Feldstudie zum Einfluss herdenspezifischer Risikofaktoren für die Infektion mit *Mycoplasma hyopneumoniae* bei Saugferkeln in Norddeutschland

INAUGURAL – DISSERTATION
zur Erlangung des Grades einer Doktorin der Veterinärmedizin
- Doctor medicinae veterinariae -
(Dr. med. vet.)

vorgelegt von

Henrike Wöste

Friesoythe

Hannover 2011
Wissenschaftliche Betreuung: Apl. Prof. Dr. E. große Beilage
Außenstelle für Epidemiologie Bakum

1. Gutachter: Apl. Prof. Dr. E. große Beilage

2. Gutachter: Univ. Prof. Dr. M. Hoedemaker

Tag der mündlichen Prüfung: 17.11.2011
„Erfahrung trügt nie“
Leonardo da Vinci
Inhaltsverzeichnis

Verzeichnis der Abkürzungen

1. Einleitung ..1

2. Literatur ... 3
 2.1. Erregereigenschaften.. 3
 2.2. Epidemiologie ... 5
 2.2.1. Verbreitung des Erregers .. 5
 2.2.2. Erregerübertragung und -verbreitung .. 6
 2.2.3. Pathogenese und Einfluss der Immunreaktion auf den Verlauf der
 Infektion ... 8
 2.2.4. Risikofaktoren für die Erregerübertragung ... 9
 2.3. Krankheitsbild der Enzootischen Pneumonie .. 12
 2.4. Diagnostik .. 13
 2.4.1. Direkter Erregernachweis ... 13
 2.4.2. Indirekter Erregernachweis ... 16
 2.5. Maßnahmen zur Reduzierung der Erregerübertragung 18
 2.5.1. Management und Haltung .. 18
 2.5.2. Antibiotische Behandlung ... 20
 2.5.3. Impfungen .. 21
 2.6. Epidemiologische Untersuchungen mit Hilfe von Fragebögen 24
 2.6.1. Planung ... 24
 2.6.2. Validierung des Fragebogens ... 26
 2.6.3. Durchführung des Interviews .. 26

3. Material und Methoden ... 29
 3.1. Fragebogen .. 30
 3.1.1. Entwicklung des Fragebogens ... 30
3.1.2. Validierung des Fragebogens ... 35
3.1.3. Kodierung .. 36

3.2. Auswahl von Beständen ... 37

3.3. Datenerhebung / Bestandsuntersuchung .. 38
 3.3.1. Datenerhebung ... 38
 3.3.2. Probenentnahme ... 39

3.4. Untersuchung der Nasentupfer auf Genomfragmente von M. hyopneumoniae .. 40
 3.4.1. Vorbereitung der Proben .. 40
 3.4.2. Extraktion der DNA ... 41
 3.4.3. Nachweis der Genomfragmente von M. hyopneumoniae 42
 3.4.3.1 Herstellung des Mastermixes .. 42
 3.4.3.2 Reaktionsansatz ... 45

3.5. Erstellung einer elektronischen Datenbank .. 47

3.6. Auswertung .. 51

4. Ergebnisse ... 53
 4.1. Nachweis spezifischer Genomfragmente von M. hyopneumoniae 53
 4.2 Ergebnisse der epidemiologischen Charakterisierung 58
 4.2.1 Allgemeine Angaben zu den Beständen ... 58
 4.2.2 Management in den Beständen ... 62
 4.2.3 Haltungsbedingungen in den Beständen .. 70
 4.2.4 Impfkonzepte .. 75
 4.2.5 Behandlungen .. 86
 4.3 Statistische Auswertung ... 91
 4.3.1 Univariable logistische Regression .. 91
 4.3.2 Multivariable logistische Regression ... 91
 4.3.2.1 Allgemeine Herden- und Managementparameter 92
 4.3.2.2 Hygienemaßnahmen ... 93
Verzeichnis der Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>µl</td>
<td>Mikroliter (x10⁻⁶)</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer (x10⁻⁶)</td>
</tr>
<tr>
<td>µM</td>
<td>Mikromolar (x10⁻⁶)</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>APP</td>
<td>Actinobacillus pleuropneumoniae</td>
</tr>
<tr>
<td>BALF</td>
<td>bronchoalveoläre Lavageflüssigkeit</td>
</tr>
<tr>
<td>bspw.</td>
<td>beispielsweise</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>Cl</td>
<td>confidence intervall</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonucleid acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene-diamine-tetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immuno sorbent assay</td>
</tr>
<tr>
<td>etc.</td>
<td>et cetera</td>
</tr>
<tr>
<td>evtl.</td>
<td>eventuell</td>
</tr>
<tr>
<td>ggf.</td>
<td>gegebenenfalls</td>
</tr>
<tr>
<td>GVO</td>
<td>gentechnisch veränderter Organismus</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Wasserstoffperoxid</td>
</tr>
<tr>
<td>i.d.R.</td>
<td>in der Regel</td>
</tr>
<tr>
<td>IFT</td>
<td>Immunfluoreszenztest</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunhistochemie</td>
</tr>
<tr>
<td>inkl.</td>
<td>inklusive</td>
</tr>
<tr>
<td>IPC</td>
<td>internal positive control</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>Min.</td>
<td>Minuten</td>
</tr>
</tbody>
</table>
ml Milliliter (x10^{-3})
m^2 Quadratmeter
m^3 Kubikmeter
ng Nanogramm (x10^{-9})
nM nanomolar (x10^{-9})
OR odds ratio
PCR polymerase chain reaction
PCV2 Porzines Circovirus Typ 2
p.i. post infectionem
PRDC porcine respiratory disease complex
PRRSV porcine reproductive and respiratory syndrome virus
rDNA ribosomale DNA
rpm rounds per minute
resp. respektive
Sek. Sekunden
SIV swine influenza virus
Std. Stunden
TE-Puffer Tris-EDTA-Puffer
u.g. unten genannten
vs. versus
z.B. zum Beispiel
°C Grad celsius
< kleiner als
> größer als
< kleiner / gleich
> größer / gleich
1. Einleitung

2. Literatur

2.1. Erregereigenschaften

2.2. Epidemiologie

2.2.1. Verbreitung des Erregers

Die Infektion mit *M. hyopneumoniae* tritt nicht ausschließlich bei Hausschweinen auf, sondern konnte mittels serologischer Untersuchungen auch bei Wildschweinen nachgewiesen werden (SHCHERBAKOV et al. 2007; SIBILA et al. 2008b).

Da Saugferkel in endemisch infizierten Beständen maternale Antikörper mit dem Kolostrum infizierter Sauen aufnehmen, können Untersuchungen zur Prävalenz von *M. hyopneumoniae* bei Jungtieren immer nur mittels direktem Erregernachweis erfolgen. In Spanien wurde in einem Ferkelerzeugerbestand mittels nested-PCR an Nasentupfern *M. hyopneumoniae* bei 1,5 % der Saugferkel in der ersten

2.2.2. Erregerübertragung und -verbreitung

M. hyopneumoniae wird mit den Sekreten des Respirationstraktes ausgeschieden und überwiegend durch direkten Kontakt von Schweinen untereinander (Nase zu Nase) sowie über kontaminierte Aerosole durch die Luft übertragen (STEVENSON 1998).

(a) Entfernen aller Tiere aus dem Bestand, die 10 Monate und jünger sind
(b) 14-tägige Unterbrechung der Abferkelung
(c) medikamentelle Behandlung der Zuchttiere mit einem gegen *M. hyopneumoniae* wirksamen Antibiotikum

Trotz der mehrtägigen Überlebensfähigkeit des Erregers außerhalb des Wirtes scheint unter Einhaltung der üblichen Hygienemaßnahmen eine Erregerübertragung durch belebte und unbelebte Vektoren innerhalb und zwischen Herden unwahrscheinlich (WOESTE u. GROSSE BEILAGE 2007).

2.2.3. *Pathogenese und Einfluss der Immunreaktion auf den Verlauf der Infektion*

2.2.4. Risikofaktoren für die Erregerübertragung

Für eine erfolgreiche Erregerübertragung zwischen Schweinen müssen bestimmte Voraussetzungen erfüllt sein: (a) der Erreger muss von infizierten Tieren in einer

Neben den oben genannten Faktoren nehmen die Haltungsbedingungen eine wichtige Rolle bei der Übertragung von *M. hyopneumoniae* ein. Eine hohe Belegdichte, die eine Verringerung des Luftvolumens für das einzelne Tier nach sich
2.3. Krankheitsbild der Enzootischen Pneumonie

Die wirtschaftlichen Schäden, die durch die Enzootische Pneumonie verursacht werden, ergeben sich aufgrund eines verminderten Zuwachses, einer reduzierten Futterverwertung und einer längeren Mastdauer (KOBISCH et al. 1994; ROSS 1999).
2.4. Diagnostik

Für eine ätiologische Diagnose sollte neben der Feststellung typischer klinischer Symptome im Bestand und dem Nachweis entsprechender Lungenläsionen an mehreren Schweinen (z.B. Schlachtungen-Check) auch ein direkter und/oder indirekter Erregernachweis in der betroffenen Tiergruppe erfolgen (THACKER 2006).

2.4.1. Direkter Erregernachweis

Die kulturelle Anzucht gilt nach wie vor als Goldstandard für den Nachweis von *M. hyopneumoniae*. Sie ist allerdings aufgrund der hohen Ansprüche des Erregers an Medium und Umweltbedingungen während der Anzucht weltweit wenigen Speziallaboren vorbehalten. Das langsame Wachstum von *M. hyopneumoniae* bedingt, dass die kulturelle Anzucht zum zeitnahen Infektionsnachweis wenig sinnvoll

Lungengewebe aus Beständen mit Enzootischer Pneumonie wurde für den REP-Assay eine diagnostische Sensitivität von 50 % und für den ABC-Assay von 90 % ermittelt. Wendet man zur Feststellung des Infektionsstatus beide Tests an, erreicht die diagnostische Sensitivität auf Herdenniveau 100 %.

Trotz der unterschiedlichen Nachweisraten für verschiedene Probenmaterialien gelten Nasentupfer grundsätzlich als geeignetes Untersuchungsmaterial für eine PCR, wenn wichtige Aspekte bei Probenentnahme und –versand beachtet werden. Es sollten Trockentupfer mit einem Kunststoffstiel verwendet werden, da sowohl im Transportmedium als auch im Holzstiel Substanzen vorhanden sind, die eine PCR inhibieren können. Wegen der verhältnismäßig niedrigen Proben- bzw. Erregermenge, die am Tupfer haftet, müssen Testverfahren mit entsprechend hoher
Sensitivität, wie bspw. real-time- oder nested-PCR, zum Erregernachweis verwendet werden (NATHUES u. GROSSE BEILAGE 2009).

Eine weitere Form des direkten Erregernachweises am toten Tier ist der immunologische Nachweis antigener Strukturen von *M. hyopneumoniae*. Mit einem Immunfluoreszenztest (IFT) oder der Immunhistochemie (IHC) kann *M. hyopneumoniae*-Antigen mittels fluoreszierender bzw. peroxidase-markierter Antikörper in Lungengewebschnitten nachgewiesen werden. Der Immunfluoreszenztest ist besonders in akuten Krankheitsstadien geeignet, in denen große Mengen von Mykoplasmen im Gewebe vorhanden sind. Eine niedrigere Sensitivität bei chronischen Infektionen lässt sich durch die niedrigere Anzahl der Erreger und/oder durch lokal vorhandene Antikörper erklären, die eine Bindung der Testantikörper verhindern (MAES et al. 1996).

2.4.2. Indirekter Erregernachweis

Serologische Untersuchungen sind häufig eine schnelle und vergleichsweise günstige Methode den Infektionsstatus einer Tiergruppe bzw. eines Bestandes festzustellen (THACKER 2006).

Aufgrund der einfachen Probenentnahme, der relativ schnell verfügbaren Ergebnisse und der verhältnismäßig niedrigen Kosten je Probe ist die ELISA-Technik die derzeit am häufigsten genutzte Methode, um indirekt *M.-hyopneumoniae*-Infektionen in Schweineherden nachzuweisen. Die Interpretation der Ergebnisse ist jedoch, wie bei

Schwierigkeiten bei der Interpretation serologischer Befunde ergeben sich hauptsächlich dadurch, dass keine Unterscheidung zwischen Antikörpern möglich ist, deren Bildung entweder durch Impfung oder Infektion bedingt sein kann. Auch bei Absetzferkeln sind serologische Befunde schwer zu interpretieren, da ein Rückgang der Konzentration maternaler Antikörper, die von den Ferkeln über das Kolostrum aufgenommen werden, häufig von einem Anstieg der Konzentration als Reaktion auf eine Impfung überlagert wird (GROSSE BEILAGE und SCHREIBER 2005).
2.5. Maßnahmen zur Reduzierung der Erregerübertragung

2.5.1. Management und Haltung

die Herde zu integrieren. Es wird angenommen, dass erst zu diesem Zeitpunkt ein vergleichbarer Gesundheitsstatus erreicht ist (MAES et al. 2008).

Da der Erreger von kontaminiertem Kleidung bis zu drei Tagen kulturell isoliert werden konnte (GOODWIN 1985), kann dennoch auf eine potentielle Gefährdung durch Personen mit kontaminiertem Kleidung und mangelhafter Hand- und/oder Haarhygiene sowie durch andere belebte und unbelebte Faktoren geschlossen werden (WOESTE u. GROSSE BEILAGE 2007).

2.5.2. Antibiotische Behandlung

2.5.3. Impfungen

Impfstoffe gegen *M. hyopneumoniae* können in drei Klassen eingeteilt werden:

(a) *one-shot* Impfstoffe (einmalige Anwendung)

(b) *two-shot* Impfstoffe (zweimalige Anwendung)

(c) *flexi dose* Impfstoffe (je nach Dosierung ein- oder zweimalige Anwendung)

Unterschiede zwischen den Impfstoffen gibt es außerdem bei der Dosierung (1 ml bzw. 2 ml), dem Adjuvans und dem Alter, ab wann ein Schwein lt. Zulassung erstmalig geimpft werden darf. Im Gegensatz dazu gibt es keine erkennbaren Unterschiede beim Antigen: alle in Deutschland zugelassenen Impfstoffen gegen *M. hyopneumoniae* sind inaktivierte Impfstoffe, die in der Regel eine Ganzzellpräparation enthalten.

Arbeitszeit bedürfen und sich besser in die übrigen zootechnischen Maßnahmen bei Saugferkeln integrieren lassen (BACCARO et al. 2006).

In endemisch infizierten Herden sollten Jungsaufen immer in die Impfmaßnahmen einbezogen werden, um eine Destabilisierung der Stammherde zu vermeiden. Diese Maßnahme wird besonders wichtig, wenn Jungsaufen aus *M. hyopneumoniae* freien Herden zugekauft werden; sie können sich während der Eingliederung infizieren und den Erreger anschließend massiv ausscheiden (BARGEN 2004).
2.6. Epidemiologische Untersuchungen mit Hilfe von Fragebögen

Fragebögen sind nicht nur im Rahmen veterinärepidemiologischer Untersuchungen eines der am häufigsten verwendeten Werkzeuge, um Daten zu erheben (DOHOO et al. 2003), auch in der empirischen Sozialforschung sind Befragungen entlang eines standardisierten Fragebogens die am häufigsten praktizierte Erhebungsmethode (SEIPEL u. RIEKER 2003).

2.6.1. Planung

Einige der bedeutendsten Regeln zur Erstellung eines Fragebogens wurden in Anlehnung an Dillmann, Louverse und Preber aufgelistet (SCHNELL et al. 1999):

- Fragen sollen einfache Wörter enthalten, d.h. im Wesentlichen: keine Verwendung nicht gebräuchlicher Fachausdrücke, keine Verwendung von Fremdwörtern, keine Verwendung von Abkürzungen oder Slangausdrücken,
- Fragen sollten kurz formuliert sein,
- Fragen sollten konkret sein, abstrakte Begriffe in konkrete überführt werden,
- Fragen sollten keine bestimmte Antwort provozieren (Vermeidung von Suggestivfragen),
- Fragen sollten neutral formuliert sein und keine „belasteten“ Worte enthalten,
- Fragen sollten nicht hypothetisch formuliert werden,
- Fragen sollten sich nur auf einen Sachverhalt beziehen,
- Fragen sollten keine doppelten Verneinungen enthalten,
- Fragen sollten die befragte Person nicht überfordern,
- Fragen sollten formal „balanciert“ sein, d.h. in der Frage sollten alle –negativen und positiven- Antwortmöglichkeiten enthalten sein, um die gleichwertige Berechtigung jeder vom Befragten gewählten Antwort zu demonstrieren.
Die wichtigste Regel sollte jedoch immer sein, jede Frage mehrfach vorzutesten (ATTESLANDER 2003).

Nicht immer lässt es sich vermeiden, dass Fragen in heikle Themenbereiche fallen. In diesem Fall muss versucht werden, durch geschickte und einfühlsame Formulierungen und Techniken alle möglichen psychischen Widerstände zu umgehen oder zumindest zu reduzieren, damit die Antwortqualität erhalten bleibt (KIRSCHOFER - BODENHARDT u. KAPLITZA 1986).

Hinsichtlich der Reihenfolge empfiehlt es sich, mit allgemeinen Fragen zu beginnen, die dann zum Detail führen, und die Fragen nach Themengebieten zu ordnen (SEIPEL u. RIEKER 2003).

2.6.2. Validierung des Fragebogens

Zur Validierung des Fragebogens wird der Fragebogen an nicht in die Studie involvierten Personen getestet, um so im Vorfeld der eigentlichen Erhebung Fehlerquellen auszuräumen (KIRCHHOFF et al. 2008). Diese sogenannten pre-tests sind unerlässlich, um Schwächen des Fragebogens zu erkennen, z.B. ob Fragen richtig verstanden werden oder ob wichtige Antwortkategorien übersehen wurden. In der Regel ist es notwendig, den Fragebogen nach erfolgtem pre-test umzuarbeiten oder teilweise neu zu gestalten. Die Interviews können nur dann ohne Schwierigkeiten und unter den gleichen Bedingungen verlaufen, wenn der Fragebogen für die Befragten in jedem Detail unmissverständlich ist und ein Höchstmaß an Klarheit und Übersichtlichkeit erreicht wird (HOLM 1998)

2.6.3. Durchführung des Interviews

Bei der mündlichen Befragung werden die Fragen durch den Interviewer vorgelesen. Dieser trägt dann die Antworten des Befragten direkt in den Fragebogen ein. In standardisierten Interviews sollte darauf hingearbeitet werden, dass das Verhalten des Interviewenden möglichst neutral und vergleichbar ist. Der Interviewer sollte die Fragen und evtl. vorhandene Antwortvorgaben verständlich und gewissenhaft

Die Herstellung gleicher Bedingungen für alle Befragten ist wichtig, weil bei der späteren Auswertung die Antworten aller Befragten verglichen werden. Dafür muss sichergestellt sein, dass Unterschiede in den Antworten tatsächlich auf unterschiedliche Angaben der Befragten und nicht auf unterschiedliche Bedingungen während des Interviews zurückzuführen sind (PRÜFER u. STIEGLER 2002).
3. Material und Methoden

3.1. Fragebogen

3.1.1. Entwicklung des Fragebogens

Der Fragebogen beinhaltete 143 Fragen zur Erfassung von allgemeinen Herdencharakteristika, Haltungs- und Managementbedingungen im Bestand sowie Art und Zeitpunkt zootechnischer Maßnahmen, Impfungen und obligatorischer resp. fakultativer antibiotischer Behandlungen. Darüber hinaus wurden weitere Daten bezüglich der Tiere erfasst, die für die Probenentnahme und die weiterführenden Untersuchungen ausgewählt wurden.

