
structures the temporal pattern of demyelination as well of cellular response intensity varied
considerably. Cuprizone feeding provides a useful model for studying demyelination

processes in the murine hippocampus.

Thetext of the original publication can be found here: Neuroscience Letters 2009, Volume
451, Issue 1, Pages 83-88
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Chapter V

Beneficial effects of minocycline on cuprizone indted

cortical demyelination

Thomas Skripuletz!, Elvira Miller!, Darius Moharregh-K hiabani®, Alexander Blank®, Refik
Pul?, Viktoria Gudi*?, Corinna Trebst!, and Martin Stangel

! Department of Neurology, Medical School Hannover, Hannover, Germany
2 Center for Systems Neuroscience, Hannover, Germany

Neurochemical Research, 2010

Preface — about this manuscript

In this study, the potential of minocycline to influence cuprizone induced de- and
remyelination in the grey and white matter was investigated. The administration of
minocycline was associated with reduced demyelination in both the corpus callosum and the
cortex. In addition to the beneficial effects on demyelination, treatment with minocycline
improved the motor coordination behaviour of the cuprizone treated mice. For remyelination,
astrogliosis, and the numbers of OPC and oligodendrocytes no treatment effects were found.
In this study presented findings also demonstrated regional differencesin tissue reactivity and

microglia activation induced by minocycline in the white and the grey matter.

Thetext of the original publication can be found here: Neurochemical Research 2010,
Volume 35, Number 9, Pages 1422-1433.
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Chapter VI

Effects of fumaric acids on cuprizone induced cendal

nervous system de- and remyelination in the mouse

Darius Moharregh-K hiabani®, Alexander Blank®, Thomas Skripuletz*, ElviraMiller*,

AlexandraKotsiari®, Viktoria Gudi*?, and Martin Stangel*?

! Department of Neurology, Hannover Medical School, Hannover, Germany
2 Center for Systems Neuroscience, Hannover, Germany

PLoS ONE, 2010

Preface — about this manuscript

In this study the impact of fumaric acid esters (FAE) on de- and remyelination was
investigated using the toxic cuprizone model. After the termination of the cuprizone diet,
treatment with FAE could only marginal accelerate remyelination in the corpus callosum but
not in the cortex as compared to controls. No FAE treatment effects were found for
demyelination and for glial reactions. Since no breakdown of the blood-brain-barrier occursin
the cuprizone induced demyelination, the minor effects of fumarates in the cuprizone model

might be related to the lack of influence of the peripheral immune system.

Thetext of the original publication can be found here: PLoS ONE 2010, Volume 5, Issue 7
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4. Discussion

4.1 Regional differences of de- and remyelination in white and grey matter

The cuprizone model is a powerful tool to study @ed remyelination in the CNS.
Previously, it has been shown that cuprizone indwEmyelination also affects the cerebral
cortex (Skripuletz et al., 2008). In diseases M8, de- and remyelination seem to follow
different mechanisms in grey and white mater (Albetr al., 2007; Bo et al., 2003; van
Horssen et al.,, 2007). In the current study, wefopered a detailed analysis of the
demyelination dynamics in the cerebral cortex imparison to the corpus callosum in
C57BL/6 mice treated with 0.2% cuprizone. We alsadied the demyelination in the
hippocampus and the cerebellar white and grey m@autsoudaki et al., 2009; Skripuletz et
al., 2010). Interestingly, the time course of delmgtion differed between the regions
analyzed. In the cerebral cortex a complete demyetin was observed after 6 weeks of
cuprizone feeding while in the medial corpus callosa complete myelin loss occurred
already after 4.5-5 weeks of cuprizone feedingfdd@nces between white and grey matter
demyelination were also shown for the cerebellumens only moderate demyelination was
detected for all time points investigated. Cerelvetiortical demyelination could first be
observed from week 6 onward and reached its maxitmymeek 12. Cerebellar white matter
demyelination was already detected after 4 weela@ipfizone feeding with the maximum at
week 12 (Skripuletz et al., 2010). In the hippocamplemyelination was complete after 6
weeks of cuprizone feeding (Koutsoudaki et al., Y0MHowever, there were temporal
differences of demyelination between different hyggmpal structures. Interestingly,
hyppocampal fimbria did not demyelinate at all. @énal distribution of cuprizone induced
demyelination has been also described for the ¢aundarostral corpus callosum (Stidworthy
et al., 2003). Probably, due to the regional défees in the myelin content or due to different

tissue reactivity de- and remyelination follow difént temporal or possibly also
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pathomechanistic pattern. In order to understams$etregional differences we performed
immunohistochemical studies of glial responsedlibrain areas mentioned.