Der Fragebogen wurde nach den oben genannten Themenkomplexen gegliedert und umfasste folgende Variablen:
A. Herdencharakteristika
 - Produktionstyp
 - Genetik der Sauen
 - Größe der Herde
 - Altersstruktur der Sauenherde

B. Bauliche Gegebenheiten
 - Produktionsbereiche im gleichen Gebäude wie die Abferkelställe
 - Umtrieb von Sauen durch belegte Flatdeckabteile
 - Umtrieb von Sauen durch belegte Mastabteile

C. Management im Abferkelstall
 - Abferkelrhythmus
 - Anwendung des Rein-Raus-Verfahrens
 - Separate Abteile zur Zwischenabferkelung
 - Leerstehzeiten der Abteile
 - Reinigung und Desinfektion der Abteile
 - Waschen der Sauen vor Umtrieb
 - Geburtsüberwachung
 - Zootechnische Maßnahmen an den Ferkeln und deren Zeitpunkte
 - Impfungen der Saugferkel (Impfstoffe / Zeitpunkte)
 - Antibiotische Behandlung der Saugferkel (Wirkstoffe / Häufigkeit / Zeitpunkte)
 - Wurfausgleich (Häufigkeit)
 - Absetzalter

D. Management der Sauen
 - Impfungen der Sauen (Impfstoffe / Zeitpunkte)
 - Antibiotische Behandlungen der Sauen (Wirkstoffe / Häufigkeit / Zeitpunkte)
E. Management im Flatdeck
- Flatdeckgröße (Aufzuchtplätze / Anzahl der Abteile)
- Anwendung des Rein-Raus-Verfahrens
- Leerstehzeiten der Abteile
- Reinigung und Desinfektion der Abteile
- Antibiotische Behandlung der Absetzferkel (Wirkstoffe / Häufigkeit / Zeitenpunkte)

F. Management der Jungsauen
- Bezug (Eigenremontierung vs. Zukauf / Häufigkeit / Tierzahl / Herkunftsbestände / Tieralter bei Lieferung)
- Remontierungsrate
- Eingliederung (inkl. Quarantäne)
- Kontakte während der Eingliederung
- Anwendung des Rein-Raus-Verfahrens
- Impfungen der Jungsauen (Impfstoffe / Zeitpunkte)
- Antibiotische Behandlung der Jungsauen (Wirkstoffe / Häufigkeit / Zeitpunkte)

G. Management der Jungeber
- Bezug (Eigenremontierung vs. Zukauf, Häufigkeit, Tierzahl, Herkunftsbestände, Tieralter bei Lieferung)
- Eingliederung (inkl. Quarantäne)
- Kontakte während der Eingliederung
- Anwendung des Rein-Raus-Verfahrens
- Impfungen der Jungeber (Impfstoffe / Zeitpunkte)
- Antibiotische Behandlung der Jungeber (Wirkstoffe / Häufigkeit / Zeitpunkte)
H. Haltung im Abferkelstall
- Abferkelabteile (Anzahl der Abteile und Abferkelplätze / Alter der Abteile)
- Variation der Abferkeltermine innerhalb eines Abteils
- Ausstattung der Abferkelabteile (Boden / Heizung / Zuluft / Abluft)

I. Haltung der Jungsauen
- Abteile (Anzahl der Abteile / Anzahl der Buchten pro Abteil / Größe der Abteile und Buchten / Alter / Anzahl der Tiere pro Bucht und pro Abteil)
- Ausstattung (Boden / Trennwände / Fütterungs- und Tränktechnik / Heizung / Zuluft / Abluft / Güllelagerung)

J. Haltung der Jungeber
- Abteile (Anzahl der Abteile / Anzahl der Buchten pro Abteil / Größe der Abteile und Buchten / Alter /Anzahl der Tiere pro Bucht und pro Abteil)
- Ausstattung (Boden / Trennwände / Fütterungs- und Tränktechnik / Heizung / Zuluft / Abluft / Güllelagerung)

K. Informationen zu den weiterführend untersuchten Saugferkeln
- Anzahl bisheriger Würfe des Muttertieres
- Wurfgröße (Anzahl lebend geborener Ferkel)
- Alter und Geschlecht der Ferkel, von denen Proben entnommen wurden
3.1.2. Validierung des Fragebogens

Die erste Version des Fragebogens, die zu großen Teilen mit validierten Fragebögen früherer Studien (VONNAHME 2005; NATHUES 2011) übereinstimmte, wurde zunächst in drei Schweinebeständen getestet. Anhand dieser Bestände, die den Auswahlkriterien der später zu untersuchenden Schweinebestände entsprachen, jedoch nicht den u. g. Beratungsringen/Ringgemeinschaften angehörten, wurden folgende Parameter überprüft:

- logischer Aufbau
- Verständlichkeit der Fragen
- Vollständigkeit vorgegebener Antwortkategorien
- Dauer der Befragung

Nach der Durchführung dieses Vorversuchs wurden einige Antwortkategorien ergänzt. Außerdem wurde festgestellt, dass die exakte Beantwortung der Fragen zur Altersstruktur der Sauenherde, zum Mittelwert des Alters der Ferkel beim Absetzen und zur Remontierungsrate im Bestand häuﬁg nicht möglich ist. Für die folgende Untersuchung sollte daher auf bestandsspeziﬁsche Daten aus dem Sauenplaner des jeweiligen Bestandes zurückgegriffen werden; die entsprechenden Fragen wurden den Tierhaltern daraufhin nicht mehr gestellt.
3.1.3. Kodierung

3.2. Auswahl von Beständen

3.3. Datenerhebung / Bestandsuntersuchung

3.3.1. Datenerhebung

Mit Bezug auf das Informationsschreiben, das durch die Ringberater bereits zugestellt worden war, wurde den Tierhaltern vor Beginn des Interviews noch einmal das Ziel der Studie und die Wichtigkeit einer ehrlichen Beantwortung aller Fragen erläutert. Außerdem wurden die Tierhalter über das Verfahren der Datenspeicherung und die Wahrung ihrer Anonymität aufgeklärt. Alle Befragungen wurden von derselben Untersucherin durchgeführt, damit nach Möglichkeit kein observer bias die Qualität der Daten negativ beeinflusst.

Alle Antworten sowie mögliche Anmerkungen resp. Erklärungen seitens der Befragten wurden unmittelbar handschriftlich im Fragebogen notiert. Die notwendigen Daten aus dem Sauenplaner wurden entweder direkt im Anschluss an die Befragung des Tierhalters erfasst oder wenige Tage nach der Untersuchung per Email bzw. Fax nachgereicht. Dieses geschah durch den Tierhalter selbst oder diejenige Person, die für die elektronische Erfassung der Reproduktionsdaten zuständig war.

Ein Teil der im Interview durch den Tierhalter gemachten Angaben wurde während der Bestandsuntersuchung verifiziert und im Fall einer Abweichung korrigiert. Zu diesen Angaben gehörten Variablen zur Haltung im Eingliederungsstall und im Abferkelstall.

Detaillierte Informationen zu den Ferkeln, die für die weiterführenden Untersuchungen ausgewählt wurden, konnten überwiegend den in Abteil angebrachten Stallkarten der Sauen entnommen werden. Fehlten diese Karten, wurden die Identifikationsnummern von den Ohrmarken der Sauen notiert. Anschließend ließen sich über diese Nummer die notwendigen Daten aus dem Sauenplaner ermitteln.

Das Deckblatt des Fragebogens, auf dem der Name und die Anschrift des Tierhalters sowie eine fortlaufende Identifikationsnummer notiert worden waren, wurde nach Abschluss der weiterführenden Untersuchungen und einer Ergänzung der Daten mit
einer Leistungsübersicht aus dem Sauenplaner entfernt. Durch dieses Vorgehen wurde gewährleistet, dass während der folgenden elektronischen Datenverarbeitung alle Daten anonymisiert vorlagen.

3.3.2. Probenentnahme

3.4. Untersuchung der Nasentupfer auf Genomfragmente von *M. hyopneumoniae*

3.4.1. Vorbereitung der Proben

Die in TE-Puffer asservierten Tupferspitzen wurden 30 Min. lang bei 56 ºC auf dem Thermomixer inkubiert. Anschließend wurden die Reaktionsgefäße für ca. 15 Sek. auf einem Vortex (Test Cube.Shaker ECN 444-1372, VWR International ni/sa, B-3001 Leuven) geschüttelt und für ca. 5 Sek. zentrifugiert (Centifuge 5424, Eppendorf AG). Im Folgenden wurde jeder Tupfer in eine gekürzte 300 µl - Pipettenspitze (Fa. Nerbe Plus, D-21423 Winsen Luhe) überführt, die in einem neuen Reaktionsgefäß stand. Diese Kombination aus Tupferspitze und Pipettenspitze wurde für ca. 15 Sek. bei 5000 g zentrifugiert, um weitere Flüssigkeit aus der Synthetikfaser zu erhalten. Die Pipettenspitzen samt Tupfer wurden verworfen, bevor die beiden Lösungen einer Probe (TE-Puffer im ersten Reaktionsgefäß + TE-Puffer nach Zentrifugation im
zweiten Reaktionsgefä ß wieder zusammengeführt wurden. Abschließend erfolgte eine Zentrifugation für 20 Min. bei 20000 g. Der Überstand wurde dekantiert und verworfen. Das Pellet am Boden des Reaktionsgefä ßes wurde für die weitere DNA-Extraktion verwendet.

3.4.2. Extraktion der DNA

Die Pellets wurden in einer Lösung aus 180 µl ATL-Puffer (QIAGEN ® QIAamp® DNA Mini Kit, Qiagen GmbH, D-40724 Hilden) und 20 µl Proteinase K resuspendiert. Dazu wurde das Reaktionsgefa ß mit dem Pellet und der Lösung so lange auf dem Vortex geschüttelt, bis sich das Pellet vollständig aufgelöst hatte. Unmittelbar folgend wurde die Suspension für 1 Std. bei 56 °C und 950 rpm im Thermomixer inkubiert.

Nach der Inkubation wurden die Proben erneut für ca. 15 Sek. auf dem Vortex geschüttelt und für ca. 5 Sek. bei 8000 g zentrifugiert. Anschließend wurden in jedes Reaktionsgefa ß 200 µl AL-Puffer (QIAGEN ® QIAamp® DNA Mini Kit, Qiagen GmbH, D-40724 Hilden) pipettiert und die Probe ca. 15 Sek. auf dem Vortex durchmischt, um dann für 10 Min. bei 70 °C und 950 rpm auf dem Thermomixer zu inkubieren. Es folgte ein erneutes Mischen der Suspension für ca. 15 Sek. auf dem Vortex und eine Zentrifugation für ca. 5 Sek. bei 8000 g.

Zur Präzipitation der freien DNA wurden in jedes Reaktionsgefa ß 200 µl Ethanol (96 %) (Merck KGaA, D-64271 Darmstadt) pipettiert und dann unmittelbar für ca. 15 Sek. auf dem Vortex geschüttelt. Anschließend wurden die Proben für ca. 15 Sek. bei 8000 g zentrifugiert. Die Isolierung der DNA erfolgte an einer Silikamembran. Dazu wurden zunächst Säulen mit integrierter Silikamembran in leere, 2 ml Flüssigkeit fassende Sammelröhrchen (aus dem Mini Kit) gestellt. Das gesamte Lysat einer Probe wurde auf die jeweilige Säule gegeben. Die Sammelröhrchen inklusive der Säulen wurden dann 1 Min. bei 6.000 g zentrifugiert, so dass sich keine Flüssigkeit mehr oberhalb der Membran befand. Sammelröhrchen und Flüssigkeit wurden daraufhin verworfen. Die Säulen wurden in neue Sammelröhrchen gesetzt und mit 500 µl AW1 Puffer befüllt. Anschließend wurden sie erneut für 1 Min. bei
6.000 g zentrifugiert. Wie im vorangegangenen Schritt wurden Sammelröhrchen samt Flüssigkeit verworfen und die Säulen in neue Sammelröhrchen umgesetzt. Nachdem die Säulen mit 500 µl AW2 Puffer befüllt wurden, erfolgte eine Zentrifugation für 3 Min. bei 20.000 g. Nach wiederholtem Umsetzen der Säulen auf ein neues Sammelröhrchen (s.o.) wurden die Proben für 1 Min. bei 20.000 g zentrifugiert. Zum Eluieren der DNA wurde jede Säule in ein Reaktionsgefäß (1,5 ml-Eppendorf-Cup, PCR clean, Eppendorf AG, D-22331 Hamburg) gesetzt, mit 200 µl AE-Puffer (Elutionspuffer) beladen und 1 Min. bei Raumtemperatur inkubiert. Abschließend wurde das Reaktionsgefäß mit beladener Säule für 1 Min. bei 6.000 g zentrifugiert, so dass sich das DNA-Extrakt sammelte. Das DNA-Extrakt wurde bis zur weiteren Verwendung bei etwa 4 °C im Kühlschrank gelagert.

3.4.3. Nachweis der Genomfragmente von M. hyopneumoniae

3.4.3.1 Herstellung des Mastermixes

Die Herstellung des Mastermixes erfolgte unter einer Sterilwerkbank (DNA/RNA-Cleaner UVC/T-M-AR, Fa. G. Kisker, 48543 Steinfurt) in einem separaten Raum. Zu Beginn der Studie wurde eine ausreichend große Menge Mastermix (ca. 80 ml) für die Untersuchung aller Proben hergestellt und anschließend in Alliquots zu 1 ml abgefüllt (bei -20 °C ca. 1 Jahr haltbar). Pro ml Mastermix wurden 555,6 µl TaqMan
Universal PCR Master Mix 2x, je 3,3 µl REP-Primer L/R, 13,9 µl REP-Sonde, 3,3 µl ABC-Primer L, 6,7 µl ABC-Primer R1 + R2, 27,8 µl ABC Sonde, 11 µl IPC Template 50x sowie 319,5 µl DNA(se)-/RNA(se)- freies Wasser in ein Reaktionsgefäß pipettiert und auf einem Vortex Mixer (SA8, Fa.Stuart, Bibby Sterilin LTD. Stone, Staffordshire, ST15 09A, UK) gemischt.

Der TaqMan Universal PCR Master Mix sowie die ABC Sonde wurden von der Firma Applied Biosystems (Foster City, CA 94404, USA), die Primer und die REP Sonde von der Firma Metabion (Metabion International AG, D-82152 Planegg-Martinsried) bezogen.

Bei der IPC (internal positive control) handelt es sich um eine interne Amplifikations-Positiv-Kontrolle, deren Template-DNA (Matrise) und entsprechend komplementäre Primer im Testkit „TaqMan® Exogenous Internal Positive Control Reagents (VIC™ Probe)“ (Fa. Applied Biosystems) enthalten sind.
Folgende Primer und Sonden wurden verwendet:

- **REP-Primer L**: MHPTM950-L 100 µM
 (finale Konzentration: 300 nM)
 Sequenz: 5´TTG ACT GCT ATC TTT GCA CGA TAA G3´

- **REP-Primer R**: MHPTM950-R 100 µM
 (finale Konzentration: 300 nM)
 Sequenz: 5´ACA ATA ATT GCT GAC CGT GGC G3´

- **REP-Sonde**: MHPTM950-FT 10 µM*
 (finale Konzentration: 250 nM)
 Sequenz: 5´TGT CCA CTG CTG CAA ATA TTC GAT TTC TTG AA3´
 Cy5-BHQ-2

- **ABC-Primer L**: MHABCTM-L 100 µM
 (finale Konzentration: 300 nM)
 Sequenz: 5´GAT ATG GGA AAC ATT GTT CTT GGT T3´

- **ABC-Primer R1+R2**: MHABCTM-L 100 µM
 (finale Konzentration: 300 nM)
 Sequenz: 5´GTT CAG TCA AAT YTT TCT TTT CCA AA3´

- **ABC-Sonde**: MHABCTM-MGB 10 µM*
 (finale Konzentration: 250 nM)
 Sequenz: 5´TTT GGA TAT AAG CAA TCA TC3´ FAM-TAMRA

Zu*: Die Sonden hatten eine Konzentration von 100 µM und wurden vor der Verwendung in der *real-time*-PCR 1:10 verdünnt.
3.4.3.2 Reaktionsansatz

Die Vertiefungen (sog. wells) einer Micro Amp® 96-Well Optical Reaction Plate (Applied Biosystems) wurden, entsprechend der Anzahl der zu untersuchenden Proben, mit jeweils 22,5 µl Mastermix und 2,5 µl DNA-Extrakt befüllt (QIAamp® DNA Mini Kit, Qiagen GmbH, D-40724 Hilden). Anschließend wurde die gesamte Platte mit einer Folie (Micro Amp Clear Adhesive Film, Applied Biosystems) abgeklebt und 2 Min. bei 1050 g zentrifugiert (Centrifuge 5810 R, 22339 Hamburg). Durch die Zentrifugation wurden mögliche Luftblasen am Boden der wells entfernt, weil diese die optische Messung beeinflussen können.

Die real-time PCR wurde mit dem Applied Biosystems 7500 real-time PCR System (Applied Biosystems, Foster City, CA 94404, USA) durchgeführt. Für die Amplifikation wurden folgende Zyklusparameter (Tabelle 1) verwendet:

Tabelle 1: Zyklusparameter

<table>
<thead>
<tr>
<th></th>
<th>Temperatur (°C)</th>
<th>Dauer/Zyklus (Sek.)</th>
<th>Anzahl der Zyklen (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>first denaturation</td>
<td>95</td>
<td>600</td>
<td>1</td>
</tr>
<tr>
<td>denaturation</td>
<td>95</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>annealing und extension</td>
<td>60</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

Das PCR-System wurde mit Hilfe der Sequence Detection Software (Version 1.4, 7500 System Software, Applied Biosystems) gesteuert. Diese Software hat auch die Daten des PCR-Systems (Ergebnisse der Fluoreszenzmessung) gespeichert und nummerisch sowie visuell dargestellt. Nach der PCR wurden zur Interpretation der Ergebnisse (positiv vs. negativ) die Schwellenwerte (thresholds) nach GIANI (2005) verwendet. Der threshold für Cy5-BHQ-2 betrug 0,02 (ΔCp >0,02 ≅ REP = positiv) und der threshold für FAM-TAMRA 0,06 (ΔCp >0,06 ≅ ABC = positiv).
Die Beurteilung des Status einer Probe wurde unter Berücksichtigung der Ergebnisse für beide Zielsequenzen und der IPC vorgenommen (Tabelle 2):

Tabelle 2: Interpretation der *real-time* PCR

<table>
<thead>
<tr>
<th>ABC und/oder REP dye signal (target)</th>
<th>VIC dye signal (IPC)</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>Positiv</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>Negativ</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Wiederholung notwendig, da keine Amplifikation stattgefunden hat (Inhibition wahrscheinlich)</td>
</tr>
</tbody>
</table>

3.5. Erstellung einer elektronischen Datenbank

Hauptdatenblatt wurde abschließend um Informationen zu den untersuchten Ferkeln sowie um die Ergebnisse der \textit{real-time}-PCR erweitert.

Mit dem Ziel einer standardisierten und einheitlichen Eingabe der Datensätze, wurden zu Beginn folgende Festlegungen getroffen:

- für Bestände, die bei der Untersuchung angaben, „Ferkelerzeuger mit Restemast“ zu sein, wurde die Variable „Produktionstyp“ um eine neue Kategorie erweitert.
- für die Variable Genetik wurden zusätzlich die Kategorien „Schaumann“, „AB“, „DExDL“ und „sonstige“ eingeführt.
- bei der Altersstruktur der Sauenherde wurde die Kategorie „0. Wurf“ zugefügt.
- bei Fragen nach der Leerstehzeit der Abteile wurde bei Angaben „von (x) bis (y)“ immer die kleinste Zahl (x) eingegeben.
- bei Fragen nach dem Zeitpunkt zootechnischer Maßnahmen wurde bei Angaben „von (x) bis (y)“ immer die größte Zahl (y) eingegeben.
- zur Liste der Impfstoffe gegen \textit{M. hyopneumoniae} wurde „Ingelvac MycoFLEX“ hinzugefügt.
- bei unterschiedlicher Größe der Flatdeckabteile wurden lediglich die minimale und die maximale Anzahl der Plätze erfasst.
- wurden unterschiedlich viele Tiere je Zukauf erworben, wurden die minimale und die maximale Anzahl der Tiere erfasst.

Die Daten zur Haltung der Ferkel im Abferkelstall und die Informationen zu den weiterführend untersuchten Saugferkeln (einschließlich der Ergebnisse der \textit{real-time}-PCR) wurden auf Ebene des Bestandes kondensiert (s.u.) und in das Hauptdatenblatt eingefügt.
Um die Haltungsbedingungen im Abferkelstall auf Ebene eines Bestandes darstellen zu können, wurde Folgendes festgelegt:

- als Alter des Abferkelstalles galt das höchste Alter, das vom Tierhalter für einen Stall resp. ein Abteil angegeben wurde.
- als Anzahl der Abferkelplätze pro Abteil galt die größte Anzahl von Abferkelplätzen pro Abteil, die in einem Bestand erfasst werden konnte.
- als Variation der Abferkeltermine innerhalb eines Abteils galt der größte Abstand zwischen erster und letzter Abferkelung in einem Abteil, der während der Untersuchung erfasst werden konnte.

Um die Ausstattung der Abferkelabteile auf der Ebene eines Bestandes darstellen zu können, wurden neue Kategorien gebildet:

- Boden in der Abferkelbucht:
 \(\text{NUR Kunststoff} \quad \text{vs.} \quad \text{Kunststoff + andere Materialien} \)

- Boden im Ferkelnest:
 \(\text{NUR Kunststoff} \quad \text{vs.} \quad \text{Kunststoff + andere Materialien} \)

- Heizung im Ferkelnest:
 \(\text{NUR Warmwasser + Infrarotlampe} \quad \text{vs.} \quad \text{andere Heizsysteme} \)

- Zuluft im Abferkelstall:
 \(\text{NUR Ganglüftung} \quad \text{vs.} \quad \text{andere Lüftungssysteme} \)

- Abluft im Abferkelstall:
 \(\text{NUR Deckenventilator} \quad \text{vs.} \quad \text{andere Lüftungssysteme} \)

Für andere Parameter, deren Ausprägungen mit einer metrischen Skala erfasst werden konnten (bspw. Alter der Ferkel bei Probenentnahme, etc.), wurde der arithmetische Mittelwert berechnet und dem Bestand im Hauptdatenblatt zugeordnet.