Cuprizone feeding led to a complete depletion @faalendrocytes in all regions investigated
after 4 weeks. Despite of continuing cuprizone fiegaligodendrocytes re-appeared in the
cerebral cortex and the corpus callosum after 5ve®eks of cuprizone feeding. In the
cerebellum oligodendrocytes re-appeared betweemw6eks of cuprizone feeding followed
again by a repeated depletion at week 12, whenizamg was administrated for 12 weeks
(Skripuletz et al., 2010). Obviously, repair medsars are common in demyelinating lesions
in the cuprizone model and partial remyelination oacur. This phenomenon is in line with
the literature and particularly affirmed by obseéima in the corpus callosum (Matsushima
and Morell, 2001; Lindner et al., 2008). Proliféngt OPCs could be observed one week
before adult oligodendrocytes re-appeared sugggeatirattempt to active remyelination.
Along with demyelination accumulation of microgli@lls occurred in all demyelinated areas
being clearly more prominent in the white mattempared to the grey matter of both
cerebrum and cerebellum, probably due to diffeney¢lin amounts (Skripuletz et al., 2010).
The peak of microglial infiltration was observedwnatek 4.5 of cuprizone feeding in both the
corpus callosum and the cerebral cortex. In additioicroglia was the cell population with
the strongest proliferation capacity in both aréaserebellar cortex the strongest microglial
activation/ infiltration was seen at week 6, twoek® earlier than in the cerebellar white
matter (Skripuletz et al., 2010). In most hippocafgiructures the peak of microgliosis was
detected already at week 3 of the cuprizone treat@utsoudaki et al., 2009).

As previously described, astrogliosis was extensiv@th the corpus callosum and the cortex
and was constantly present from week 3 until week the cuprizone diet (Skripuletz et al.,
2008). In the cerebellum, astrogliosis was lessnment compared to that in the cerebral
cortex or corpus callosum (Skripuletz et al., 2018)rong astrogliosis was seen in all

hippocampal structures (Koutsoudaki et al., 2009% of nestin positive cells in the corpus
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callosum and 70 % of nestin positive cells in thgpbcampus (Koutsoudaki et al., 2009)
were also positive for GFAP and exhibited an agtiocshape as well. Thus it seems that
nestin is re-expressed in reactive astrocytesterraltively these astrocytes may derive from
neuronal precursors. The role of astrogliosisiisrgit completely understood.

Generally, zonal variations in demyelination mayédxplained by different region-specific
functions of astrocytes, microglia or OPCs. In ttagard, different astrocyte populations are
known to be present in white and grey matter. Regiependent differences in morphology,
expression of immunoregulatory proteins, migratoegponse to adenosine triphosphate

(ATP) and phagocytic capacity are known for micimgHaas et al., 2007, 2008).

4.2 ldentification of factors involved in the de- and remyelination of white and grey
matter

In order to clarify the regional differences, peutarly between cerebral grey and white
matter de- and remyelination and to identify fastmvolved in these processes, the mRNA
expression of thirteen growth factors was analykising laser microdissection we were able
to precisely separate both regions of interest.ifgudemyelination we found no distinct
differences in the growth factor mMRNA expressiotigra between the corpus callosum and
cortex. In both regions GDNF and NRG 1 were sigaiftly and CNTF and EGF were
slightly up-regulated at the first two weeks of gapne feeding, when no demyelination was
microscopic detectable. It has been demonstrated GibNF is up-regulated in astrocytes
during pathophysiological conditions such as spowt injury (Satake, 2000; Ikeda et al.,
2002; Lee et al., 2006; Miyazaki et al., 2001).c8irthe application of exogenous CNTF
induces reactive astrogliosis and the up-regulatioBFAP mRNA expression (Kahn, et al.,
1997), CNTF is suggested to be a key player inntaction of astrogliosis. CNTF has also
been reported to promote myelinatiomvitro (Mayer et al., 1994; Stankoff et al., 2002). In