3.6. Auswertung

Aus Datumsangaben zu bestimmten Maßnahmen oder Vorkommnissen (bspw. Tag der letzten Impfung der Sauen gegen PRRSV, Tag des letzten Zukaufs von Jungsauen, etc.) wurde unter Bezug auf den Tag der Untersuchung eine Differenz in Tagen berechnet und in eine neue Spalte eingefügt. Die Angaben zur Bestandsgröße in „Anzahl Sauen im Bestand“ (Angabe durch den Tierhalter) sind auf Plausibilität geprüft worden, indem die Tierzahlen „x Sauen je y Wurf“ (Angaben aus dem Sauenplaner) addiert wurden. Da zahlreiche Abweichungen auftraten und die Daten aus einem Sauenplaner grundsätzlich als valider zu bewerten sind, wurden die Tierhalterangaben durch die entsprechenden Summen ersetzt.

Für Merkmale/Parameter mit metrischer Ausprägung wurde außerdem die Linearität geprüft. Da bei der einfachen logarithmischen Regression angenommen wird, dass die Daten in einem linearen Zusammenhang zu den *Odds ratios* stehen, muss bei nicht vorhandener Linearität der Daten, soweit aus veterinärmedizinischer Sicht sinnvoll und vertretbar, kategorisiert werden. Andernfalls wäre die logistische Regression nicht zulässig.

In den Fällen, in denen *missing values* aufgrund von Datenerhebungen an Subpopulationen auftraten, wurden in der Regel nur die übergeordneten Fragen/Parameter, die alle Bestände berücksichtigten, in die Auswertung einbezogen: der Einfluss einer Impfung der Jungsauen gegen *M. hyopneumoniae* wurde untersucht; der Zeitpunkt der Impfung (als „untergeordnete Frage“) wurde jedoch ausgeschlossen, weil er nur von Interesse ist, wenn der übergeordnete Parameter tatsächlich einen Einfluss zeigt.

Alle Variablen mit einer Tendenz zur Assoziation mit der Zielvariablen (*p*<0,2 resp. *p*<0,1) wurden auch auf eine mögliche Korrelation untereinander geprüft, um Scheinkorrelationen und Confounding auszuschließen.

Abschließend wurden Variablen mit Tendenz zur Assoziation resp. signifikanter Assoziation mit der Zielvariablen in verschiedene Cluster eingeteilt und in multivariablen Regressionsmodellen hinsichtlich ihres tatsächlichen Einflusses auf die Zielvariable untersucht.
4. Ergebnisse

4.1. Nachweis spezifischer Genomfragmente von *M. hyopneumoniae*

Das Alter der Saugferkel zum Zeitpunkt der Probenentnahme betrug im Mittel 21,8 Tage (95 % CI: 21,3 - 22,3). Die Tiere stammten aus Würfen mit durchschnittlich 12,7 (95 % CI: 12,5 - 12,9) lebend geborenen Ferkeln. Die mittlere Wurfzahl der Sauen betrug 4,1 (95 % CI: 3,9 - 4,3) Würfe.

Spezifische Genomfragmente von *M. hyopneumoniae* wurden bei 3,9 % (98/2500) aller Ferkel nachgewiesen (Abbildung 1).
Abbildung 1: Anteile $M. \text{hyopneumoniae}$-PCR positiver und negativer Saugferkel
Für die weitere Auswertung der Ergebnisse, die deskriptive Statistik sowie die Untersuchung potentieller Risikofaktoren wurde die Herde als statistische Einheit betrachtet. Eine Herde wurde als „M. hyopneumoniae positiv“ klassifiziert, wenn bei mindestens einem Saugferkel aus dem Bestand M. hyopneumoniae im Nasentupfer mittels PCR nachgewiesen werden konnte. Im Umkehrschluss wurde eine Herde als „M. hyopneumoniae negativ“ klassifiziert, wenn alle Proben der 20 Ferkel in der PCR ein negatives Ergebnis erbracht hatten.

Insgesamt waren 36,8 % (46/125) der Herden „M. hyopneumoniae positiv“ (Abb. 2).

Abbildung 2: Anteile M. hyopneumoniae-PCR positiver und negativer Saugferkelbestände
Die Häufigkeit, mit der *M. hyopneumoniae* bei Saugferkeln nachgewiesen werden konnte, variierte zwischen 0 % in 79 Herden und 75 % in einer Herde. Betrachtet man ausschließlich positiv klassifizierte Herden, betrug die Nachweishäufigkeit 5 % (1/20 Proben) bis 75 % (15/20 Proben) (Abb. 3).

Abbildung 3: Nachweishäufigkeit von *M. hyopneumoniae* mittels PCR an Nasentupfern von jeweils 20 Saugferkeln pro Bestand (n = 125)

In 108 Beständen nahmen auch die Tierhalter selbst an der Untersuchung teil und stellten einen von sich selbst entnommen Nasentupfer für die PCR zum Nachweis spezifischer Genomfragmente von *M. hyopneumoniae* zur Verfügung. In 14,8 % (16/108) dieser Tupfer wurden Genomfragmente des Erregers nachgewiesen. In fünf Beständen wurde der Erreger aus dem Nasentupfer des Landwirtes, jedoch nicht bei den Saugferkeln nachgewiesen. In 17 Beständen verweigerten die Tierhalter aus unterschiedlichen Gründen die Teilnahme an der Untersuchung von sich selbst
entnommener Nasentupfer. Sechs dieser Bestände wurden später als positiv und elf als negativ hinsichtlich des Vorkommens von *M. hyopneumoniae* bei Saugferkeln klassifiziert (Abb. 4).

Abbildung 4: Nachweishäufigkeit von *M. hyopneumoniae* mittels PCR an von sich selbst entnommenen Nasentupfern von 108 Landwirten
4.2 Ergebnisse der epidemiologischen Charakterisierung

4.2.1 Allgemeine Angaben zu den Beständen

Insgesamt 69,6 % (87/125) der Bestände konnten dem Produktionstyp „Kombibetrieb“ zugeordnet werden. Die übrigen 30,4 % (38/125) der Bestände wurden den Kategorien „Ferkelerzeuger“ (27,2 %) resp. „Ferkelerzeuger, die wenige nicht verkaufsfähige Ferkel selber mästen“ (3,2 %) zugeordnet (Tabelle 3). Die mittlere Größe aller Bestände betrug 262,6 (95 % CI: 236,2 – 289,0) Sauen, die mittlere Anzahl der Jungsaufen im Bestand 39,3 (95 % CI: 34,2 – 44,4) (Tabelle 4).

In 48 % (60/125) der Bestände waren in dem Stall resp. in den Ställen mit den Abferkelabteilen außer Sauen und ggf. Ebern keine Schweine anderen Alters untergebracht. Insbesondere Absetzferkel, Mastschweine und Jungsaufen waren in diesen Beständen in anderen Stallgebäuden an derselben Hofstelle oder in Gebäuden an anderen Hofstellen eingestallt (Tabelle 3).

In 14,4 % (18/125) der Bestände standen für die Absetzferkel weniger als fünf Abteile zur Verfügung (Tabelle 3). Die minimale Anzahl der Aufzuchtplätze im Flatdeck betrug im Mittel 121,7 (95 % CI: 107,2 – 136,1) Plätze pro Abteil, die maximale Anzahl 185,3 (95 % CI: 169,1 – 201,5). Die Gesamtzahl der Ferkelaufzuchtplätze je Bestand lag im Mittel bei 1093,9 (95 % CI: 974,7 – 1213,0).
Tabelle 3: Allgemeine Angaben zu den Beständen (n=125)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktionstyp</td>
<td>Kombibetrieb</td>
<td>69,6</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Ferkelerzeuger</td>
<td>27,2</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Ferkelerzeuger, die wenige nicht verkaufsfähige Ferkel selber müssen</td>
<td>3,2</td>
<td>4</td>
</tr>
<tr>
<td>Anzahl Sauen</td>
<td>< 250 Sauen</td>
<td>58,4</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>250 bis < 500 Sauen</td>
<td>32,0</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>≥ 500 Sauen</td>
<td>9,6</td>
<td>12</td>
</tr>
<tr>
<td>Anzahl</td>
<td>Absetzferkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 250 und < 500 Absetzferkel</td>
<td>9,6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>≥ 500 und < 1000 Absetzferkel</td>
<td>46,4</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>≥ 1000 Absetzferkel</td>
<td>44,0</td>
<td>55</td>
</tr>
<tr>
<td>Anzahl Sauen</td>
<td>Mastschweine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 500 Mastschweine</td>
<td>33,6</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>≥ 500 und < 1000 Mastschweine</td>
<td>25,6</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>≥ 1000 und < 2000 Mastschweine</td>
<td>25,6</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>≥ 2000 Mastschweine</td>
<td>15,2</td>
<td>19</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Gemeinsame Unterbringung im Gebäude mit den Abferkelställen</td>
<td>keine anderen Produktionsbereiche 15,2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nur Absetzferkel und Mastschweine 12,0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nur Sauen 48,0</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absetzferkel, Mastschweine und Sauen 24,8</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Umtrieb der Sauen durch belegte Flatdeck-Abteile</td>
<td>nein 98,4</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja 1,6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Umtrieb der Sauen durch belegte Mastabteile</td>
<td>nein 99,2</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja 0,8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anzahl der Abteile im Flatdeck</td>
<td>< 5 Abteile 14,4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 5 und ≤ 10 Abteile 72,8</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 10 Abteile 12,8</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 4: Mittlere Altersstruktur der Sauenherde

<table>
<thead>
<tr>
<th>Anzahl der Würfe</th>
<th>Durchschnittliche Sauenzahl</th>
<th>95 % CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Wurf</td>
<td>39,3</td>
<td>34,2 - 44,4</td>
</tr>
<tr>
<td>1. Wurf</td>
<td>45,5</td>
<td>40,2 - 50,8</td>
</tr>
<tr>
<td>2. Wurf</td>
<td>40,7</td>
<td>35,2 - 46,2</td>
</tr>
<tr>
<td>3. Wurf</td>
<td>35,6</td>
<td>30,9 - 40,3</td>
</tr>
<tr>
<td>4. Wurf</td>
<td>31,2</td>
<td>27,7 - 34,7</td>
</tr>
<tr>
<td>5. Wurf</td>
<td>24,1</td>
<td>21,3 - 26,9</td>
</tr>
<tr>
<td>6. Wurf</td>
<td>20,3</td>
<td>17,1 - 23,5</td>
</tr>
<tr>
<td>≥ 7. Wurf</td>
<td>28,9</td>
<td>24,2 - 33,6</td>
</tr>
</tbody>
</table>

Sauen der Genetik BHZP wurden in über 36,0 % (45/125) der Herden gehalten und waren damit in dieser Studie die am häufigsten verwendete Zuchtlinie (Abb. 5).

Abbildung 5: Genetik der Sauen
4.2.2 Management in den Beständen

Abferkelung
In 52,8 % (66/125) der Bestände wurde im 1- oder 3-Wochen-Rhythmus produziert, während die übrigen Bestände in einem anderen bzw. keinem Rhythmus geführt wurden. Von den Befragten gaben 68,0 % (85/125) an, im Abferkelabteil das Rein-Raus-Verfahren konsequent anzuwenden. Dementsprechend wurden in diesen Beständen keine Sauen aus anderen Abferkelgruppen zugestallt oder es gab separate Abteile für Zwischenabferkelungen. Bis auf einen Befragten reinigten alle Tierhalter die Abferkelabteile vor einer Neubelegung mittels Hochdruckreiniger. Nach eigenen Angaben desinfizierten 76,8 % (96/125) die Abteile vor jeder Neubelegung. Die Sauen wurden in 21,6 % (27/125) der Bestände jedes Mal gewaschen, bevor sie in die Abferkelabteile eingestallt wurden (Tabelle 5).

Ferkelaufzucht
In 83,2 % (104/125) der Bestände wurden, nach Auskunft der Tierhalter, die Abteile im Flatdeck konsequent nach dem Rein-Raus-Prinzip belegt. Außerdem gaben die Befragten an, die Abteile vor jeder neuen Belegung zu reinigen und zu desinfizieren. Die Reinigung fand in allen Beständen mittels Hochdruckreiniger statt (Tabelle 5). Vor einer neuen Belegung standen die Flatdeckabteile durchschnittlich 3,6 (95 % CI: 3,2 – 4,1) Tage leer.

Mast
In den 91 Beständen, die neben der Ferkelproduktion und -aufzucht auch eine eigene Mast betrieben oder zumindest wenige nicht verkaufsfähige Ferkel selber mästeten (Kombibetriebe oder Ferkelerzeuger mit Restemast), gaben 90,1 % (82/91) an, die Abteile nach jeder Ausstallung zu reinigen. Vor einer Neubelegung wurden die Abteile in 69,2 % (63/91) der Bestände jedes Mal desinfiziert (Tabelle 5). Die Leerstehzeit zwischen den Belegungen der Mastabteile betrug im Mittel 3,5 (95 % CI: 2,9 – 4,1) Tage.
Die mittlere Remontierungsrate in den Beständen betrug 42,3 % (95 % CI: 40,8 - 43,8). Pro Jahr wurden je Bestand durchschnittlich 110,7 (95 % CI: 97,2 - 124,2) Tiere in 6,5 (95 % CI: 6,1 – 6,9) Zukäufen erworben. Die minimale Anzahl zugekaufter Tiere je Zukauf lag im Mittel bei 17,5 (95 % CI: 15,4 – 19,6), während die maximale Anzahl 18,7 (95 % CI: 16,6 – 20,8) Tiere betrug. Die Jungsauen waren zum Zeitpunkt der Lieferung in die Bestände im Mittel 175 (95 % CI: 170,9 – 179,1) Tage alt. Eine Eigenremontierung der Jungsauen wurde in 11,2 % (14/125) der Bestände durchgeführt. Die Jungsauen wurden in 86,4 % (108/125) der Bestände nach einer Eingliederungsphase in die Stammherde integriert (Tabelle 5). Die Dauer der Eingliederung lag bei 66,6 % (72/108) der Bestände zwischen drei und sechs Wochen (Tabelle 5). Während der Eingliederungsphase wurde in 44,5 % (48/108) der Bestände Kontakt von Jungsauen zu bestandsspezifischer Keimflora hergestellt (Tabelle 5). In 30,6 % (33/108) der Bestände fand dieser Kontakt über Schweine und in 13,9 % (15/108) der Bestände über unbelebte Vektoren statt (Tabelle 5). Bei den Kontaktieren handelte es sich um 1 – 40 Altsauen resp. Läufer, die zwischen 1 und 28 Tagen mit den Jungsauen zusammengestallt wurden. Den unbelebten Vektoren (Kot und Nachgeburten) wurden die Jungsauen ebenfalls über einen Zeitraum zwischen einem und 28 Tagen ausgesetzt. Die Eingliederungsställe waren in 69,5 % (75/108) der Bestände separate Gebäude an der Hofstelle (Tabelle 5). In 86,1 % (93/108) der Bestände wurden die Eingliederungsställe nach dem Rein-Raus-Prinzip belegt (Tabelle 5).

Jungeber wurden, im Gegensatz zu den Jungsauen, in 52 % (65/125) der Bestände aus der eigenen Aufzucht remontiert (Tabelle 5). Eine Eingliederung der Jungeber fand in 21,7 % (13/60) der zukaufenden Betriebe statt (Tabelle 5). Diese dauerte durchschnittlich 5,3 (95 % CI: 4 – 6,6) Wochen.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Abferkelung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abferkelrhythmus</td>
<td>1- oder 3- Wochen-Rhythmus</td>
<td>52,8</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>anderer oder kein Rhythmus</td>
<td>47,2</td>
<td>59</td>
</tr>
<tr>
<td>Belegung der Abferkelabteile</td>
<td>im Rein-Raus-Verfahren zu 100 %</td>
<td>68,0</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>zu < 100 %</td>
<td>32,0</td>
<td>40</td>
</tr>
<tr>
<td>Separates Abteil für Zwischen</td>
<td>Abferkelungen nein</td>
<td>56,8</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>43,2</td>
<td>54</td>
</tr>
<tr>
<td>Leerzeit der Abferkelabteile</td>
<td>< 1 Tag</td>
<td>19,2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>> 1 Tag und ≤ 3 Tage</td>
<td>46,4</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>> 3 Tage</td>
<td>34,4</td>
<td>43</td>
</tr>
<tr>
<td>Desinfektion vor Neubelegung</td>
<td>Abferkelabteile nicht zu 100 %</td>
<td>23,2</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>zu 100 %</td>
<td>76,8</td>
<td>96</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anzahl der Herden je Kategorie (n)</th>
<th>Anteil der Herden je Kategorie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinigung der Abferkelabteile mittels Hochdruckreiniger</td>
<td>nicht zu 100 %</td>
<td>0,8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>zu 100 %</td>
<td>99,2</td>
<td>124</td>
</tr>
<tr>
<td>Waschen der Sauen vor der Einstellung ins Abferkelabteil</td>
<td>nie</td>
<td>45,6</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>oft</td>
<td>32,8</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>zu 100 %</td>
<td>21,6</td>
<td>27</td>
</tr>
<tr>
<td>Überwachung der Geburt</td>
<td>nicht konsequent</td>
<td>87,2</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>konsequent (am Tag und in der Nacht)</td>
<td>12,8</td>
<td>16</td>
</tr>
<tr>
<td>Alter der Ferkel bei der Kastration</td>
<td>≤ 3 Tage</td>
<td>20,8</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>> 3 Tage und < 7 Tage</td>
<td>49,6</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>≥ 7 Tage</td>
<td>29,6</td>
<td>37</td>
</tr>
<tr>
<td>Alter der Ferkel beim Kürzen der Schwänze</td>
<td>≤ 3 Tage</td>
<td>75,2</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>> 3 Tage und < 7 Tage</td>
<td>24,8</td>
<td>31</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter der Ferkel beim Kürzen der Zähne</td>
<td>kein Kürzen der Zähne</td>
<td>35,2</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>ab dem 1. Lebenstag</td>
<td>64,8</td>
<td>81</td>
</tr>
<tr>
<td>Alter der Ferkel beim Einziehen der Ohrmarke</td>
<td>≤ 3 Tage</td>
<td>12,0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>> 3 Tage und < 7 Tage</td>
<td>40,8</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>≥ 7 Tage</td>
<td>47,2</td>
<td>59</td>
</tr>
<tr>
<td>Alter der Ferkel beim Absetzen</td>
<td>≤ 20 Tage alt</td>
<td>8,0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>> 20 Tage und ≤ 28 Tage</td>
<td>87,2</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>> 28 Tage</td>
<td>4,8</td>
<td>6</td>
</tr>
</tbody>
</table>