myelinating aggregate cell cultures CNTF mRNA espren increased continuously over the
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period of MBP accumulation (Copelman et al., 2008pwever, in lysolecithin induced
demyelination CNTF was not elevated at any timengsoanalyzed (Hinks and Franklin,
1999). The delivery of bioactive CNTF into ethididoromide induced demyelinating lesions
neither enhanced survival nor differentiation oflegenous OPC# vivo (Talbott et al.,
2007). In our study CNTF mRNA up-regulation cor@sgped with elevation of MBP and
PLP mRNA expression during remyelination. We thihkat CNTF plays a dual role in the
cuprizone induced demyelination. First, it may beolved in the initiation of astrogliosis in
both the cortex and the corpus callosum. Secomdayt promote remyelination of the corpus
callosum but not of the cortex.

HGF and FGF-2 mRNA expressions were up-regulatethgldemyelination in both areas.
HGF expression has been shown to be elevated in @A&tansard et al., 2009). Up-
regulation of FGF-2 mRNA expression in demyelinatias been reported in various animal
models such as EAE, murine hepatitis virus inducemnyelination, lysolecithin, and
cuprizone induced demyelination (Amstrong et @02 Liu et al., 1998; Hinks and Franklin,
1999; Messersmith et al., 2000). It has been sugddbat the main impact of FGF-2 is the
support of OPC proliferation and inhibition of OPdifferentiation and myelination
(McKinnon et al., 1990; Bansal and Pfeiffer, 1993oddard et al., 2001). Indeed, in
cuprizone induced demyelination the absence of BGPBromotes regeneration of
oligodendrocytes after demyelination but does niohidsh OPCs proliferation activity
(Armstrong et al., 2002). Moreover, using in sigbhdization methods, FGF-2 has been
shown to be up-regulated in the corpus callosuer &6 weeks of 0.3 % cuprizone feeding.
The 0.3 % cuprizone dosage treatment seems to geagldifferent demyelination pattern as
compared to 0.2 % cuprizone dosage (Lindner et24l08). In our study we induced
demyelination with 0.2 % cuprizone for 4.5 weeks. the corpus callosum FGF-2 was
strongly up-regulated at the time of the demyelorapeak, corresponding to the intensive

proliferation of OPCs. In the cortex FGF-2 mRNA egsion was elevated during the whole
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demyelination. We conclude that FGF-2 may be inedlvin the regulation of OPC
proliferation in both white and grey matter, howeusased on the literature seems not to be
an essential factor. During remyelination mRNA levef HGF and FGF-2 were significantly
up-regulated in the corpus callosum but not in ¢betex, suggesting different molecular
regulation of remyelination in white and grey mattEGF-2 has been shown to be up-
regulated during remyelination after lysolecithiduced demyelination (Hinks and Franklin,
1999) and in myelinating aggregate culturesitro (Copelman et al., 2000). Thus, it remains
speculative whether FGF-2 may play an immediate ol the callosal remyelination or
interplays with other factors.

IGF-1 and TGF-B31 mRNA were strongly up-regulatedath the corpus callosum and the
cortex, beginning after 3 weeks of the cuprizonet @dind persisting during the period of
severe demyelination. At the same time there wstsoag astrogliosis, microgliosis, and OPC
proliferation. With progressing remyelination mRNsgynthesis of IGF-1 and TGF-1
gradually decreased. The up-regulation of IGF-thancuprizone model has been previously
described (Mason et al., 2000a). However, in thatysinvestigators used the whole forebrain
tissue and did not distinguish between grey andenmiatter. The elevation of IGF-1 mMRNA
expression has also been reported following ethmdibromide induced demyelination
(Fushimi and Shirabe, 2004). In lysolecithin inddicgemyelination IGF-I and TGF-31
MRNAs were up-regulated in the spinal cord by 5sdpgst-lesion induction (Hinks and
Franklin, 1999). IGF-1 has been considered to lstnaang beneficial effects on differentiation
of OPCs and myelination (McMorris et al., 1986; Mamis and Dubois-Dalcq, 1988; Saneto
et al., 1988; Mozell and McMorris, 1991; Barresadt 1992; Ye and D’Ercole, 1999;
Goddard et al., 1999). IGF-1 transgenic mice, witiehtinuously express IGF-1, remyelinate
more readily compared to wild type mice after ceqnie induced demyelination of the corpus
callosum (Mason et al., 2000b). Additionally, ipéyl IGF receptor null mice remyelination