Management im Flatdeck

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Belegung der Flatdeckabteile im Rein-/Raus-Verfahren</td>
<td>zu 100 %</td>
<td>83,2</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>weniger als 100 %</td>
<td>16,8</td>
<td>21</td>
</tr>
</tbody>
</table>

| Reinigung der Flatdeckabteile mittels Hochdruckreiniger | zu 100% | 100,0 | 125 |
Fortsetzung Tabelle 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desinfektion der Flatdeckabteile zwischen den Belegungen</td>
<td>zu 100 %</td>
<td>83,2</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>weniger als 100 %</td>
<td>16,8</td>
<td>21</td>
</tr>
<tr>
<td>Management in der Mast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belegung der Mastabteile im Rein-Raus-Verfahren a</td>
<td>zu 100 %</td>
<td>85,7</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>weniger als 100 %</td>
<td>14,3</td>
<td>13</td>
</tr>
<tr>
<td>Reinigung der Mastabteile zwischen den Belegungen a</td>
<td>zu 100 %</td>
<td>90,1</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>weniger als 100 %</td>
<td>9,9</td>
<td>9</td>
</tr>
<tr>
<td>Desinfektion der Mastabteile zwischen den Belegungen a</td>
<td>zu 100 %</td>
<td>69,2</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>weniger als 100 %</td>
<td>30,8</td>
<td>28</td>
</tr>
<tr>
<td>Management Jungsauen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herkunft der Jungsauen</td>
<td>Eigenremontierung</td>
<td>11,2</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Zukauf</td>
<td>88,8</td>
<td>111</td>
</tr>
<tr>
<td>Eingliederung der Jungsauen</td>
<td>keine Eingliederung</td>
<td>13,6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eingliederung</td>
<td>86,4</td>
<td>108</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer der Jungsaueneingliederung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3 Wochen</td>
<td>24,1</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>> 3 und ≤ 6 Wochen</td>
<td>66,6</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>> 6 Wochen</td>
<td>9,3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Lage des Jungsauen-Eingliederungsstalls</td>
<td>separater Standort</td>
<td>8,3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>separates Gebäude</td>
<td>69,5</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>separates Abteil</td>
<td>22,2</td>
<td>24</td>
</tr>
<tr>
<td>Belegung des Jungsauen-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstalls im</td>
<td>Rein-Raus-Verfahren</td>
<td>86,1</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>kontinuierlich</td>
<td>13,9</td>
<td>15</td>
</tr>
<tr>
<td>Kontakte der Jungsauen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>während der</td>
<td>kein Kontakt</td>
<td>55,5</td>
<td>60</td>
</tr>
<tr>
<td>Eingliederung</td>
<td>Kontakt zu Schweinen</td>
<td>30,6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Kontakt zu unbelebten Vektoren</td>
<td>13,9</td>
<td>15</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Jungeber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bezug von Jungebern</td>
<td>Eigenremontierung</td>
<td>52,0</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Zukauf</td>
<td>48,0</td>
<td>60</td>
</tr>
<tr>
<td>Anzahl der Jungeber-Zukäufe im letzten Jahr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kein Zukauf</td>
<td>46,7</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>mindestens ein Zukauf</td>
<td>53,3</td>
<td>32</td>
</tr>
<tr>
<td>Anzahl zugekaufter Jungeber im letzten Jahr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>keiner</td>
<td>46,7</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>mindestens ein zugekaufter Eber</td>
<td>53,3</td>
<td>32</td>
</tr>
<tr>
<td>Eingliederung der Jungeber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>78,3</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>21,7</td>
<td>13</td>
</tr>
<tr>
<td>Lage des Jungeber-Eingliederungstalls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>separater Standort</td>
<td>3,2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>separates Gebäude</td>
<td>6,4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>separates Abteil</td>
<td>0,8</td>
<td>1</td>
</tr>
<tr>
<td>Belegung des Jungeber-Eingliederungsstalls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rein-Raus-Prinzip</td>
<td>92,3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>kontinuierlich</td>
<td>7,7</td>
<td>1</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontakte der Jungeber während der Eingliederung</td>
<td>kein Kontakt</td>
<td>53,8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Kontakt zu Schweinen</td>
<td>38,5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Kontakt zu unbelebten Vektoren</td>
<td>7,7</td>
<td>1</td>
</tr>
</tbody>
</table>

a	nur Bestände mit Mast
b	nur Bestände, die eine Eingliederung durchführen
c	nur Bestände, die Jungeber zukaufen
<	kleiner als
>	größer als
≤	kleiner als/gleich

4.2.3 Haltungsbedingungen in den Beständen

Abferkelung

Das mittlere Alter der Abferkelabteile betrug 13,9 (95 % CI: 12,6 – 15,2) Jahre. Die Bestände besaßen durchschnittlich 6,7 (95 % CI: 6,3 – 7,2) Abferkelabteile mit insgesamt 65,3 (95 % CI: 59,5 – 71,2) Abferkelplätzen. Je Abteil waren im Mittel 13,8
(95 % CI: 12,2 – 15,4) Abferkelplätze vorhanden. Die Abferkeltermine innerhalb eines Abteils lagen durchschnittlich 7,8 Tage (95% CI: 6,8 – 8,8) auseinander.

In 26,4 % (33/125) der Bestände bestand der Boden der Abferkelbucht ausschließlich aus Kunststoff. Dies traf in 28,0 % (35/125) der Bestände auch für den Boden der Ferkelnester zu. In 63,2 % (79/125) der Bestände wurde das Ferkelnest mittels Warmwasser und Infrarotlampe beheizt. Alle Ferkelnester wurden während der gesamten Säugezeit beheizt. Die Belüftung der Abferkelabteile erfolgte in 44,8 % (56/125) der Bestände ausschließlich über eine Ganglüftung, während die Entlüftung in 83,2 % (104/125) der Bestände ausschließlich über einen Ventilator erfolgte (Tabelle 6).

Remonten

Das mittlere Alter der Eingliederungsställe für Jungsauen lag bei 10,6 Jahren (95 % CI: 8,7 – 12,6). In 97,3 % (95/108) der Bestände gab es jeweils ein Abteil für die Jungsaueneingliederung. Jeweils ein Bestand besaß zwei, drei bzw. vier Abteile für die Jungsaueneingliederung (Tabelle 6). In jedem Abteil befanden sich im Mittel 2,4 Buchten (95 % CI: 2,3 – 2,8). Pro Bucht wurden durchschnittlich 11,3 (95 % CI: 9,6 – 12,9) und pro Abteil 19,5 (95 % CI: 16,8 – 22,3) Tiere gehalten. Im Mittel teilten sich jeweils 5,0 (95 % CI: 3,9 – 6,1) Tiere einen Fressplatz und 5,6 (95 % CI: 4,6 – 6,6) Tiere einen Tränkeplatz. Die Buchten waren im Mittel 25,0 m² (95 % CI: 20,8 – 29,2) und die Abteile 51,1 m² (95 % CI: 45,3 – 56,9) groß. Das Raumvolumen der Abteile betrug durchschnittlich 410,3 m³ (95 % CI: 332,1 – 488,5).

In 39,8 % (43/108) der Eingliederungsställe für die Jungsauen waren die Tiere auf Vollspalten aufgestellt. Die Zuluft wurde in 23,2 % (25/108) der Bestände über eine Ganglüftung und in 53,7 % (50/125) der Bestände über einen Ventilator abgeführt (Tabelle 6).

In allen 13 Betrieben, die eine Eingliederung von Jungebern durchführten, gab es jeweils ein Eingliederungsabteil. Das durchschnittliche Alter der Stallung lag bei 9,2 Jahren (95 % CI: 3,7 - 14,7). Pro Abteil waren zwischen einer und acht Buchten vorhanden. In elf Betrieben waren die Tiere einzeln in den Buchten untergebracht.
und in zwei Betrieben teilten sich je zwei Tiere eine Bucht. Entsprechender Umstand galt auch für die Abteile. Die Buchten der Jungeber waren zwischen 4,5 und 82,0 m² groß und die Abteile zwischen 16,0 und 98,0 m² groß. Das minimale Raumvolumen betrug 33,6 m³ und das maximale Raumvolumen mehr als 1000 m³ (frei / offen).

Tabelle 6: Haltungsparameter

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haltung im Abferkelstall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boden in der Abferkelbucht</td>
<td>100 % Kunststoff</td>
<td>26,4</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Kunststoff + andere Materialien</td>
<td>73,6</td>
<td>92</td>
</tr>
<tr>
<td>Boden im Ferkelnest</td>
<td>100 % Kunststoff</td>
<td>28,0</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Kunststoff + andere Materialien</td>
<td>72,0</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Heizung im Ferkelnest</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warmwasser + Infrarotlampe</td>
<td>63,2</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>andere Heizsysteme</td>
<td>36,8</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Zuluft im Abferkelstall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% Ganglüftung</td>
<td>44,8</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>andere Lüftungssysteme</td>
<td>55,2</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Abluft im Abferkelstall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% Ventilator</td>
<td>83,2</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>andere Lüftungssysteme</td>
<td>16,8</td>
<td>21</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Jungsaufenthaltung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstall a</td>
<td>Vollspalten</td>
<td>39,8</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>andere Böden</td>
<td>60,2</td>
<td>65</td>
</tr>
<tr>
<td>Trennwände</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zwischen den Buchten im</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstall a</td>
<td>geschlossen</td>
<td>57,4</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>offen</td>
<td>42,6</td>
<td>46</td>
</tr>
<tr>
<td>Fütterung im</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstall a</td>
<td>automatisch</td>
<td>60,2</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>per Hand</td>
<td>39,8</td>
<td>43</td>
</tr>
<tr>
<td>Zuluft im</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstall a</td>
<td>100 % Ganglüftung</td>
<td>23,1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>andere Lüftungssysteme</td>
<td>76,9</td>
<td>83</td>
</tr>
<tr>
<td>Abluft im</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstall a</td>
<td>Ventilator</td>
<td>46,3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>andere Lüftungssysteme</td>
<td>53,7</td>
<td>58</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Güllelagerung im</td>
<td>direkt unter den Tieren</td>
<td>92,6</td>
<td>100</td>
</tr>
<tr>
<td>Eingliederungsstall⁠a</td>
<td>außerhalb des Stalles</td>
<td>7,4</td>
<td>8</td>
</tr>
<tr>
<td>Jungeberhaltung</td>
<td>Boden im</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstall⁠a</td>
<td>Vollspalten</td>
<td>46,2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>anderer Boden</td>
<td>53,8</td>
<td>7</td>
</tr>
<tr>
<td>Trennwände</td>
<td>zwischen den Buchten im</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingliederungsstall⁠a</td>
<td>geschlossen</td>
<td>30,8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>offen</td>
<td>69,2</td>
<td>9</td>
</tr>
<tr>
<td>Fütterung im</td>
<td>Eingliederungsstall⁠a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>automatisch</td>
<td>69,2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>per Hand</td>
<td>30,8</td>
<td>4</td>
</tr>
<tr>
<td>Zuluft im</td>
<td>Eingliederungsstall⁠a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ganglüftung</td>
<td>30,8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>andere Lüftungssysteme</td>
<td>69,2</td>
<td>9</td>
</tr>
<tr>
<td>Abluft im</td>
<td>Eingliederungsstall⁠a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventilator</td>
<td>53,8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>andere Lüftungssysteme</td>
<td>46,2</td>
<td>6</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Güllelagerung im Eingliederungsstall<sup>a</sup></td>
<td>direkt unter den Tieren</td>
<td>92,3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>außerhalb des Stalles</td>
<td>7,7</td>
<td>1</td>
</tr>
</tbody>
</table>

^a nur Bestände, die eine Quarantäne durchführen

4.2.4 Impfkonzepte

Impfungen der Saugferkel

In 45,6 % (57/125) der Bestände wurden die Ferkel mittels *one-shot* Vakzine und in 30,4 % (38/125) der Bestände mittels *two-shot* Vakzine gegen *M. hyopneumoniae* geimpft. Gegen PRRSV wurden Saugferkel in 24,8 % (31/125) der Bestände geimpft. Eine Impfung der Ferkel gegen PCV-2 wurde in 64,8 % (81/125) der Bestände durchgeführt (Tabelle 7).

Impfungen der Altsauen

Die Altsauen wurden in 84,0 % (105/125) der Bestände mit einem Lebendimpfstoff gegen PRRSV geimpft. In 1,6 % (2/125) der Bestände erfolgte die Impfung der Sauen mit einem Inaktivatimpfstoff und in 14,4 % (18/125) der Bestände wurde keine Impfung der Sauen gegen PRRSV durchgeführt. In 25,2 % (23/107) der gegen PRRSV impfenden Bestände erfolgte die PRRSV-Impfung der Sauen reproduktionsorientiert. In den verbleibenden 74,8 % (80/107) fand eine bestandsweise Impfung der Sauen gegen Influenza, in 14,4 % (18/125) gegen PCV2, in...
4,8 % (6/125) gegen APP und in 3,2 % (4/125) der Herden gegen *Rhinitis atrophicans* geimpft (Tabelle 7).

Impfung der Remonten

Die Jungsauen wurden in 29,6 % (37/125) der Bestände gegen *M. hyopneumoniae* geimpft. *One-shot* Vakzinen wurden nach Angabe der Landwirte in 70,3 % (26/37) der impfenden Bestände angewendet, die übrigen 29,7 % (11/37) gaben an, eine *two-shot* Vakzine einzusetzen (Tabelle 7). Gegen PRRSV wurden die Jungsauen in 88,8 % (111/125) der Bestände mit einem Lebendimpfstoff geimpft. In 1,6 % (2/125) der Bestände wurden die Jungsauen mit einem Inaktivatimpfstoff gegen PRRSV geimpft und in 9,6 % (12/125) fand keine Impfung der Jungsauen gegen PRRSV statt. Des Weiteren wurden die Jungsauen in 61,6 % (77/125) der Bestände gegen Influenza, in 36,8 % (46/125) gegen PCV2, in 13,6 % (17/125) gegen APP und in 3,2 % (4/125) der Bestände gegen *Rhinitis atrophicans* geimpft (Tabelle 7).

Eine Impfung der Jungeber gegen *M. hyopneumoniae* wurde in 14,4 % (18/125) der Bestände durchgeführt. Gegen PRRSV wurden Jungeber in 51,2 % (64/125) der Bestände, gegen Influenza in 33,6 % (42/125), gegen PCV2 in 17,6 % (22/125) und gegen APP in 11,2 % (14/125) der Bestände geimpft (Tabelle 7).
Tabelle 7: Impfungen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impfungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impfung der Ferkel gegen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. hyopneumoniae</td>
<td>keine Impfung</td>
<td>24,0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>one-shot</td>
<td>45,6</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>two-shot</td>
<td>30,4</td>
<td>38</td>
</tr>
<tr>
<td>Alter der Ferkel bei Impfung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gegen M. hyopneumoniae</td>
<td>jünger als 3 Wochen</td>
<td>37,9</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3 Wochen und älter</td>
<td>27,4</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>zweimalige Impfung</td>
<td>34,7</td>
<td>33</td>
</tr>
<tr>
<td>Impfung der Ferkel gegen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRRSV</td>
<td>keine Impfung</td>
<td>75,2</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Impfung</td>
<td>24,8</td>
<td>31</td>
</tr>
<tr>
<td>Zeitpunkt der Impfung der</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferkel gegen PRRSV</td>
<td>jünger als 3 Wochen</td>
<td>54,8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>3 Wochen und älter</td>
<td>45,2</td>
<td>14</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Anwendung von sonstigen Impfstoffen bei den Ferkeln</td>
<td>kein PCV2-Impfstoff</td>
<td>35,2</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>PCV2-Impfstoff</td>
<td>64,8</td>
<td>81</td>
</tr>
<tr>
<td>Zeitpunkt der Anwendung sonstiger Impfstoffe<sup>c</sup></td>
<td>jünger als 3 Wochen</td>
<td>20,0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>3 Wochen oder älter</td>
<td>80,0</td>
<td>68</td>
</tr>
<tr>
<td>Impfung der Sauen gegen PRRSV / Produkt</td>
<td>keine Impfung oder Inaktivat-Impfstoff</td>
<td>16,0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Lebendimpfstoff</td>
<td>84,0</td>
<td>105</td>
</tr>
<tr>
<td>Impfung der Sauen gegen PRRSV / Zeitpunkt<sup>d</sup></td>
<td>reproduktionsorientierte Impfung</td>
<td>25,2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Bestandsimpfung</td>
<td>74,8</td>
<td>80</td>
</tr>
<tr>
<td>Impfung der Sauen bei reproduktionsorientierter PRRSV-Impfung / Rhythmus<sup>e</sup></td>
<td>6/60 oder 5/50</td>
<td>44,4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>anderer Rhythmus</td>
<td>55,6</td>
<td>15</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Differenz zwischen letzter PRRSV-Bestandsimpfung und Probenentnahme in Tage f</td>
<td>≤ 30 Tage</td>
<td>25,0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>> 30 und ≤ 90 Tage</td>
<td>52,5</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>> 90 Tage</td>
<td>22,5</td>
<td>18</td>
</tr>
<tr>
<td>Impfung der Sauen gegen PCV2</td>
<td>nein</td>
<td>85,6</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>14,4</td>
<td>18</td>
</tr>
<tr>
<td>Impfung der Sauen gegen Rhinitis atrophicans</td>
<td>nein</td>
<td>96,8</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>3,2</td>
<td>4</td>
</tr>
<tr>
<td>Impfung der Sauen gegen Influenza</td>
<td>nein</td>
<td>48,0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>52,0</td>
<td>65</td>
</tr>
<tr>
<td>Impfung der Sauen gegen APP</td>
<td>nein</td>
<td>95,2</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>4,8</td>
<td>6</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 7

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impfung der Jungsauen gegen M. hyopneumoniae</td>
<td>kein Impfstoff</td>
<td>70,4</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>one-shot</td>
<td>20,8</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>two-shot</td>
<td>8,8</td>
<td>11</td>
</tr>
<tr>
<td>Impfung der Jungsauen gegen M. hyopneumoniae</td>
<td>Häufigkeit(^a)</td>
<td>61,8</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>einmal</td>
<td>61,8</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>zweimal</td>
<td>38,2</td>
<td>14</td>
</tr>
<tr>
<td>1. Impfung der Jungsauf gegen M. hyopneumoniae</td>
<td>Zeitpunkt (nach Ankunft im Bestand)(^a)</td>
<td>70,3</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1. Woche</td>
<td>70,3</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2. Woche</td>
<td>18,9</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3. Woche</td>
<td>5,4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4. Woche</td>
<td>5,4</td>
<td>2</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 7

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Impfung der Jungsauen gegen M. hyopneumoniae /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitspunkt (nach Ankunft im Bestand)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Woche</td>
<td>5,4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4. Woche</td>
<td>21,6</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5. Woche</td>
<td>2,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6. Woche</td>
<td>5,4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7. Woche</td>
<td>2,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>keine 2. Impfung</td>
<td>61,8</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Impfung der Jungsauen gegen PRRSV / Produkt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keine Impfung oder Inaktivatimpfstoff</td>
<td>11,2</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Lebendimpfstoff</td>
<td>88,8</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>1. Impfung der Jungsauen gegen PRRSV / Zeitpunkt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(nach Ankunft im Bestand)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Woche</td>
<td>79,2</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>2. Woche</td>
<td>9,6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>12. Woche</td>
<td>0,8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>30. Woche</td>
<td>0,8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>keine Impfung</td>
<td>9,6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2. Impfung der Jungsauen gegen PRRSV / Zeitpunkt (nach Ankunft im Bestand)</td>
<td>3. Woche</td>
<td>6,4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4. Woche</td>
<td>36,8</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5. Woche</td>
<td>9,6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>6. Woche</td>
<td>3,2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7. Woche</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>24. Woche</td>
<td>0,8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>34. Woche</td>
<td>0,8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>keine/keine 2. Impfung</td>
<td>38,4</td>
<td>48</td>
</tr>
<tr>
<td>Impfung der Jungsauen gegen PRRSV / Häufigkeit(^h)</td>
<td>einmal</td>
<td>31,9</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>zweimal</td>
<td>68,1</td>
<td>77</td>
</tr>
<tr>
<td>Impfung der Jungsauen gegen PCV2</td>
<td>nein</td>
<td>63,2</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>36,8</td>
<td>46</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Impfung der Jungsauen gegen Rhinitis atrophicans</td>
<td>nein</td>
<td>96,8</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>3,2</td>
<td>4</td>
</tr>
<tr>
<td>Impfung der Jungsauen gegen Influenza</td>
<td>nein</td>
<td>38,4</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>61,6</td>
<td>77</td>
</tr>
<tr>
<td>Impfung der Jungsauen gegen APP</td>
<td>nein</td>
<td>86,4</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>13,6</td>
<td>17</td>
</tr>
<tr>
<td>Impfung der Jungeber gegen M. hyopneumoniae</td>
<td>keine Impfung</td>
<td>85,6</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>einmalige Impfung</td>
<td>8,8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>zweimalige Impfung</td>
<td>5,6</td>
<td>7</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 7

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
</table>

1. Impfung der Jungeber gegen *M. hyopneumoniae* / Zeitpunkt (nach Ankunft im Bestand)\(^1\):

1. Woche	77,7	14
2. Woche	16,7	3
4. Woche	5,6	1

2. Impfung der Jungeber gegen *M. hyopneumoniae* / Zeitpunkt (nach Ankunft im Bestand)\(^1\):

3. Woche	5,6	1
4. Woche	22,2	4
5. Woche	5,6	1
6. Woche	5,6	1
keine Wiederholungsimpfung	61,0	11

Impfung der Jungeber gegen PRRSV:

| keine Impfung | 48,8 | 60 |
| Impfung | 51,2 | 65 |

Impfung der Jungeber gegen PCV2:

| keine Impfung | 82,4 | 103 |
| Impfung | 17,6 | 22 |
Fortsetzung Tabelle 7

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impfung der Jungeber gegen Rhinitis atrophicans</td>
<td>keine Impfung</td>
<td>96,0</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Impfung</td>
<td>4,0</td>
<td>5</td>
</tr>
<tr>
<td>Impfung der Jungeber gegen Influenza</td>
<td>keine Impfung</td>
<td>66,4</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Impfung</td>
<td>33,6</td>
<td>42</td>
</tr>
<tr>
<td>Impfung der Jungeber gegen APP</td>
<td>keine Impfung</td>
<td>88,8</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Impfung</td>
<td>11,2</td>
<td>14</td>
</tr>
</tbody>
</table>

a nur Bestände, in denen die Ferkel gegen *M. hyopneumoniae* geimpft werden
b nur Bestände, in denen die Ferkel gegen PRRSV geimpft werden
c nur Bestände, die bei den Ferkeln sonstige Impfstoffe anwenden
d nur Bestände, in denen die Sauen gegen PRRSV geimpft werden
e nur Bestände, in denen die Sauen reproduktionsorientiert gegen PRRSV geimpft werden
f nur Bestände, in denen die Sauen bestandsweise gegen PRRSV geimpft werden
g nur Bestände, in denen die Jungsaufen gegen *M. hyopneumoniae* geimpft werden
h nur Bestände, in denen die Jungsaufen gegen PRRSV geimpft werden
i nur Bestände, in denen die Jungeber gegen *M. hyopneumoniae* geimpft werden
≤ kleiner als/gleich
> größer als
4.2.5 Behandlungen

Behandlungen der Saugferkel
Eine regelmäßige metaphylaktische antibiotische Behandlung der Saugferkel fand in 85,6 % (107/125) der Bestände statt. Eine Behandlung der Ferkel in der ersten Lebenswoche wurde in 63,2 % (79/125) der Bestände einmal und in 18,4 % (23/125) der Bestände zweimal durchgeführt. Ein gegen *M. hyopneumoniae* wirksames Antibiotikum wurde dabei in 18,4 % (23/125) der Bestände eingesetzt. In der zweiten Lebenswoche führten 13,6 % (17/125) der Bestände eine antibiotische Behandlung durch, wobei in 5,6 % (7/125) der Bestände ein gegen *M. hyopneumoniae* wirksames Antibiotikum angewendet wurde (Tabelle 8).