does not occur adequately and progenitors do rbifgrate or survive as well without IGF-
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1R (Mason et al., 2003). TGF-R1 induces oligodegithbdifferentiation (McKinnon et al.,
1993) and enhances myelinogenésigitro (Diemel et al., 2003). We believed that IGF-1 and
TGF-R1 are important factors for differentiation a@figodendrocytes in both the corpus
callosum and the cortex. However, since IGF-1 a@F-T31 mRNA was already elevated
after 2 or 3 weeks of cuprizone feeding it is gmssible that these two factors interact in
multiple processes.

MRNA expression of the neurotrophins NGF, BDNF, &id3 did not change in the cortex
neither during demyelination nor during remyelioati In contrast, in the corpus callosum,
however, especially BDNF seems to play an impontaletduring de- and remyelination. The
existence of two different types of astrocytes patig grey and white matter could
contribute to the different regulation of remyetina in the corpus callosum and cortex.
Furthermore, it has been suggested that differeptifations of oligodendrocytes and OPCs
expressing different neurotrophin receptors in aasi combinations are present in different
CNS regions (Du et al., 2003).

In contrast to lysolecithin induced demyelinatigtinks and Franklin, 1999) in our study
PDGF-A mRNA expression was not changed during dd-ramyelination in both the corpus
callosum and the cortex. However, using the cupezmodel Mason et al., similarly did not
observe any changes of PDGF-A mRNA expression dutetr and remyelination (Mason et
al., 2000a).

Certainly, numerous factors may be arbitratived@oordinated interaction to orchestrate the
complex process of remyelination. Some growth facttave been shown to act indirectly
which, in turn, influence the expression of othesvgth factors or their receptors (Albrecht et
all., 2003; Jiang et al, 1999). With respect to it@uction of demyelination, influence of
peripheral inflammatory activity and heterogenedtfy myelinating cells there might be

differences between animal models.
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In summary, different temporal patterns were fotmrddemyelination and glial reactions in

the corpus callosum and cerebral cortex, suggesiiifigrent tissue pathophysiology. In this
study we performed detailed analysis of mMRNA exgmspattern of thirteen growth factors,
to uncover differences between de- and remyelinatiavhite and grey matter and to identify
factors playing an important role during remyelioat For several growth factors different
MRNA expression pattern were found during remydlmain the corpus callosum and the
cerebral cortex that may underlie region specifiechanisms. CNTF, GDNF, and NRG 1
may play an important role in the induction of agtiosis in both white and grey matter. In
turn, activated astroglia may produce factors liké that stimulate migration, proliferation

and activation of microglia. Astrocytes and micraghay produce factors like FGF-2, IGF-1
and TGF-31 that then regulate proliferation antedentiation of OPCs. CNTF, BDNF, FGF-

2, HGF, and GDNF seem to be involved in remyeloratn the corpus callosum but were not
expressed at such high levels in the cortex. Tduk bf factors may be responsible for the
delayed remyelination in the cortex as comparethéocorpus callosum. IGF-1 and TGF-31
are suggested to regulate remyelination in bothcdbus callosum and the cortex. The
knowledge about growth factors regulated duringrizope induced demyelination may
provide a new insight in the modulation of de-aachyelination of white and grey matter and

may be useful for development of new strategied $htherapies.

4.3 Therapeutic interventions

The most current MS therapeutics are directed tdwammunsupression or
immunomodulation. Therefore, development of nevenegative therapies that support repair
mechanisms is an important issue in MS research.

In this study we tested minocycline, an antibiatiche second tetracycline generation with
several immunomodulatory and neuroprotective ptoggeron de- and remyelination in the

murine toxic demyelination model. The beneficidkets of minocycline were also reflected
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in an improved neurological function, decrease@tesolume and reduced IL-1b production
as shown in cortical traumatic injury studies (S@z Mejia et al.,, 2001). In EAE, the
beneficial effect of minocycline on inflammationerdyelination, and disease activity was
reported (Brundula et al., 2002; Popovic et alQ20The effects of minocycline were also
tested in the toxic ethidium bromide model of delimgion, where minocycline inhibited
microglia activation, suppressed OPC responsedacnteased the extent of oligodendrocyte
remyelination (Li et al., 2005). Still the mode wiinocycline action is not known. In our
study minocycline treatment diminished cuprizonguiced demyelination in both white and
grey matter and improved motor function comparesht@am treated animals (Skripuletz et al.,
2010).

Again, there were regional differences in micrdgéetivation in the white and grey matter.
However, oligodendroglial and astroglial responsesre not affected by minocycline
treatment, suggesting no direct protective effeatshe oligodendrocyte lineage.

Recently, beneficial effects of fumaric acid es{&A&E) were shown in MOG-EAE studies in
mice as well as in a phase Il study in MS pati¢gthilling et al., 2006; Kappos et al., 2008).
In the current study the effect of FAE on de- aedyelination was investigated in the
cuprizone toxic demyelination model (Moharregh-Kiaaiet al., 2010, accepted). FAE are
believed to have cell protective and immunomodntaproperties (Lehmann et al., 2007). In
contrast to EAE, where FAE was shown to reduce #maount of activated
macrophages/microglia (Schilling et al., 2D0&e could not observe any significant effects
of FAE neither on microglial nor on astroglial aetiion in cuprizone model. Probably, FAE
acts in EAE via peripheral immune cells that aré pr@sent in cuprizone induced lesions,
where the blood brain barrier remains intact. Fenrtiore, the oligodendrocyte loss, as well as
proliferation and differentiation of OPCs were notfluenced by FAE. However,
remyelination was slightly accelerated in the cermallosum but not in the cortex again

suggesting different pathomechanisms in the wintegrey matter.
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In summary, both agents FAE and minocycline coulohstherapeutic potential reflecting in

the reduction of the demyelination (minocycline)raprovement of the remyelination (FAE).

Our findings corroborated the hypothesis about figateffects of FAE and minocycline on

de- or remyelination and uncover regional diffeesn the function of these two agents in

the white and grey matter.
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5. Summary

Multiple sclerosis (MS) is a chronic inflammatorerdyelinating disease of the central
nervous system (CNS) affecting more than 2.5 nappe worldwide. Demyelinating lesions
in MS occur in different brain areas and are notited to the white matter tracts.
Demyelination in the white and grey matter follosvBerent temporal and qualitative pattern.
There are strong evidences that these differemmeebased on different pathomechanisms of
de- and remyelination in the white and grey matferimal models like cuprizone toxic
induced demyelination are powerful tools to invgate this hypothesidn the cuprizone
model, demyelination is induced by chronic oral administra of the copper chelator
cuprizone. Cuprizone is toxic for oligodendrocyteswever the precise mode of action is not
known. After termination of the cuprizone diet sfareous remyelination occuiBhe model

is well characterized, reliable, predictable, aredl weproducible.