Behandlung Absetzferkel
Zum Zeitpunkt der Einstallung in das Flatdeck wurden die Absetzferkel in 33,6 % (42/125) der Bestände regelmäßig metaphylaktisch mit einem gegen *M. hyopneumoniae* wirksamen Antibiotikum behandelt (Tabelle 8).

Behandlung Mastschweine
Während der Mast fand in 11,8 % (11/125) der Bestände eine regelmäßige metaphylaktische antibiotische Behandlung statt (Tabelle 8).

Behandlungen der Jungsaufen
Eine regelmäßige metaphylaktische antibiotische Behandlung der Jungsaufen wurde in 16,8 % (21/125) der Bestände durchgeführt. In 1,6 % (2/125) der Bestände wurden auch die Jungeber regelmäßig antibiotisch versorgt (Tabelle 8).

Behandlungen der Altsauen
Die Altsauen wurden in 2,4 % (3/125) der Bestände *ante partum* und in 6,4 % (8/125) der Bestände *post partum* regelmäßig metaphylaktisch mit einem antibiotisch wirksamen Präparat behandelt (Tabelle 8).
Tabelle 8: Regelmäßige Behandlungen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter der Ferkel bei der 1.Eiseninjektion</td>
<td>< 3 Tage</td>
<td>79,2</td>
<td>99</td>
</tr>
<tr>
<td>Alter der Ferkel bei der 1.Eiseninjektion</td>
<td>> 3 Tage</td>
<td>20,8</td>
<td>26</td>
</tr>
<tr>
<td>Alter der Ferkel bei der 2.Eiseninjektion</td>
<td>nein</td>
<td>60,8</td>
<td>76</td>
</tr>
<tr>
<td>Alter der Ferkel bei der 2.Eiseninjektion</td>
<td>ja</td>
<td>39,2</td>
<td>49</td>
</tr>
<tr>
<td>regelmäßige antibiotische Behandlungen der Saugferkel</td>
<td>nein</td>
<td>14,4</td>
<td>18</td>
</tr>
<tr>
<td>regelmäßige antibiotische Behandlungen der Saugferkel</td>
<td>ja</td>
<td>85,6</td>
<td>107</td>
</tr>
<tr>
<td>Anzahl der regelmäßigen antibiotischen Behandlungen der Ferkel in der ersten Lebenswoche</td>
<td>keine Behandlung</td>
<td>18,4</td>
<td>23</td>
</tr>
<tr>
<td>Anzahl der regelmäßigen antibiotischen Behandlungen der Ferkel in der ersten Lebenswoche</td>
<td>eine Behandlung</td>
<td>63,2</td>
<td>79</td>
</tr>
<tr>
<td>Anzahl der regelmäßigen antibiotischen Behandlungen der Ferkel in der ersten Lebenswoche</td>
<td>zwei Behandlungen</td>
<td>18,4</td>
<td>23</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 8

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkstoff der regelmäßigen antibiotischen Behandlungen der Ferkel während der ersten Lebenswoche</td>
<td>keine Behandlung</td>
<td>18,4</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>wirksam gegen M. hyopneumoniae</td>
<td>18,4</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>unwirksam gegen M. hyopneumoniae</td>
<td>63,2</td>
<td>79</td>
</tr>
<tr>
<td>Anzahl der regelmäßigen antibiotischen Behandlungen der Ferkel in der zweiten Lebenswoche</td>
<td>keine Behandlung</td>
<td>86,4</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>eine Behandlung</td>
<td>13,6</td>
<td>17</td>
</tr>
<tr>
<td>Variable</td>
<td>Kategorie</td>
<td>Anteil der Herden je Kategorie (%)</td>
<td>Anzahl der Herden je Kategorie (n)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Wirkstoff der regelmäßigen antibiotischen Behandlungen der Ferkel während der zweiten Lebenswoche</td>
<td>keine Behandlung</td>
<td>86,4</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>wirksam gegen M. hyopneumoniae</td>
<td>5,6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>unwirksam gegen M. hyopneumoniae</td>
<td>8,0</td>
<td>10</td>
</tr>
<tr>
<td>Wirkstoff der regelmäßigen antibiotischen Behandlung bei Einstallung ins Flatdeck</td>
<td>keine Behandlung</td>
<td>27,2</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>wirksam gegen M. hyopneumoniae</td>
<td>33,6</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>unwirksam gegen M. hyopneumoniae</td>
<td>39,2</td>
<td>49</td>
</tr>
<tr>
<td>regelmäßige antibiotische Behandlungen in der Masta</td>
<td>keine Behandlung</td>
<td>88,2</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Behandlung</td>
<td>11,8</td>
<td>11</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 8

<table>
<thead>
<tr>
<th>Variable</th>
<th>Kategorie</th>
<th>Anteil der Herden je Kategorie (%)</th>
<th>Anzahl der Herden je Kategorie (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>regelmäßige antibiotische Behandlungen der Jungsaunen</td>
<td>nein</td>
<td>83,2</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>16,8</td>
<td>21</td>
</tr>
<tr>
<td>regelmäßige antibiotische Behandlungen der Jungeber</td>
<td>nein</td>
<td>98,4</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>1,6</td>
<td>2</td>
</tr>
<tr>
<td>regelmäßige antibiotische Behandlungen der Sauen ante partum</td>
<td>nein</td>
<td>97,6</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>2,4</td>
<td>3</td>
</tr>
<tr>
<td>regelmäßige antibiotische Behandlungen der Sauen post partum</td>
<td>nein</td>
<td>93,6</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>6,4</td>
<td>8</td>
</tr>
</tbody>
</table>

a nur Bestände mit Mast
4.3 Statistische Auswertung

4.3.1 Univariable logistische Regression

Alle kategorischen Variablen wurden mittels univariabler logistischer Regression auf eine mögliche Assoziation mit der Ausprägung der Zielvariablen „M. hyopneumoniae Nachweis bei mindestens einem Saugferkel" überprüft (siehe Anhang 2).

Die Verteilungen der Ausprägung stetiger Variablen wurden vor der logistischen Regression zunächst auf ihre Linearität geprüft (siehe Anhang 3). War diese nicht gegeben, wurden aus veterinärmedizinischer Sicht sinnvolle Klassen gebildet und folgend für die logistische Regression verwendet (siehe Anhang 4).

4.3.2 Multivariable logistische Regression

Für eine abschließende statistische Auswertung der Beziehung zwischen verschiedenen unabhängigen Variablen aus einzelnen inhaltlich zusammenhängenden Bereichen und der Zielvariablen „M. hyopneumoniae Nachweis bei mindestens einem Saugferkel" wurden multivariable logistische Regressionsanalysen durchgeführt. Dazu wurden zunächst Variablen anhand ihrer biologischen Relevanz für und ihrer eigenen Assoziation (p<0,2) mit der Zielvariablen selektiert. Zeigten zwei solcher Variablen eine Korrelation untereinander - Spearman-Koeffizienten >0,7 - wurde eine der Variablen aus dem Model ausgeschlossen (siehe Anhang 5). Außerdem wurde bei den kategorischen Variablen überprüft, ob einzelne Klassen schlecht besetzt sind. War dies der Fall, wurden benachbarte Klassen weiter zusammengefasst, um eine mangelhafte Konvergenz der Modelle und sehr große Konfidenzintervalle auszuschließen.

Insgesamt wurden acht Modelle verwendet, um die Assoziation zwischen verschiedenen Faktoren und der Zielvariablen zu überprüfen (Tabellen 9 – 16).
4.3.2.1 Allgemeine Herden- und Managementparameter

Die Untersuchung der allgemeinen Herden- und Managementparameter zeigte, dass das Risiko für einen Nachweis von *M. hyopneumoniae* bei Saugferkeln in Beständen die nicht im 1- oder 3-Wochen-Rhythmus produzieren, signifikant (OR 2,67) erhöht ist (Tabelle 9). Weder für die Gesamtzahl der Sauen im Bestand resp. die Herdengröße noch für den Produktionstyp ließ sich ein signifikanter Einfluss nachweisen (Tabelle 9).
Tabelle 9: Multivariables Regressionsmodell zur Untersuchung verschiedener allgemeiner Herden- und Managementparameter auf das Vorkommen von *M. hyopneumoniae* beim Saugferkel

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenzintervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>reine Ferkelerzeuger</td>
<td>ja</td>
<td>0,90</td>
<td>0,39-2,1</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herden mit 250-<500 Sauen</td>
<td>ja</td>
<td>1,88</td>
<td>0,81-4,33</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herden mit ≥ 500 Sauen</td>
<td>ja</td>
<td>1,61</td>
<td>0,40-6,59</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>andere Abferkelrhythmen als 1- oder 3-Wochen-Rhythmus</td>
<td>ja</td>
<td>2,67</td>
<td>1,24-5,73</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.2.2 Hygienemaßnahmen

Es ließ sich kein signifikanter Einfluss verschiedener Hygienemaßnahmen auf das Vorkommen resp. den Nachweis von *M. hyopneumoniae* bei Saugferkel feststellen (Tabelle 10).
Tabelle 10: Multivariables Regressionsmodell zu Untersuchung des Einflusses verschiedener Hygienemaßnahmen auf das Vorkommen von *M. hyopneumoniae* beim Saugferkel

<table>
<thead>
<tr>
<th>Hygienemaßnahmen</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenz-intervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>andere Abferkelrhythmen als 1- oder 3-Wochen-Rhythmus</td>
<td>ja</td>
<td>2,01</td>
<td>0,87-4,67</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>keine Belegung der Abferkelabteile im konsequenten Rein-Raus-Verfahren</td>
<td>ja</td>
<td>1,94</td>
<td>0,87-4,34</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leerstehzeit der Abferkelabteile ≥ 1 Tag und ≤ 3 Tage</td>
<td>ja</td>
<td>0,76</td>
<td>0,28-2,04</td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leerstehzeit der Abferkelabteile > 3 Tage</td>
<td>ja</td>
<td>0,46</td>
<td>0,14-1,47</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.2.3 Haltung der Saugferkel

Anhand der Untersuchung von Parametern zur Haltung der Saugferkel konnte gezeigt werden, dass eine signifikante Erhöhung des Risikos (OR: 3,31) für einen Nachweis von *M. hyopneumoniae* bei Saugferkeln bestand, wenn in den Beständen die maximale Anzahl der Abferkelplätze pro Abteil 16 und mehr betrug (Tabelle 11).

Tabelle 11: Multivariables Regressionsmodell zur Untersuchung des Einflusses der Haltung der Saugferkel auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenz-intervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximale Anzahl Abferkelplätze pro Abteil: 8-16</td>
<td>ja</td>
<td>1,81</td>
<td>0,74-4,42</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximale Anzahl Abferkelplätze pro Abteil: > 16</td>
<td>ja</td>
<td>3,31</td>
<td>1,69-9,37</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuluft im Abferkelabteil nicht ausschließlich Ganglüftung</td>
<td>ja</td>
<td>1,57</td>
<td>0,68-3,63</td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abluft im Abferkelabteil nicht ausschließlich Ganglüftung</td>
<td>ja</td>
<td>1,79</td>
<td>0,65-4,94</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.2.4 Routinemäßige Behandlungen der Saugferkel

Außerdem wurde der Einfluss metaphylaktischer Behandlungen und Impfungen der Saugferkel auf die Nachweishäufigkeit untersucht. Es konnten signifikant höhere Risiken für Bestände dargestellt werden, die eine Impfung der Saugferkel gegen *M. hyopneumoniae* mittels *one-shot* Vakzine (OR: 5,50), mittels *two-shot* Vakzine (OR: 4,69) oder gegen PRRSV (OR: 4,39) etabliert hatten (Tabelle 12).
Tabelle 12: Multivariables Regressionsmodell zur Untersuchung des Einflusses verschiedener Behandlungen der Saugferkel auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenz-intervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter der Ferkel beim Einziehen der Ohrmarken:</td>
<td>ja</td>
<td>2,50</td>
<td>0,56-11,27</td>
<td>0,23</td>
</tr>
<tr>
<td>> 3 und < 7 Tage</td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter der Ferkel beim Einziehen der Ohrmarken:</td>
<td>ja</td>
<td>3,74</td>
<td>0,68-16,23</td>
<td>0,08</td>
</tr>
<tr>
<td>> 7 Tage</td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impfung der Ferkel gegen M. hyopneumoniae mittels one-shot-Vakzine</td>
<td>ja</td>
<td>5,50</td>
<td>1,62-18,65</td>
<td>0,01</td>
</tr>
<tr>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impfung der Ferkel gegen M. hyopneumoniae mittels two-shot-Vakzine</td>
<td>ja</td>
<td>4,69</td>
<td>1,31-16,80</td>
<td>0,02</td>
</tr>
<tr>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impfung der Ferkel gegen PRRSV</td>
<td>ja</td>
<td>4,39</td>
<td>1,66-11,61</td>
<td><0,01</td>
</tr>
<tr>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zusätzlich wurde untersucht, ob ein Unterschied hinsichtlich des Nachweisrisikos von *M. hyopneumoniae* bei Saugferkeln zwischen Betrieben in Abhängigkeit von der Art des bei den Ferkeln eingesetzten Impfstoffs gegen *M. hyopneumoniae* (one- vs. two-shot-Vakzine) besteht (Tabelle 13).

Tabelle 13: Univariate Betrachtung zur Untersuchung des Einflusses von der Art des bei den Ferkeln eingesetzten Impfstoffes gegen *M. hyopneumoniae* (one- vs. two-shot-Vakzine) auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenzintervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impfung der Ferkel gegen M. hyopneumoniae mittels two-shot-Vakzine</td>
<td>ja</td>
<td>0,96</td>
<td>0,42-2,20</td>
<td>0,92</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.2.5 Haltung der Aufzuchtferkel

Die Haltung von Absetzferkeln hat keinen signifikanten Einfluss auf einen Nachweis von *M. hyopneumoniae* bei Saugferkeln (Tabelle 14).

Tabelle 14: Multivariables Regressionsmodell zur Untersuchung des Einflusses der Haltung von Aufzuchtferkeln auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln

<table>
<thead>
<tr>
<th>Haltung der Aufzuchtferkel</th>
<th>Variable</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenz-intervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>minimale Anzahl der Flatdeckplätze pro Abteil ≥ 70</td>
<td>ja</td>
<td>1,70</td>
<td>0,63-4,57</td>
<td>0,29</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maximale Anzahl der Flatdeckplätze pro Abteil ≥ 120</td>
<td>ja</td>
<td>1,55</td>
<td>0,62-3,83</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anzahl Flatdeckplätze gesamt ≥ 900</td>
<td>ja</td>
<td>1,74</td>
<td>0,76-3,98</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.2.6 Eingliederungsmanagement

Ein signifikant höheres Risiko (OR: 5,80) für einen Nachweis von *M. hyopneumoniae* bei Saugferkeln hatten Bestände, die pro Jahr 120 und mehr Jungsauen zukauften (Tabelle 15).

Tabelle 15: Multivariables Regressionsmodell zur Untersuchung des Einflusses verschiedener Managementfaktoren bei der Jungsaueeingliederung auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln

<table>
<thead>
<tr>
<th>Eingliederungsmanagement</th>
<th>Variable</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenzintervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 - 7 Jungsauenzukauf pro Jahr</td>
<td>ja</td>
<td>1,40</td>
<td>0,49-3,99</td>
<td>0,53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 8 Jungsauenzukauf pro Jahr</td>
<td>ja</td>
<td>4,28</td>
<td>0,75-24,45</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamtzahl zugekaufter Jungsaue pro Jahr 80 - 119</td>
<td>ja</td>
<td>1,09</td>
<td>0,38-3,14</td>
<td>0,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamtzahl zugekaufter Jungsaue pro Jahr ≥ 120</td>
<td>ja</td>
<td>5,80</td>
<td>1,68-20,03</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alter der Jungsaue beim Zukauf</td>
<td>ja</td>
<td>1,00</td>
<td>0,99</td>
<td>1,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.2.7 Behandlungen der Remonten

Tabelle 16: Multivariables Regressionsmodell zur Untersuchung des Einflusses der Behandlungen von Remonten auf das Vorkommen von \textit{M. hyopneumoniae} bei Saugferkeln

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Odds Ratio</th>
<th>Kontingenzintervall</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impfung der Jungsauen gegen PCV2</td>
<td>ja</td>
<td>3,55</td>
<td>1,31-9,63</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impfung der Jungeber gegen \textit{M. hyopneumoniae}</td>
<td>ja</td>
<td>1,71</td>
<td>0,48-6,13</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impfung der Jungeber gegen PCV2</td>
<td>ja</td>
<td>2,38</td>
<td>0,62-9,06</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>nein</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Diskussion

Die vorliegende Untersuchung wurde mit dem Ziel durchgeführt, die Nachweishäufigkeit resp. Prävalenz von *M. hyopneumoniae* bei Saugferkeln kurz vor dem Zeitpunkt des Absetzens zu bestimmen. Die Schweinebestände für diese

Insgesamt wurden Nasentupfer von 2500 Saugferkel auf *M. hyopneumoniae* untersucht. Die Ferkel stammten aus 125 Herden, deren Charakteristika mit Hilfe des Fragebogens erfasst und anschließend epidemiologisch bewertet werden konnten. Da, neben regionalen Unterschieden hinsichtlich des Infekionsstatus, auch saisonale Einflüsse auf die Infektion mit *M. hyopneumoniae* beschrieben sind, wurde

5.1 Nachweis von *M. hyopneumoniae* mittels PCR

Nachweis bei Saugferkeln
Tabelle 17: Nachweis (n-PCR) von *M. hyopneumoniae* aus Nasentupfern von Saug- und Absetzferkeln

<table>
<thead>
<tr>
<th>Autor</th>
<th>Herden (n)</th>
<th>Tiere (n)</th>
<th>Tieralter; Nachweis von M. hyopneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIBILA et al. (2007a)</td>
<td>1</td>
<td>507</td>
<td>1. LW: 1,5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. LW: 3,8%</td>
</tr>
<tr>
<td>SIBILA et al. (2007b)</td>
<td>1</td>
<td>(542) 501</td>
<td>(1. LW: 1,5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.LW: 3,8%</td>
</tr>
<tr>
<td>FANO et al. (2006)</td>
<td>1</td>
<td>429</td>
<td>3. LW: 25%</td>
</tr>
<tr>
<td>CALSAMIGLIA u. PIJOAN (2000)</td>
<td>1</td>
<td>125 (130)</td>
<td>3. LW: 9,6 (7,7) %</td>
</tr>
<tr>
<td>RUIZ et al. (2003)</td>
<td>1</td>
<td>152 (144)</td>
<td>3.LW: 2,6/13,2 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.LW: 1,4/5,5 %)</td>
</tr>
<tr>
<td>VILLARREAL et al. (2010)</td>
<td>1</td>
<td>72</td>
<td>3.LW: 0 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.LW: 31/58 %</td>
</tr>
</tbody>
</table>

In den oben genannten Studien wurden die Untersuchungen ausschließlich in jeweils einer Herde durchgeführt, die sich zudem durch bereits bekannte Krankheitsprobleme mit *M. hyopneumoniae* auszeichneten. Umso erstaunlicher ist, dass die Nachweishäufigkeiten für *M. hyopneumoniae* überwiegend weniger als 10 % betrugen; nur in einer Studie (FANO et al. 2006) konnte bei bis zu drei Wochen alten Ferkeln deutlich häufiger *M. hyopneumoniae* nachgewiesen werden. Im Gegensatz zu diesen Arbeiten an einzelnen Herden wurden in der vorliegenden Studie 125 Bestände unabhängig ihrer Historie bzgl. *M. hyopneumoniae* untersucht. Durch die Selektion der Bestände - in diesem Fall Mitglieder eines Beratungsrings resp. einer Ringgemeinschaft der Region - wurde das Ziel verfolgt, möglichst viele Herden aus einem bestimmten Gebiet in die Untersuchung einzubeziehen, ohne jedoch bei der Auswahl einen selection bias, wie bspw. bereits diagnostizierte oder klinisch apparente Atemwegserkrankungen bei Saug- und/oder Absetzferkeln,

Nachweis bei Tierhaltern

Trotzdem sollten die hier beschriebenen Ergebnisse Beachtung finden, weil (a) damit zum ersten Mal der Nachweis spezifischer Genomfragmente in einem Untersuchungsmaterial vom Menschen beschrieben wird, und (b) der positive Nachweis erregerspezifischer DNA beim Tierhalter u.U. ebenfalls mit Risikofaktoren assoziiert sein oder selbst einen Risikofaktor für den Bestand darstellt kann. Beides bedarf jedoch weiterer Untersuchungen.

5.2 Risikofaktorenanalyse

Anhand der statistischen Analyse, bei der die Ergebnisse der Laboruntersuchungen mit den epidemiologischen Daten verknüpft wurden, konnte geprüft werden, welche Haltungsbedingungen und Managementmaßnahmen als Risiko für die Übertragung von *M. hyopneumoniae* von der Sau auf die Ferkel eine besondere Bedeutung haben.

Das Risiko für einen Nachweis von *M. hyopneumoniae* bei Saugferkeln stellte sich als signifikant erhöht für solche Bestände dar, die

- nicht im 1- oder 3-Wochen-Rhythmus produzieren (OR 2,67)
- mehr als 16 Abferkelplätze pro Abteil besitzen (OR 3,31)
- 120 und mehr Jungsauen pro Jahr zukaufen (OR 5,8)
- ihre Ferkel mit einer one-shot Vakzine (OR 5,5) oder einer two-shot Vakzine (OR 4,69) gegen *M. hyopneumoniae* impfen
- ihre Ferkel gegen PRRSV impfen (OR 4,39)
- ihre Jungsauen gegen PCV2 impfen (OR 3,55)

Bei der Interpretation dieser Ergebnisse muss zunächst bedacht werden, dass bei einer Untersuchung an 125 Beständen ausschließlich die Risikofaktoren bestätigt werden können, die einen starken Einfluss haben. Für die Bestätigung von Risikofaktoren, die nur einen geringen Einfluss nehmen, hätten deutlich mehr Herden untersucht werden müssen. Des Weiteren konnten nur Risikofaktoren erkannt werden, die in den untersuchten Beständen mit unterschiedlicher Häufigkeit vorkommen. So gaben beispielsweise bis auf einen, alle befragten Tierhalter an, eine
konsequente Reinigung der Abferkelabteile zwischen den Belegungen mit Tieren durchzuführen. Dieser Risikofaktor kann nicht weiter untersucht werden, da die Gruppe derer, die keine konsequente Reinigung durchführen, zu schwach besetzt ist. Dies bedeutet aber nicht, dass eine fehlende Reinigung kein Risiko darstellt, sondern lediglich dass dieses Risiko anhand der vorliegenden Studie nicht geklärt werden kann. Die Tatsache, dass sich für viele Punkte des umfangreichen Fragebogens keine Signifikanzen ergaben, heißt also nicht automatisch, dass die betreffenden Faktoren keinen Einfluss auf das Risiko einer Infektion der Ferkel haben. Umgekehrt ist jedoch der Einfluss der oben genannten Faktoren sehr sicher.

Produktionsrhythmus

Abferkelabteile

Abferkelabteile mit mehr als 16 Abferkelplätzen sind als Risikofaktor anzusehen, da in diesen Abteilen über den gemeinsamen Luftraum mehr Tiere einen indirekten Kontakt zueinander haben als in kleineren Abteilen. In Herden, die akute Krankheitssymptome zeigten, wurde aus 80 % der untersuchten Luftfilter
M. hyopneumoniae über eine nested-PCR aus nachgewiesen (STÄRK et al. 1998). So kann z.B. eine Jungsauf, die den Erreger noch vermehrt ausscheidet (CALSAMIGLIA und PIJOAN 2000), diesen in einem großen Abteil auf mehr Tiere übertragen als in einem kleineren. Unter diesen Bedingungen können insbesondere zwei Faktoren zu einem erhöhten Risiko für eine M. hyopneumoniae Infektion bei den Saugferkeln führen:

- Defizite bei der Eingliederung von Jungsaufen, die sich erst im Deckzentrum oder Wartestall infizieren und den Erreger durch die lange Ausscheidungsduer auf ihre Ferkel übertragen;
- Unterbrechung des Rein-Raus-Verfahrens durch Umrauscher wie oben beschrieben.

Jungsauenmanagement

Ein erhöhtes Risiko für den Nachweis von M. hyopneumoniae bei Saugferkeln in Beständen, in denen 120 und mehr Jungsaufen pro Jahr zugekauft werden, lässt sich

Impfung der Ferkel gegen M. hyopneumoniae und PRRSV
Auf den ersten Blick sehr irritierend wirkt die Feststellung, dass für Bestände, die ihre Ferkel mit einer one-shot Vakzine (OR 5,5) bzw. mit einer two-shot Vakzine (OR 4,7)

Impfung der Jungsauen gegen PCV2

5.3 Schlussfolgerungen

Aus den vorliegenden Ergebnissen die adäquaten Schlussfolgerungen für die Praxis zu ziehen, gestaltet sich nicht ganz einfach. Es kann weder die Empfehlung ausgesprochen werden, den Abferkelrhythmus umzustellen, die Abteile zu verkleinern und den Zukauf von Jungsauen auf 120 Tiere pro Jahr zu beschränken, noch kann das Fazit lauten, dass die Impfung von Ferkeln gegen *M. hyopneumoniae* und PRRSV sowie die Impfung der Jungsauen gegen PCV2 einzustellen ist, um das Risiko der Saugferkelinfektion mit *M. hyopneumoniae* zu senken. Um diese Risikofaktoren und ihren Hintergrund richtig zu interpretieren, muss etwas mehr in die Tiefe geschaut werden.

Die mit der vorliegenden Arbeit erzielten Erkenntnisse können dazu beitragen, zukünftig die Bekämpfungsmaßnahmen gegen *M. hyopneumoniae*-Infektionen in Schweinebeständen weiter zu optimieren. Außerdem kann das Wissen um die in Nordwest-Deutschland besonders relevanten Risikofaktoren für vertikale Infektionen in den Fällen genutzt werden, in denen ein Ausstieg aus der Impfung gegen *M. hyopneumoniae* zur Diskussion steht. Auch Herden, in denen trotz Impfung Probleme mit *M. hyopneumoniae* anhaltend bestehen, können diese Erkenntnisse für sich nutzen.

In Herden, in denen trotz Impfung immer wieder *M. hyopneumoniae* bedingte Atemwegserkrankungen auftreten und Probleme bereiten und in denen auch durch eine Anpassung des Impfschemas keine Besserung erzielt werden konnte, ist ein hoher Erregerdruck anzunehmen und als Auslöser sehr wahrscheinlich. Der Erregerdruck kann ausschließlich durch die Bekämpfung der Infektion gesenkt werden. Neben den allgemein gültigen Maßnahmen der Betriebshygiene und einer zeitlich begrenzten antibiotischen Behandlung sollten auch die folgenden Maßnahmen berücksichtigt werden, um die Infektionskette so früh wie möglich zu unterbrechen. So sollten
bei Produktion im 2- oder 4-Wochenrhythmus separate Abferkelabteil für die Sauen vorgehalten werden, die nach dem Umrauschen in keine reguläre Gruppe mehr passen

während der Eingliederung im Hinblick auf *M. hyopneumoniae* immer auch direkter Nase-zu-Nase-Kontakt zu Schlachtsauen, besser noch zu Läufern bestehen

für eine möglichst frühzeitige Infektion der Jungsaufen und Impfung bei Eingliederung in die infizierte Herde gesorgt sein

über die Möglichkeit der Einstellung *M. hyopneumoniae*-freier Jungsaufen bzw. Eigenremontierung nachgedacht werden

eine Möglichkeit geschaffen werden, ein optimiertes Rein-Raus-Verfahren durchzuführen.

Für Bestände, die Ferkel für den Markt produzieren und keine festen Lieferbeziehungen zu Ferkelaufzüchtern oder Mästern unterhalten sowie keine Reklamationen aufgrund von Atemwegserkrankungen haben, ist eine gezielte Bekämpfung der *M. hyopneumoniae*-Infektion wenig interessant, im Gegensatz zu geschlossenen Beständen oder Beständen, die über eine kontinuierliche 1:1 Lieferbeziehung Einblicke in die Bedingungen während der Mast haben und für die ein Ausstieg aus der Impfung gegen *M. hyopneumoniae* eine mögliche Option bietet. Eine individuell auf den Bestand abgestimmte Risikoeinschätzung, in der neben den bereits bekannten Risikofaktoren auch die Ergebnisse dieser Studie Berücksichtigung finden sollten, kann bei der Frage, ob ein Bestand langfristig ohne Impfung gegen *M. hyopneumoniae* auskommen kann, weiterhelfen.

Grundsätzlich ist dabei zu bedenken, dass die Wahrscheinlichkeit einer persistierenden Infektion auch nach jahrelanger Impfung gegen *M. hyopneumoniae* immer noch sehr hoch ist, da eine Impfung nicht in der Lage ist, den Erreger aus dem Bestand zu eliminieren (HAEBROUK et al. 2004). Ob es nach dem Einstellen der Impfung zu einem so starken Anstieg der Erregermenge kommt, dass die Tiere nachfolgend erkranken, oder ob der Erregerdruck so gering gehalten werden kann, dass weder klinische Symptome noch Organveränderungen entstehen, ist von
verschiedenen Faktoren abhängig. Grundsätzlich sollte zuerst überlegt werden, was der ursprüngliche Grund für die Einführung der Impfung gegen *M. hyopneumoniae* war. Die *M. hyopneumoniae*-bedingte Atemwegserkrankung ist eine sogenannte Faktorenkrankheit (STÄRK 1998; MAES et al. 2000), die stark durch die Haltung der Tiere beeinflusst wird. Sollten sich die Haltungsbedingungen, z. B. durch Umbau, Neustrukturierung, Managementanpassung, Optimierung der Jungsaueneingliederung oder Infektionsstatus der Jungsauenerkunft etc., im Vergleich zu dem Zeitpunkt, zu dem die Impfung eingeführt wurde, nicht grundlegend verändert haben, ist es nicht ratsam die Impfung gegen *M. hyopneumoniae* auszusetzen. Wenn sich allerdings Management- und Haltungsbedingungen soweit verbessert haben, dass sich aller Wahrscheinlichkeit nach kein hoher Erregerdruck aufbaut, kann die Empfehlung anders lauten. Ein Ausstieg aus der Impfung kann dann möglich sein.

Trotz aller Vorsicht kann sich solch eine Risikoeinschätzung auch als falsch erweisen. Aus diesem Grund sollte der Bestand während der ersten ein bis anderthalb Jahre nach dem Einstellen der Impfung besonders intensiv beobachtet werden. Im Fall von auftretenden Atemwegserkrankungen ist es notwendig eine Beteiligung von *M. hyopneumoniae* umgehend abzuklären.

Anders als bei der Einstellung von Impfungen gegen Viruserkrankungen kann die Infektion mit *M. hyopneumoniae* in der Zeit, die bis zum Eintritt der Impfwirkung vergeht, effektiv mittels Antibiotika behandelt werden. Das Risiko durch das Einstellen der Impfung bleibt damit im Großen und Ganzen beherrschbar.

Abschließend muss noch erwähnt werden, dass insbesondere im Hinblick auf die Beeinflussung der PCV2-Infektion durch *M. hyopneumoniae* (OPRIESSNIG et al. 2004), die Bekämpfung anderer Erreger von Atemwegsinfektionen bei der Bekämpfung von *M. hyopneumoniae* nicht außer acht gelassen werden darf, bzw. eine Impfung gegen *M. hyopneumoniae* zur Kontrolle anderer Erkrankungen des Atemtraktes beitragen kann.
6. Zusammenfassung

Henrike Wöste

„Feldstudie zum Einfluss herdenspezifischer Risikofaktoren für die Infektion mit Mycoplasma hyopneumoniae bei Saugferkeln in Norddeutschland“

Das Ziel der vorliegenden Arbeit war, zunächst die Prävalenz von M. hyopneumoniae bei Saugferkeln kurz vor dem Zeitpunkt des Absetzens festzustellen. Im Anschluss wurden herdenspezifische Risikofaktoren analysiert, die eine Übertragung des Erregers auf die Saugferkel begünstigen.

M. hyopneumoniae wurde bei 3,9 % (98/2500) aller Saugferkel nachgewiesen. Der Anteil der Herden, in denen *M. hyopneumoniae* bei mindestens einem Ferkel kurz vor dem Absetzen nachzuweisen war, betrug 36,8 % (46/125). Daneben wurde bei 14,8 % (16/108) der Tierhalter, die freiwillig an einer Probenentnahme mittels Abstrich von ihrer eigenen Nasenschleimhaut an dieser Untersuchung teilnahmen, *M. hyopneumoniae* nachgewiesen.

Daten, die das Management und die Haltung der Schweine in den Beständen beschreiben, wurden sowohl in univariablen als auch in multivariablen Regressionsanalysen betrachtet, um einzelne Faktoren mit einer möglichen Assoziation zur Zielvariable (Nachweis von *M. hyopneumoniae* bei mindestens einem Saugferkeln im Bestand) zu identifizieren und ihren Einfluss zu quantifizieren. Ein erhöhtes Risiko für das Vorkommen von *M. hyopneumoniae* bei Saugferkeln konnte in multivariablen Modellen für Bestände nachgewiesen werden, in denen die Gruppenabferkelung nicht im 1- oder 3-wöchigen Rhythmus stattfinden. Außerdem war in solchen Herden das Risiko erhöht, in denen Abferkelabteile mit mehr als 15 Abferkelplätzen vorkamen, oder mehr als 120 Jungsauen pro Jahr zugekauft wurden.

Die Ergebnisse dieser Arbeit stimmen mit Studien aus anderen Ländern überein, nach denen die Prävalenz von *M. hyopneumoniae* bei Saugferkeln kurz vor dem Zeitpunkt des Absetzens eher gering ist. Außerdem konnten frühere Hypothesen zur Erregerübertragungen innerhalb von Herden bestätigt werden, die eine konsequente Trennung unterschiedlicher Produktions- und Altersgruppen sowie eine adäquate Eingliederung von Jungsauen als maßgebliche Risikofaktoren vermuten ließen. In
7. Summary

Henrike Wöste

„Field study investigating the herd specific risk factors for Mycoplasma hyopneumoniae infections in suckling pigs in the region of Northern Germany“

Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia, a disease which is considered to be endemic in regions with intensive pig production. It causes considerable economic losses due to reduced growth rate, a lower feed-conversion ratio and increased antibiotic treatment.

Deficits in herd management and housing are deemed to be the major risk factors for enzootic pneumonia. In most herds, the bacterium is transmitted from the sow to her offspring or between the weaners and fattening pigs. The transmission of the agent from the sow to the piglet is not regarded as the primary route, but as it marks the beginning of the distribution within the herd, it must be seen as an important one. While vaccination may reduce the effects of an outbreak of the disease, it cannot prevent the infection of the pigs with Mycoplasma hyopneumoniae; thus supplementary measures aimed at reducing the transmission must be implemented.

Risk factors that enhance the transmission of the agent from the sow to the piglet have not often been investigated; even though it is hoped, that by their reduction the dispersal of infection will be stopped at the very beginning. The aim of the present work was to assess the initial prevalence of M. hyopneumoniae in suckling pigs on the verge of weaning. Subsequent herd specific risk factors were analyzed, which increase the risk of transmission of the agent to the sucking pigs.

In all 125 piglet-producing or farrow-to-finish farms were included in the survey. The farms were investigated by means of a questionnaire and sampling the suckling piglets for Mycoplasma hyopneumoniae. Nasal swabs were taken on each farm from 20 suckling piglets out of 10 litters and were analyzed via real-time PCR concerning the occurrence of specific genomic fragments of M. hyopneumoniae. Mycoplasma
hyopneumoniae was found in an average of 3.9% (98/2500) in the piglets. In 36.8% (46/125) of the herds at least one piglet tested positive for *Mycoplasma hyopneumoniae*. 14.8% (16/108) of the livestock owners, who took part in an optional sampling via swab of their own nasal mucosa, were tested positive for *M. hyopneumoniae*. Data that characterize management and housing of the pigs were analyzed via univariate and multivariate logistic regressional models in order to find a possible association with the target variable (i.e. the possibility of suckling piglets testing positive for *M. hyopneumoniae*). An increased risk of infection was associated with groups farrowing in a rhythm other than 1 or 3 weeks, for compartments with more than 15 farrowing pens and for herds buying more than 120 gilts per year. The findings of this study agree with research from other countries, which state that there is a low prevalence of *M. hyopneumoniae* in suckling pigs on the verge of weaning. Besides this, further hypotheses regarding the transmission within the herds showed that a consequent separation of different production groups and of age groups as well as a suitable integration of gilts are important protective measures. The present study shows for the first time that herd-specific factors have a significant influence over the occurrence of *M. hyopneumoniae* in suckling pigs. Compliance with the above-named factors should lead to a reduction of the vertical transmission of *M. hyopneumoniae* and should therefore reduce the dispersion of the agent within the herd.
8. Literaturverzeichnis

ANONYM (2004):
Leitlinien und Empfehlungen zur Sicherung von „Guter Epidemiologischer Praxis“ (GEP)
http://www.gesundheitsforschung-bmbf.de/_media/Empfehlungen_GEP.pdf
Abrufdatum: 10.10.2010

ANONYM (2010):
Statistisches Bundesamt.
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Presse/pm/2011/07/PD11_248_413.psml
Abrufdatum: 15.12.2010

Swine disease transmission and prevention.
in: STRAW, B. E., S. D’ALLAIRE, W. L. MENGELING u. D. J. TAYLOR (Hrsg.):
Diseases of Swine.
S. 1075 - 1098

ATTESLANDER, P. (2003):
Methoden der empirischen Sozialforschung.
10. Auflage, Verlag deGruyter, Berlin

Increased levels of tumor necrosis factor and interleukin 1 in bronchoalveolar lavage
fluids from pigs infected with Mycoplasma hyopneumoniae.
Veterinary immunology and immunopathology 38, 253-260
Detection of interleukin-6 and prostaglandin E2 in bronchoalveolar lavage fluids of pigs experimentally infected with *Mycoplasma hypopneumoniae*.
Veterinary immunology and immunopathology 44, 97-102

Comparative efficacy of two single-dose bacterins in the control of *Mycoplasma hyopneumoniae* in swine raised under commercial conditions in Brazil.
Vet. J. 172, 526-531

Maternal influences on piglet immune response to vaccination.
Americ. Assoc. Swine Prac., S. 47 – 48

BARGEN, L. E. (2004):
A system response to an outbreak of enzootic pneumonia in grow/finish pigs.

Assessment of transmission of *Mycoplasma hyopneumoniae* by personnel.
J. Swine Health Prod. 12, 75 – 77

Impfung – eine neue Methode der Bekämpfung der Enzootischen Pneumonie des Schweines.
Prakt. Tierarzt 14, 668 – 682
P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells. Mol. Microbiol. 60, 669-686

CALSAMIGLIA, M. u. C. PIJOAN (1998):
PCR based diagnostics for profiling *Mycoplasma hyopneumoniae* shedding.
in: 1998 Allen D. Leman Swine Conference, Poc., S. 54 - 56

CALSAMIGLIA, M., C. PIJOAN u. A. TRIGO (1999):
Application of a nested polymerase chain reaction assay to detect *Mycoplasma hyopneumoniae* from nasal swabs.
Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 11, 246-251

CALSAMIGLIA, M. u. C. PIJOAN (2000):
Colonisation state and colostral immunity to *Mycoplasma hyopneumoniae* of different parity sows.
Vet. rec. 146, 530-532

CAMERON, A., E. SERGEANT u. C. BALDOCK (2004):
Data management for animal health.
The AusVet Series in Epidemiological Skills for Animals Health Professionals, Brisbane

Effects of *Mycoplasma hyopneumoniae* and Actinobacillus (Haemophilus) pleuropneumoniae infections on alveolar macrophage functions in swine.
Am. j. Vet. res. 51, 227-231
Identification of a novel adhesin-like glycoprotein from Mycoplasma hyopneumoniae.
Vet. Microbiol. 62, 97-110

The effect of all-in/all-out management on pigs from a herd with enzootic pneumonia.