In the current work we analyzed the de- and remgébn in the cerebral and cerebellar white
and grey matter, as well as in the hippocampusenniurine cuprizone model. Thereby we
focused on the expression of myelin proteins andl glell responses during de- and
remyelination. In all studied brain regions de- amachyelination followed a different temporal
and qualitative pattern suggesting different patbdmanisms. Demyelination was first
observed in the corpus callosum, followed by higmpus and the cerebral cortex.
Demyelination in the cerebellum was delayed andhed its maximum first after 12 week of
cuprizone feeding. There were regional differeniceshe demyelination pattern and glial
responses between white and grey matter of thebmere and cerebellum, suggesting
different underlying pathomechanisms. Growth fextare known to play important role in
the orchestration of the oligodendrocyte lineageettmment. Therefore, mMRNA expression
profiles of thirteen growth factors were performid both the corpus callosum and the
cerebral cortex. The following growth factors weperegulated during demyelination in both
investigated areas: GDNF, NRG 1, CNTF, TGF-31, HEEF-2, and IGF-1. However,
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single growth factors showed differences in thereggion pattern. GDNF, NRG 1, CNTF,
and EGF were maximal up-regulated at the first wafeduprizone feeding, where myelin loss
was not microscopic detectable. mMRNA expressiorGH-1, TGF-B1, HGF, and FGF-2
reached their peaks during the period of strongestyelination parallel to the intensive
OPCs proliferation and the start of their differation. During remyelination, IGF-1 and
TGF-R1 mRNA expressions were up-regulated in bogasa whereas CNTF, GDNF, BDNF,
HGF, FGF-2 mRNA levels were elevated only in thgpos callosum, suggesting to promote
remyelination in this white matter tract. PDGF-Asn#ot enhanced in both regions during de-
and remyelination. NGF and NT-3 mRNA expressionsreweglown-regulated during
demyelination and restored during remyelinatiothi@ corpus callosum. In the cortex NGF,
NT-3 and BDNF expression was not altered compacedge-matched controls. These
findings further corroborate the hypothesis of eléint regional pathomechanisms during de-
and remyelination in the white and grey matter. \Also investigated the effects of
minocycline and fumaric acid esters (FAE) on ded aemyelination. Both agents are
believed to have cell protective and immunomodntaproperties. In our study we could
show accelerated remyelination in the white butindhe grey matter in response to the FAE
treatment, again suggesting different pathomecheanisf remyelination in white and grey
matter. However, no FAE effects were found for dehmation. Minocycline treatment
diminished myelin loss in both the corpus callosamad the cortex but showed no effect on
remyelination. These new data corroborate the Ingsi$¢ that minocycline has beneficial
effects on demyelinatiom vivo. Our findings also demonstrate regional differenicetissue
reactivity and microglia activation in responsertmocycline exposure.

The cuprizone animal model of toxic demyelinatisnan excellent model to study de- and
remyelination mechanisms in grey and white mattehe cerebrum and cerebellum and is a
potential platform to study effects of exogenouwmstyninistered therapeutic agents to promote

oligodendrocyte survival and remyelination.

77



Zusammenfassung

6. Zusammenfassung

Multiple Sklerose ist eine chronisch-entzindlich&r&nkung des zentralen Nervensystems
(ZNS), die zu einer Demyelinisierung von Axonen rfiilWeltweit sind mehr als 2,5
Millionen Menschen von dieser Erkrankung betroffen.

Neuere Untersuchungen zeigen, dass die fur MSdyeis Demyelinisierungsherde nicht nur
in der weil3en Substanz auftreten, sondern auclerirghuen Substanz zu finden sind. Der
Verlauf der Demyelinisierung in der weil3en und @ralSubstanz unterscheidet sich und
scheint auf regional grundlegend verschiedenenkuatdeen Mechanismen zu beruhen.
Tiermodelle, wie zum Beispiel das Toxin induzie@eprizone Demyelinisierungsmodell,
bieten eine solide Plattform um diese Mechanismanuntersuchen. Bei diesem gut
charakterisierten Tiermodell wird eine Demyelinisigg des Balkens (Corpus callosum) und
anderen Gehirnarealen durch die chronische oraieaBime des Kupferchelators Cuprizone
induziert. Der genaue Wirkungsmechanismus von @apg ist nicht geklart Cuprizone
bewirkt ein Absterben der Myelin bildenden Zellesien Oligodendrozyten. Nach dem
Absetzen des Toxins kommt es zu einer spontanery&gemsierung.