DEE, S. (1997):
Porcine respiratory disease complex: "The 18 week wall".
In: Ann Meeting American Assoc Swine Pract, Quebec City
S. 465-466.

DESROSIERS, R. (2001):
A review of some aspects of the epidemiology, diagnosis and control of Mycoplasma
hyopneumoniae infections.
J. Swine Health Prod. 9, 233 – 237

in: Veterinary Epidemiologic Research, Charlottetown,
PE, Canada: Atlantic Veterinary College

Enzootic pneumonia (Mycoplasmosis) revisted.
Pig J. 38, 40 - 61

Porcine respiratory disease complex (PRDC).
Pig J. 50, 174 – 196
DONHAM, K. J. (1991):
Association of environmental air contaminants with disease and productivity in swine.
Am. j. Vet res. 52, 1723-1730

Development of two real-time PCR assays for the detection of Mycoplasma hyopneumoniae in clinical samples.
Vet. Microbiol. 102, 55-65

ERLANDSON, K., B. THACKER, E. BUSH u. E. THACKER (2002):
Mycoplasma hyopneumoniae seroprevalence and control strategies on farms participating in the National Animal Health Monitoring System (NAHMS).

Estimation of the sensitivity of four sampling methods for Mycoplasma hyopneumoniae detection in live pigs using a Bayesian approach.
Vet. Microbiol. 143, 238-245

An abattoir survey of pneumonia and pleuritis in slaughter weight swine from 9 selected herds. II. Enzootic pneumonia of pigs: microbiological findings and their relationship to pathomorphology.
Acta vet. Scand. 32, 67-77

FANO, E., C. PIJOAN u. S. DEE (2005):
Dynamics and persistence of Mycoplasma hyopneumoniae infection in pigs.
Canadian journal of veterinary research = Revue canadienne de recherche veterinaire 69, 223-228
Assessment of the effect of sow parity on the prevalence of *Mycoplasma hyopneumoniae* in piglets at weaning.

Effect of *Mycoplasma hyopneumoniae* colonization at weaning on disease severity in growing pigs.
Canadian journal of veterinary research = Revue canadienne de recherche veterinaire **71**, 195-200

GIANI, E. (2005):
A multiplex real-time PCR for the detection of *Mycoplasma hyopneumoniae*.
Dissertation der Vetsuisse Bern

Apparent reinfection of enzootic-pneumonia-free pig herds: search for possible causes.
Vet. rec. **116**, 690-694

HAESEBROUCK, F., PASMANS, F., CHIERS, K., MAES, D., DUCATELLE, R., DECOSTERE, A., 2004:
Efficacy of vaccines against bacterial diseases in swine: what can we expect?

Detection of *Mycoplasma hyopneumoniae* DNA by the polymerase chain reaction.
Molecular and cellular probes **5**, 103-109
The role of immunostimulation in the development of postweaning multisystemic
wasting syndrome in pigs under field conditions.
Canadian journal of veterinary research = Revue canadienne de recherche
veterinaire 70, 269-276

HEINONEN, M., T. AUTIO, H. SALONIEMI u. V. TUOVINEN (1999):
Eradication of *Mycoplasma hyopneumoniae* from infected swine herds joining the
LSO 2000 health class.

Gilt pool management – acclimatization and verification.

HILTERMANN-LINDEN, E. (2004):
Vergleich von Methoden zum Nachweis von *Mycoplasma hyopneumoniae-
Infektionen beim Schwein sowie epidemiologische Untersuchungen über die
Verbreitung der enzootischen Pneumonie im Weser-Ems Gebiet im Jahre 1996.

Der Fragebogen – Die Stichprobe
in: Holm, K. (Hrsg.), Die Befragung Bd.1, UTB Francke

A meta-analysis comparing the effect of vaccines against Mycoplasma
hyopneumoniae on daily weight gain in pigs.
Preventive veterinary medicine 54, 265-278
Der Fragebogen – Datenbasis, Konstruktion und Auswertung
4., überarbeitete Auflage, VS Verlag

KIRSCHOFER-BODENHARD, KAPLIKA (1986):
Der Fragebogen
in: Holm, K. (Hrsg.), Die Befragung Bd.1, UTB Francke

KOBISCH, M., B. BLANCHARD u. M. F. LE POTIER (1993):
Mycoplasma hyopneumoniae infection in pigs: duration of the disease and resistance
to reinfection.
Vet. res. 24, 67-77

Evaluation of *Mycoplasma hyopneumoniae* vaccine in pigs experimentally infected
with *Mycoplasma hyopneumoniae* and *Pasteurella multocida*.

GROSSE BEILAGE, E., u. A. SCHREIBER (2005):
Impfung von Sauen gegen *Mycoplasma hyopneumoniae* mit Hyoresp®.
Dtsch. Tierärztl. Wschr. 112, 241-280

KOBISCH, M. u. N. F. FRIIS (1996):
Swine mycoplasmoses.
Rev Sci Tech 15, 1569-1605

KOBISCH, M. (2000):
Mycoplasma diseases in pigs ± old diseases still causing trouble.
S. 434 – 438
Use of a *Mycoplasma hyopneumoniae* nested polymerase chain reaction test to
determine optimal sampling sites in swine.

Seroepidemiology of *Mycoplasma hyopneumoniae* in pigs from farrow-to-finish
farms.
Vet. Microbial. 78, 331-341

LE POTIER, M. F., P. ABIVEN, M. KOBISCH, D. CREVAT u. P. DESMETTRE
(1994):
A blocking ELISA using a monoclonal antibody for the serological detection of
Mycoplasma hyopneumoniae.

Production of arthritis by intravenous inoculation of *Mycoplasma hyopneumoniae*
tests on five strains.

Enzootic pneumonia in pigs.
Vet Q 18, 104-109

MAES, D., H. DELUYKER, M. VERDONCK, F. CASTRYCK, C. MIRY, B. VRIJENS
u. A. DE KRUIF (2000):
Herd factors associated with the seroprevalences of four major respiratory pathogens
in slaughter pigs from farrow-to-finish pig herds.
Vet. res. 31, 313-327
Control of Mycoplasma hyopneumoniae infections in pigs.
Vet. Microbiol. 126, 297-309

Interactions of Mycoplasma hyopneumoniae membranes with porcine lymphocytes.
Am. j. vet. res. 52, 1497-1502

Quantification of the spread of Mycoplasma hyopneumoniae in nursery pigs using transmission experiments.
Prev. vet. med. 66, 265-275

Comparison of transmission of Mycoplasma hyopneumoniae in vaccinated and non-vaccinated populations.
Vaccine 24, 7081-7086

Persistance of passively acquired antibodies to Mycoplasma hyopneumoniae in a swine herd.
Prev. Vet. Med. 21, 29-41
Seroepidemiologic study of natural transmission of *Mycoplasma hyopneumoniae* in a swine herd.

MORRIS, P. J., M. D. MORRIS u. S. E. SANFORD (2001):
Comparison of performance parameters of pigs vaccinated with Ingelvac® M.hyo 1-dose bacterin vs Respisure® Mycoplasma hyopneumoniae bacterin.

Detection of respiratory pathogens in porcine lung tissue and lavage fluid.
Vet J 175, 273-275

Microorganisms associated with pneumonia in slaughter weight swine.
Canadian journal of comparative medicine. Revue canadienne de medecine comparee 49, 129-137

Influence of *Mycoplasma hyopneumoniae* strain variation, environmental factors and co-infections on Enzootic Pneumonia in pigs.
PhD Thesis, University of Veterinary Medicine Hannover,
Field Station for Epidemiology, Bakum

Diagnostik und Bekämpfung der Enzootischen Pneumonie beim Schwein.
Tierärztl. Prax. 37(G), 134 – 141
Questionnaires for Field Surveys: Design and Conduct.
Verlag Wageningen Pers, Wageningen, 425 - 440

Effect of vaccination with selective bacterins on conventional pigs infected with type 2 porcine circovirus.
Vet. Pathol. 40, 521-529

Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine Circovirus Type 2.
Vet. Pathol. 41, 624 – 640

Effect of age on susceptibility of pigs to Mycoplasma hyopneumoniae pneumonia.
Am. j. vet. res. 45, 478-481

PRÜFER, P. und A. STIEGLER
Die Durchführung des standardisierten Interviews: Ein Leitfaden
Zentrum für Umfragen, Methoden und Analysen, Mannheim
Abrufdatum: 13.12.2010
RAUTIAINEN, E., u. P. WALLGREN (2001):
Aspects of the transmission of protection against *Mycoplasma hyopneumoniae* from sow to offspring.

Mycoplasmal Diseases.
in: STRAW, B. E., S’ALLAIRE, W. L. MENGELING u. D. J. TAYLOR (Hrsg.):
Diseases of Swine.
7th Edition Iowa State University Press, Ames,
S. 537 – 551

ROSS, R. F. (1999):
Mycoplasmal Diseases.
in: STRAW, B. E., S’ALLAIRE, W. L. MENGELING u. D. J. TAYLOR (Hrsg.):
Diseases of Swine.
8th Edition Iowa State University Press, Ames,
S. 495 – 509

The nature and detection of mycoplasmal immunogens.
Vet. Microbiol. 37, 369-380

Effect of different vaccination protocols in *Mycoplasma hyopneumoniae* infection.
Effect of *Mycoplasma hyopneumoniae* sow vaccination on piglet colonization at weaning.
J. Swine Health Prod. **11**, 131 – 135

Mycoplasma hyopneumoniae p65 surface lipoprotein is a lipolytic enzyme with a preference for shorter-chain fatty acids.
Journal of bacteriology **186**, 5790-5798

Methoden der empirischen Sozialforschung
6. Aufl., München, Wien

Integrative Sozialforschung: Konzepte und Methoden der qualitativen und quantitativen empirischen Forschung.
Juventa Verlag Weinheim und München

SELBITZ, H. J. (1992)
Mollicutes – Mycoplasmatales, Acholeplasmatales.
In: SELBITZ, H. J. (Hrsg.): Lehrbuch der veterinärmedizinischen Bakteriologie, Gustav Fischer Verlag, Jena, S. 238 - 250

Monitoring of infectious diseases among wild boars.
Voprosov virusologii **52**, 29-33

Chronological study of Mycoplasma hyopneumoniae infection, seroconversion and associated lung lesions in vaccinated and non-vaccinated pigs.
Vet. Microbiol. 122, 97-107

Evidence of Mycoplasma hyopneumoniae infection in wild boars in Spain.
Proc. 20th Int. Pig Vet. Soc. Congress, Durban
S. 203

Mycoplasma hyopneumoniae infection in pigs: duration of the disease and evaluation of four diagnostic assays.
Vet. Microbiol. 54, 23-34

The diversity of Mycoplasma hyopneumoniae within and between herds using pulsed-field gel electrophoresis.
Vet. Microbiol. 109, 29-36

STANG, A. (2008):
Appropriate epidemiologic methods as a prerequisite for valid study results.
European journal of epidemiology 23, 761-765
Risk factors for the reinfection of specific pathogen-free pig breeding herds with
enzootic pneumonia.
Vet. rec. 131, 532-535

Detection of Mycoplasma hyopneumoniae by air sampling with a nested PCR assay.
Applied and environmental microbiology 64, 543-548

The role of infectious aerosols in disease transmission in pigs.

STÄRK, K. D. (2000):
Epidemiological investigation of the influence of environmental risk factors on
respiratory diseases in swine--a literature review.
Vet. J. 159, 37-56

Bacterial pneumonia in swine.

STRAIT, E. (2009)
The perfekt test for Mycoplasma.
S. 427 – 429

Mycoplasma hyopneumoniae infection in pigs immunosuppressed by thymectomy
and treatment with antithymocyte serum.
Am. j.vet. res. 45, 1928-1932
Comparison of antibody production, lymphocyte stimulation and protection induced
by four commercial Mycoplasma hyopneumoniae bacterins.
Swine Health Prod. 6, 107 - 112

THACKER, E. L., P. G. HALBUR, R. F. ROSS, R. THANAWONGNUWECH u. B. J.
THACKER (1999):
Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory
syndrome virus-induced pneumonia.
Journal of clinical microbiology 37, 620-627

(2000):
Evaluation of local and systemic immune responses induced by intramuscular
injection of a Mycoplasma hyopneumoniae bacterin to pigs.
Am. j.vet. res. 61, 1384-1389

THACKER, E. L. (2001):
Mycoplasma diagnosis and immunity.
S. 467 – 469

Mycoplasmal Diseases
in: STRAW, B. E., S. D’ALLAIRE, W. L. MENGELEN u. D. J. TAYLOR (Hrsg.):
Diseases of Swine.
9th Edition Iowa State University Press, Ames,
S. 701 – 717
Differential production of proinflammatory cytokines: in vitro PRRSV and Mycoplasma hyopneumoniae co-infection model.
Veterinary immunology and immunopathology 79, 115-127

THOMSON, B. L., S. E. JORSAL, S. ANDERSEN u. P. WILLEBERG (1992):
The Cox regression model applied to risk factor analysis of infections in the breeding and multiplying herds in the Danish SPF system.

A nested PCR assay for the detection of Mycoplasma hyopneumoniae in tracheobronchiolar washings from pigs.
Vet. Microbiol. 76, 31-40

Evaluation of virulence of Mycoplasma hyopneumoniae field isolates.
Vet. Microbial. 97, 177-190

The effect of vaccination on the transmission of Mycoplasma hyopneumoniae in pigs under field conditions.
Vet. J. 188, 48-52

9. Anhang
Anhang 1

Prävalenzen und Risikofaktoren für die Enzootische Pneumonie (M. hyopneumoniae-Infektion) beim Saugferkel

Fragebogen

Tierbesitzer

Name, Vorname

Straße, HnNr.

PLZ, Ort

Telefon

Telefax

Tierarzt

Name, Vorname

Straße, HnNr.

PLZ, Ort

Telefon

Telefax
I. Herde
Produktionstyp
☐ (1) Kombi
☐ (2) Ferkelerzeuger

Genetik (x) ____________________
(1) BHZP
(2) PIC
(3) Hülsenberger
(4) JSR
(5) SNW
(6) Hermitage

Herdengröße

<table>
<thead>
<tr>
<th>Hofstelle</th>
<th>Außenanlage</th>
<th>Insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absetzferkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastschweine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Altersstruktur der Sauenherde
Sauen 1. Wurf: __________ Sauen 5. Wurf: __________
Sauen 4. Wurf: __________

Herkunft der Daten
Abfragedatum (1 Monat vor Probennahme) __________

II. Gebäude
Was ist in einem Gebäude mit den Abferkelställen?
☐ (1) FD
☐ (2) Mastställe
☐ (3) Quarantäne JS
☐ (4) Deckzentrum
☐ (5) NT- Bereich

Umtrieb der Sauen durch belegte FD-Abteile
☐ (0) nein
☐ (1) ja
Umtrieb der Sauen durch belegte Mast-Abteile

<table>
<thead>
<tr>
<th></th>
<th>(0) nicht</th>
<th>(1) ja</th>
</tr>
</thead>
</table>

III. Management Abferkelstall

Abferkelrhythmus

<table>
<thead>
<tr>
<th></th>
<th>(1) 1 Woche</th>
<th>(2) 2 Wochen</th>
<th>(3) 3 Wochen</th>
<th>(0) anderer / keiner</th>
</tr>
</thead>
</table>

Belegung im Rein-Raus-Verfahren

<table>
<thead>
<tr>
<th></th>
<th>(1) 100 %</th>
<th>(2) 75 – 99 %</th>
<th>(3) < 75 %</th>
</tr>
</thead>
</table>

Abteil für Zwischenabferkelung

<table>
<thead>
<tr>
<th></th>
<th>(0) nicht</th>
<th>(1) ja</th>
</tr>
</thead>
</table>

(besonders wichtig bei 2 Wo-Rhythmus)

Leerzeit zwischen Belegungen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Tage

Reinigung per Hochdruckreiniger vor Neubelegung

<table>
<thead>
<tr>
<th></th>
<th>(1) ja</th>
<th>(2) nicht konsequent</th>
<th>(3) nein</th>
</tr>
</thead>
</table>

Desinfektion vor Neubelegung

<table>
<thead>
<tr>
<th></th>
<th>(1) ja</th>
<th>(2) nicht konsequent</th>
<th>(3) nein</th>
</tr>
</thead>
</table>

Sauen gewaschen vor Einstellung

<table>
<thead>
<tr>
<th></th>
<th>(1) ja</th>
<th>(2) nicht konsequent</th>
<th>(3) nein</th>
</tr>
</thead>
</table>

Überwachung der Geburt (incl. Nachtschicht?)

<table>
<thead>
<tr>
<th></th>
<th>(1) ja</th>
<th>(2) nicht konsequent</th>
<th>(3) nein</th>
</tr>
</thead>
</table>
Nach wie vielen Tagen werden ihre Ferkel kastriert? __________ Tage

Nach wie vielen Tagen werden die Schwänze gekürzt? __________ Tage

Nach wie vielen Tagen werden die Zähne gekürzt? __________ Tage

Nach wie vielen Tagen bekommen ihre Ferkel Ohrmarken? __________ Tage

Mit wie vielen Tagen bekommen die Ferkel Eisen injiziert? mit _____ und _____ Tagen

Impfung der Ferkel gegen M. hyo □ ja mit:

□ (1) Hyoresp
□ (2) Ingelvac M. hyo
□ (3) Mypravac suis
□ (4) Respiporc M. HYO one shot
□ (5) Stellamune Mycoplasma
□ (6) Stellamune one
□ (7) Suvaxyn M.hyo
□ (8) Suvaxyn M.hyo-Parasuis
□ (9) Suvaxyn MH one
□ (10) M+PAC
□ (11) Porcilis M. hyo

□ keine Impfung

Zeitpunkt der M. hyo Impfung □ (1) 1. Lebenswoche
□ (2) 2. Lebenswoche
□ (3) 3. Lebenswoche
□ (..) …. Lebenswoche
□ (103) 1. u. 3. Lebenswoche
□ (104) 1. u. 4. Lebenswoche
□ (..) …. und ….Lebenswoche

Impfung der Ferkel gegen PRRSV □ ja mit:

□ (1) Ingelvac PRRS KV
□ (2) Ingelvac PRRS MLV
□ (3) Porcilis PRRS
□ (4) Progressis

□ keine Impfung
<table>
<thead>
<tr>
<th>Zeitpunkt der PRRS Impfung</th>
<th>□ (1) 1. Lebenswoche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ (2) 2. Lebenswoche</td>
</tr>
<tr>
<td></td>
<td>□ (3) 3. Lebenswoche</td>
</tr>
<tr>
<td></td>
<td>□ (4) 1. u. 3. Lebenswoche</td>
</tr>
</tbody>
</table>

Andere Impfungen der Ferkel	□ (1) Hps-Vakzine
	□ (2) PCV 2
	□ (3) stallspezifische Vakzine
	gegen: ________________
	□ (x) andere Impstoffe
	gegen: ________________
	□ (0) keine Impfung

<table>
<thead>
<tr>
<th>Zeitpunkt der anderen Impfungen</th>
<th>□ (1) 1. Lebenswoche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ (2) 2. Lebenswoche</td>
</tr>
<tr>
<td></td>
<td>□ (3) 3. Lebenswoche</td>
</tr>
<tr>
<td></td>
<td>□ (4) 4. Lebenswoche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bekommen die Ferkel während der Säugezeit routinemäßig Antibiotika-Spritzen?</th>
<th>□ ja</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ nein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wenn ja: als Vorbeuge gegen</th>
<th>□ Gelenksentzündung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präparat: __________</td>
</tr>
<tr>
<td></td>
<td>□ Kümmer</td>
</tr>
<tr>
<td></td>
<td>Präparat: __________</td>
</tr>
<tr>
<td></td>
<td>□ Durchfall</td>
</tr>
<tr>
<td></td>
<td>Präparat: __________</td>
</tr>
<tr>
<td></td>
<td>□ Spritze</td>
</tr>
<tr>
<td></td>
<td>□ oral</td>
</tr>
<tr>
<td></td>
<td>□ Atemwegserkrankungen</td>
</tr>
<tr>
<td></td>
<td>Präparat: __________</td>
</tr>
<tr>
<td></td>
<td>□ andere</td>
</tr>
</tbody>
</table>
Präparat: _________________

Zeitpunkt der antibiotischen Behandlung

☐ 1. Lebenswoche
 ☐ (1) einmal
 ☐ (2) zweimal
 ☐ (3) öfter

☐ 2. Lebenswoche
 ☐ (1) einmal
 ☐ (2) zweimal
 ☐ (3) öfter

☐ 3. Lebenswoche
 ☐ (1) einmal
 ☐ (2) zweimal
 ☐ (3) öfter

Umsetzen von Ferkeln

☐ (1) < 5 %
☐ (2) 5 – 10 %
☐ (3) > 10 %

durchschnittliches Absetzalter __________ Tage
IV. Management Sauen

Impfung der Sauen gegen PRRSV
- Ja mit:
 1. Ingelvac PRRS KV
 2. Ingelvac PRRS MLV
 3. Porcilis PRRS
 4. Progressis
- Keine Impfung

Zeitpunkt der PRRS-Impfung
- Reproduktionsorientiert
 1. 5/50
 2. 6/60
 3. Andere: ____________________
- Alle 3 Monate
- Alle 4 Monate
- ≥ Alle 5 Monate

Wenn bestandsweise geimpft wird, wann war der letzte Impftermin ____________________

Impfung der Sauen gegen PCV 2
- Ja
- Keine Impfung

Impfung der Sauen gegen R/A
- Ja
- Keine Impfung

Impfung der Sauen gegen Influenza
- Ja
- Keine Impfung

Impfung der Sauen gegen App
- Ja
- Keine Impfung
Welche Antibiotika bekommen die Sauen um den Geburtszeitpunkt zur Unterstützung?