In der vorliegenden Studie wurde die De- und Remigérung in der weil3en und grauen
Substanz des Zerebrums and Zerebellums sowie ipoldgmpus untersucht. Dabei standen
die Expression verschiedener Myelinproteine, di@kien verschiedener Gliazellen sowie
die Expression von Wachstumsfaktoren im Hauptfokis.Demyelinisierung wurde erst im
medialen Corpus callosum (nach 4.5 Wochen Cupriaiteerung), dann nach und nach in
den einzelnen Strukturen des Hippocampus (4-6 Wgaed schliel3lich in allen kortikalen
Zellschichten beobachtet. Die zerebellare Demya&bniing erreichte ihr maximales Ausmal}
erst nach 12 Wochen der Cuprizone Diat. Sowohl mol3@irn als auch im Kleinhirn verlief
die Demyelinisierung in der weil3en Substanz schnells in der grauen Substanz. Auch die
Rekrutierung bzw. Aktivierung der Mikroglia wieseritliche und regionale Unterschiede
auf. Diese Beobachtungen fuhrten zu der Annahmss dagional spezifische molekulare
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Regulierungsmechanismen existieren. Daraufhin wullde mMRNA Expression von 13
Wachstumsfaktoren im medialen Teil des Balkens latetalen Kortex analysiert. Folgende
Wachstumsfaktoren wurden wahrend der Demyeliniaggio der weil3en sowie in der grauen
Substanz vermehrt exprimiert: GDNF, NRG1, CNTFHGGF-R1, HGF, FGF-2, LIF und
IGF-1. Die zeitlichen Expressionsmuster der eirzelfaktoren unterschieden sich deutlich
voneinander. So wurden NRG1, GDNF, CNTF und EGFdar frihren Phase der
Demyelinisierung hoch-reguliert, wo der Myelinvetiunoch nicht mikroskopisch in
Erscheinung getreten war. Die Faktoren IGF-1, TGFHRGF-2 und HGF erreichten ihre
maximale Expression dagegen in der Phase der meeaneemyelinisierung. Wéahrend der
Remyelinisierung wurden die Wachstumsfaktoren im deil3en und grauen Substanz
unterschiedlich reguliert. Wahrend im Balken digEession von CNTF, GDNF, HGF, FGF-
2 und BDNF deutlich erhdht war, wurden im Kortexinee Veranderungen der mRNA
Expression im Vergleich zu altersgleichen Kontretktn festgestellt. Die mMRNA Synthese
der Neurotrophine NT-3 und NGF war im Kortex konstavahrend sie im Corpus callosum
wahrend der Demyelinisierung deutlich vermindert wiad sich spater wieder normalisierte.
Die PDGF-A mRNA Expression blieb unverandert indes untersuchten Arealen. Die
festgestellten Unterschiede in der mRNA Expressienverschiedenen Wachstumsfaktoren
im Kortex und Corpus callosum bekréftigen die Hyy@ste der regionalen Unterschiede in der
De- und Remyelinisierung der weil3en und grauen t8abs Die Kenntnisse zur Regulation
der Faktoren, die bei der Remyelinisierung einesgiga Rolle spielen kdnnten, erdffnen die
Maglichkeiten zur Entwicklung neuer Therapien.

In unseren Studien wurden ebenfalls potentielle tefttve und remyelinisierende
Therapeutika untersucht. Die Wirkung der Substarzemarsdure (FAE) und Minozyklin
wurden im Rahmen der Cuprizone induzierten De- Rednyelinisierung untersucht. Die
neuroprotektiven und immunsuppressiven Eigensahafteden fir beide Substanzen in den

mehreren wissenschaftlichen Studien beschriebenns®rem Tiermodell beobachteten wir
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fur FAE eine Beschleunigung in der collosalen abeit in der kortikalen Remyelinisierung,
was wiederum auf die regional unterschiedlichenekgdaren Mechanismen deutete. Die
Minozyklin Behandlung milderte die Demyelinisierung den beiden Arealen, der weil3en
und der grauen Substanzen. Diese Daten unterstdieeviermutung, dass Minozyklin einer
Demyelinisierung entgegen wirken kann. Die Hemmdeg Mikroglia Aktivierung wurde
jedoch nur im Kortex beobachtet, was mit der gdlereBeobachtung von regionalen
Unterschieden in der weil3en und grauen Substamaelaonsens ist und mit der regional
spezifischen Gewebereaktivitat zu erklaren ist. ddyklin zeigte allerdings keine positiven
Effekte auf die Remyelinisierung.

In der vorliegenden Studie wurden regionalen Ugteexle zwischen De- und
Remyelinisierung in der weil3en und der grauen Smzsin auf den molekularen und
zellularen Ebenen gezeigt. Dabei erwies sich dgwighine Tiermodell als eine zuverlassige
Plattform fur die Untersuchungen der De- und Remigérung sowohl im Grof3hirn als auch
im Kleinhirn und Hippocampus. Weiterhin zeigte sidaie Cuprizone induzierte
Demyelinisierung als ein geeignetes Tiermodel férldentifizierung und Erforschung neuer

therapeutischer Préaparate.
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