Präparat: _______________________
☐ Spritze
☐ Futter

Präparat: _______________________
☐ Spritze
☐ Futter

☐ (1) β-Lactam-Antibiotika per injectionem
☐ (2) β-Lactam-Antibiotika per os
☐ (3) Makrolide per injectionem
☐ (6) Makrolide per os
☐ (4) Tetracycline per injectionem
☐ (5) Tetracycline per os

☐ (0) keine

Dauer der Behandlung __________ Tage

Welche Antibiotika bekommen die Sauen während der Säugezeit zur Unterstützung?

Präparat: _______________________
☐ Spritze
☐ Futter

Präparat: _______________________
☐ Spritze
☐ Futter

☐ (1) β-Lactam-Antibiotika per injectionem
☐ (2) β-Lactam-Antibiotika per os
☐ (3) Makrolide per injectionem
☐ (4) Makrolide per os
☐ (5) Tetracycline per injectionem
☐ (6) Tetracycline per os

☐ (0) keine

Dauer der Behandlung __________ Tage
V. Management im Flatdeck

<table>
<thead>
<tr>
<th>Anzahl der FD Abteile</th>
<th>____________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plätze pro FD Abteil</td>
<td>____________</td>
</tr>
<tr>
<td>Anzahl der FD-Plätze insgesamt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belegung im Rein-Raus-Verfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ (1) 100 %</td>
</tr>
<tr>
<td>☐ (2) 75 – 99 %</td>
</tr>
<tr>
<td>☐ (3) < 75 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leerzeit zwischen Belegungen</th>
<th>____________ Tage</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reinigung per Hochdruckreiniger</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ (1) ja</td>
</tr>
<tr>
<td>☐ (2) nicht konsequent</td>
</tr>
<tr>
<td>☐ (3) nein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desinfektion vor Neubelegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ (1) ja</td>
</tr>
<tr>
<td>☐ (2) nicht konsequent</td>
</tr>
<tr>
<td>☐ (3) nein</td>
</tr>
</tbody>
</table>

Welche Antibiotika bekommen die Ferkel bei Einstellung ins FD zur Unterstützung?

<table>
<thead>
<tr>
<th>Präparat: _______________________</th>
<th>☐ Spritze</th>
<th>☐ Futter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präparat: _______________________</td>
<td>☐ Spritze</td>
<td>☐ Futter</td>
</tr>
</tbody>
</table>

☐ (1) ß-Lactam-Antibiotika per injectionem	
☐ (2) ß-Lactam-Antibiotika per os	
☐ (3) Makrolide per injectionem	
☐ (3) Makrolide per os	
☐ (4) Tetracycline per injectionem	
☐ (5) Tetracycline per os	
☐ (x) andere Antibiotika	
☐ (0) keine	

<table>
<thead>
<tr>
<th>Dauer der Behandlung</th>
<th>____________ Tage</th>
</tr>
</thead>
</table>
VI. Management Mast (falls vorhanden)

<table>
<thead>
<tr>
<th>Belegung im Rein-Raus-Verfahren</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 100 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) 75 – 99 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) < 75 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Leerzeit zwischen Belegungen | _______ Tage |

<table>
<thead>
<tr>
<th>Reinigung per Hochdruckreiniger</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>vor Neubelegung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) ja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) nicht konsequent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) nein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desinfektion vor Neubelegung</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) nicht konsequent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) nein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Welche Antibiotika bekommen die Schweine bei Einstellung in den Maststall zur Unterstützung?

<table>
<thead>
<tr>
<th>Präparat: ______________________</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(x)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spritze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präparat: ______________________</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(x)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spritze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| (1) β-Lactam-Antibiotika per injectionem | (2) β-Lactam-Antibiotika per os | (3) Makrolide per injectionem | (4) Tetracycline per injectionem | (5) Tetracycline per os | (x) andere Antibiotika | (0) Keine |

| Behandlungsdauer | _______ Tage |

153
VII. Management Jungsauen

Bezug von Jungsauen

☐ (1) Eigenremontierung
☐ (2) Zukauf

Remontierungsrate

__________ %

__________ Anzahl Zukäufe / 12 Monate
__________ Anzahl zugekaufter Tiere / 12 Monate

__________ Alter der Sauen bei Zukauf
__________ Anzahl der Herkunftsbetriebe

Erfolgt die Eingliederung der Jungsauen unter Quarantäne?

☐ ja
☐ nein
☐ Eigenremontierung

Wenn ja:

Dauer der Isolierung

__________ Wochen

Wo liegt der Quarantänestall

☐ (1) separater Standort
☐ (2) separates Stallgebäude
☐ (3) separates Stallabteil

Wie wird der Quarantänestall belegt?

☐ (1) Rein-Raus-Verfahren
☐ (2) Kontinuierlich

Welche Kontakte haben die Jungsauen?

☐ (1) Altsauen

Anzahl _______
Dauer _______ (Tage)

☐ (2) Läufer

Anzahl _______
Dauer _______ (Tage)

☐ (3) Kot / Nachgeburten

wie oft _______
☐ (0) kein Kontakt
Impfung der JS gegen M. hyo □ ja mit:
□ (1) Hyoresp
□ (2) Ingelvac M. hyo
□ (3) Mypravac suis
□ (4) Respiorc M. HYO one shot
□ (5) Stellamune Mycoplasma
□ (6) Stellamune one
□ (7) Suvaxyn M.hyo
□ (8) Suvaxyn M.hyo-Parasuis
□ (9) Suvaxyn MH one
□ (10) M+PAC
□ (11) Porcilis M. hyo
□ keine Impfung

Wenn ja, in welcher Woche der Eingliederung ? __________________ Woche

Anzahl der Impfungen gegen M. hyo □ (1) einmal
□ (2) zweimal

Impfung der JS gegen PRRSV □ ja mit:
□ (1) Ingelvac PRRS KV
□ (2) Ingelvac PRRS MLV
□ (3) Porcilis PRRS
□ (4) Progressis
□ keine Impfung

Wenn ja, in welcher Woche der Eingliederung ? __________________ Woche

Anzahl der PRRS-Impfungen □ (1) einmal
□ (2) zweimal

Impfung der JS gegen PCV 2 □ ja
□ keine Impfung

Impfung der JS gegen R/A □ ja
□ keine Impfung
Impfung der JS gegen Influenza

☐ ja
☐ keine Impfung

Impfung der JS gegen App

☐ ja
☐ keine Impfung

Welche Antibiotika bekommen die Jungsauen bei der Einstellung zur Unterstützung?

Präparat: _______________________
☐ Spritze
☐ Futter

Präparat: _______________________
☐ Spritze
☐ Futter

☐ (1) β-Lactam-Antibiotika per injektionem
☐ (2) β-Lactam-Antibiotika per os
☐ (3) Makrolide per injectionem
☐ (4) Tetracycline per injectionem
☐ (5) Tetracycline per os
☐ (6) Makrolide per os
☐ (0) keine
IX. Management Jungeber

Bezug von Jungeber
☐ (1) Eigenremontierung
☐ (2) Zukauf

__________ Anzahl Zukäufe / 12 Monate
__________ Anzahl zugekaufter Tiere / 12 Monate
__________ Alter der Eber bei Zukauf
__________ Anzahl der Herkunftsbetriebe

Isolierung der Jungeber
☐ (1) ja
☐ (0) nein

Dauer der Isolierung __________ Wochen

Lage des Quarantänestalles
☐ (1) separater Standort
☐ (2) separates Stallgebäude
☐ (3) separates Stallabteil

Belegung des Quarantänestalles
☐ (1) Rein-Raus-Verfahren
☐ (2) Kontinuierlich

Welche Kontakte haben die Jungeber?
☐ (1) Altsauen
 Anzahl _______
 Dauer _______ (Tage)
☐ (2) Läufer
 Anzahl _______
 Dauer _______ (Tage)
☐ (3) Kot / Nachgeburten
 wie oft _______
☐ (0) kein Kontakt
Werden die JE gegen M. hyo geimpft? ☐ ja mit:

☐ (1) Hyoresp
☐ (2) Ingelvac M. hyo
☐ (3) Mypravac suis
☐ (4) Respiporc M. HYO one shot
☐ (5) Stellamune Mycoplasma
☐ (6) Stellamune one
☐ (7) Suvaxyn M.hyo
☐ (8) Suvaxyn M.hyo-Parasuis
☐ (9) Suvaxyn MH one
☐ (10) M+PAC
☐ (11) Porcilis M. hyo

☐ keine Impfung

Wenn ja, in welcher Woche der Eingliederung? ________________________ Woche

Anzahl der Impfungen gegen M. hyo ☐ (1) einmal
☐ (2) zweimal

Impfung der JE gegen PRRSV ☐ ja
☐ keine Impfung

Impfung der JE gegen PCV 2 ☐ ja
☐ keine Impfung

Impfung der JE gegen R/A ☐ ja
☐ keine Impfung

Impfung der JE gegen Influenza ☐ ja
☐ keine Impfung

Impfung der JE gegen App ☐ ja
☐ keine Impfung

Welche Antibiotika bekommen die JE bei der Einstellung zur Unterstützung?
Präparat: _______________________
☐ Spritze
☐ Futter
Präparat: _______________________
☐ Spritze
☐ Futter
☐ (1) β-Lactam-Antibiotika per injectionem
☐ (2) β-Lactam-Antibiotika per os
☐ (3) Makrolide per injectionem
☐ (4) Tetracycline per injectionem
☐ (5) Tetracycline per os
☐ (6) Makrolide per os
☐ (0) keine
X. Haltung Abferkelstall

<table>
<thead>
<tr>
<th></th>
<th>Abteil 1</th>
<th>Abteil 2</th>
<th>Abteil 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter der aktuellen Stalleinrichtung in Jahren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl Abferkelabteile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abferkelplätze pro Abteil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abferkelplätze total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variation der Abferkeltermine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Im Abteil (in Tagen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boden in der Abferkelbucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Kunststoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Metall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Beton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Mix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boden im Ferkelnest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Kunststoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Metall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Beton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Mix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizung im Ferkelnest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Warmwasser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Infrarotlampe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Warmwasser + Infrarotlampe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Gasstrahler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0) keine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer der Beheizung (in Tagen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuluft im Abferkelabteil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Ganglüftung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Rieseldecke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Zuluftklappen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abluft im Abferkelabteil

1. Deckenventilator
2. Unterflur
3. Mix

XIII. Haltung Jungsauren

Alter der aktuellen Stalleinrichtung	_________ Jahre
Tiere / Bucht	_________ m² / Bucht
Tiere / Abteil	_________ m² / Abteil
Buchten / Abteil	_________ m³ / Abteil

Boden im Jungsaufenstall

- (1) Teilspalten
- (2) Vollspalten
- (3) Vollspalten mit reduziertem Schlitzanteil
- (4) Tiefstreu
- (5) Mix

Trennwände zwischen den Buchten

- (1) geschlossen
- (2) offen

Fütterungstechnik:

- (1) Brei-Automat
- (2) Trockenfutter-Automat mit Quertrog (offen)
- (3) Flüssigfütterung
- (4) Trogfütterung per Hand

Tier / Fressplatz-Verhältnis

_____ : _____

Tier / Tränke-Verhältnis

_____ : _____

Zuluft im Jungsaufenstall

- (1) Ganglüftung
- (2) Rieseldecke
- (3) Zuluftklappen
- (4) Frei / offen
- (5) Mix
Abluft im Jungsauenstall
☐ (1) Deckenventilator
☐ (2) Unterflur
☐ (3) Frei / offen
☐ (4) Mix

Gü llelagerung
☐ (1) direkt unter den Tieren
☐ (2) außerhalb des Stalles

XIV. Haltung Jungeber

Alter der aktuellen Stalleinrichtung
__________ Jahre

__________ Tiere / Bucht
__________ m² / Bucht

__________ Tiere / Abteil
__________ m² / Abteil

__________ Buchten / Abteil
__________ m³ / Abteil

Boden im Jungseberstall
☐ (1) Teilspalten
☐ (2) Vollspalten
☐ (3) Vollspalten mit reduziertem Schlitzanteil
☐ (4) Tiefstreu
☐ (5) Mix

Trennwände zwischen den Buchten
☐ (1) geschlossen
☐ (2) offen

Fütterungstechnik:
☐ (1) Brei-Automat
☐ (2) Trockenfutter-Automat mit Quertrog (offen)
☐ (3) Flüssigfütterung
☐ (4) Trogfütterung per Hand

Tier / Fressplatz-Verhältnis
____:____

Tier / Tränke-Verhältnis
____:____

Zuluft im Jungeberstall
☐ (1) Ganglüftung
☐ (2) Rieseldecke
☐ (3) Zuluftklappen
☐ (4) Mix
Abluft im Jungeberstall

☐ (1) Deckenventilator
☐ (2) Unterflur
☐ (3) Mix

 Güllelagerung

☐ (1) direkt unter den Tieren
☐ (2) außerhalb des Stalles

XV. Untersuchung von Saugferkeln (Mindestalter 18 Tage):

20 Proben aus mind. 10 Würfen

1) Wurfzahl der Sau ____________
 Wurfgröße (lebend geborene) ____________
 Alter der Ferkel ____________ Tage
 P-Nr. ____________ M W
 P-Nr. ____________ M W

2) Wurfzahl der Sau ____________
 Wurfgröße (lebend geborene) ____________
 Alter der Ferkel ____________ Tage
 P-Nr. ____________ M W
 P-Nr. ____________ M W

3) Wurfzahl der Sau ____________
 Wurfgröße (lebend geborene) ____________
 Alter der Ferkel ____________ Tage
 P-Nr. ____________ M W
 P-Nr. ____________ M W

4) Wurfzahl der Sau ____________
 Wurfgröße (lebend geborene) ____________
 Alter der Ferkel ____________ Tage
 P-Nr. ____________ M W
 P-Nr. ____________ M W
5) Wurfzahl der Sau
Wurfgröße (lebend geborene)
Alter der Ferkel
P-Nr. ________ M W
P-Nr. ________ M W

6) Wurfzahl der Sau
Wurfgröße (lebend geborene)
Alter der Ferkel
P-Nr. ________ M W
P-Nr. ________ M W

7) Wurfzahl der Sau
Wurfgröße (lebend geborene)
Alter der Ferkel
P-Nr. ________ M W
P-Nr. ________ M W

8) Wurfzahl der Sau
Wurfgröße (lebend geborene)
Alter der Ferkel
P-Nr. ________ M W
P-Nr. ________ M W

9) Wurfzahl der Sau
Wurfgröße (lebend geborene)
Alter der Ferkel
P-Nr. ________ M W
P-Nr. ________ M W

10) Wurfzahl der Sau
Wurfgröße (lebend geborene)
Alter der Ferkel
P-Nr. ________ M W
P-Nr. ________ M W
Anhang 2

Parameter Significance Tests Section
(Reference Group: M_10BSTAT = 0)

<table>
<thead>
<tr>
<th>NICHT aufgeführte Klasse ist Baseline für OR</th>
<th>Wald</th>
<th>Odds</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Level</td>
<td>Exp(B)</td>
<td>%</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0083</td>
<td>0,5536</td>
<td>69,6</td>
</tr>
<tr>
<td>B1: (A1_TYP=2)</td>
<td>0,9721</td>
<td>0,9853</td>
<td>27,2</td>
</tr>
<tr>
<td>B2: (A1_TYP=3)</td>
<td>0,1508</td>
<td>5,4194</td>
<td>3,2</td>
</tr>
</tbody>
</table>

- geringe Frequenzen in einer Gruppe
- Gruppengröße kritisch (Typ 3)

B0: Intercept	0,0011	0,4423	60,0
B1: (A3_SGcalc2=2)	0,0763	2,0456	32,0
B2: (A3_SGcalc2=3)	0,5535	1,5073	8,0

- Korrelation (Spearman >0.7) mit den

B0: Intercept	0,0994	0,3333	9,6
B1: (A3_AG2=3)	0,6787	1,3500	46,6
B2: (A3_AG2=4)	0,2029	2,5000	44,0

- Korrelation (Spearman >0.7) s.o.

B0: Intercept	0,4931	0,7273	68,0
B1: (B1_G Geb2=1)	0,6019	0,6875	71,0
B2: (B1_G Geb2=2)	0,7693	0,8547	81,0
B3: (B1_G Geb2=3)	0,4825	0,6548	38,0

B0: Intercept	0,0002	0,3469	52,8
B1: (C1_AFRHY2=2)	0,0075	2,7863	47,2
B0: Intercept	0,0005	0,4407	68,0
B1: (C2_AFR RV2=2)	0,0377	2,2692	32,0

B0: Intercept	0,0458	0,6136	68,0
B1: (C3_AFZ WA=1)	0,7441	0,8847	71,0
B0: Intercept	1,0000	1,0000	71,0
B1: (C4_AFLEER2=2)	0,4750	0,7059	46,4
B2: (C4_AFLEER2=3)	0,0285	0,3030	34,4

B0: Intercept	0,0467	0,4500	68,0
B1: (C6_AF DES2=2)	0,4636	1,3936	71,0
B0: Intercept	0,0267	0,5405	68,0
B1: (C7_AF WASCH2=2)	0,6902	1,1840	71,0
B2: (C7_AF WASCH2=3)	0,8618	1,0882	71,0
B0: Intercept	0,0034	0,5571	68,0
B1: (C8_AF GebB=2)	0,5383	1,3960	71,0
B0: Intercept	0,1229	0,5294	68,0
B1: (C9_AF KAST2=2)	0,9464	0,9675	71,0
B2: (C9_AF KAST2=3)	0,4915	1,4392	71,0
B0: Intercept	0,0650	0,6786	75,2
B1: (C10_AF SCHK2=2)	0,1473	0,5126	24,8

165
<p>| B0: Intercept | 0.2304 | 0.6923 |
| B1: (C11_AFZK2=2) | 0.4831 | 0.7631 | |
| B0: Intercept | 0.0317 | 0.2500 | 12.0 |
| B1: (C12_AFOM2=2) | 0.3293 | 2.0000 | 40.8 |
| B2: (C12_AFOM2=3) | 0.0995 | 3.1515 | 47.2 |
| B0: Intercept | 0.0074 | 0.5714 |
| B1: (C13_AFE1_2=2) | 0.8435 | 1.0938 |
| B0: Intercept | 0.0685 | 0.6522 |
| B1: (C13_AFE2_2=2) | 0.4407 | 0.7434 |
| B0: Intercept | 0.0014 | 0.2083 | 23.2 |
| B1: (C14_AFVMHYO2=1) | 0.0208 | 3.6364 | 46.4 |
| B2: (C14_AFVMHYO2=2) | 0.0345 | 3.4909 | 30.4 |
| B0: Intercept | 0.0003 | 0.4462 | 75.2 |
| B1: (C15_AFVPRRSV2=1) | 0.0143 | 2.7217 | 24.8 |
| B0: Intercept | 0.0382 | 0.5172 |
| B1: (C16_AFESONST2=1) | 0.6436 | 1.1987 |
| B0: Intercept | 0.6381 | 0.8000 |
| B1: (C17_AFABEH=1) | 0.4689 | 0.6884 |
| B0: Intercept | 0.5299 | 0.6667 |
| B1: (C18_AFABSETZ2=2) | 0.7906 | 0.8357 |
| B2: (C18_AFABSETZ2=3) | 0.6969 | 1.5000 |
| B0: Intercept | 0.0825 | 0.4286 |
| B1: (D1_ASVPRRSV2=2) | 0.4930 | 1.4359 |
| B0: Intercept | 0.0032 | 0.5507 |
| B1: (D2_ASVPCV2=1) | 0.4689 | 1.4526 |
| B0: Intercept | 0.0053 | 0.5921 |
| B1: (D3_ASVRA=1) | 0.6234 | 0.5630 |
| B0: Intercept | 0.3032 | 0.7647 | 48.0 |
| B1: (D4_ASVSIV=1) | 0.1471 | 0.5812 | 52.0 |
| B0: Intercept | 0.3499 | 0.6364 |
| B1: (E1_FDABT2=2) | 0.8328 | 0.8941 |
| B2: (E1_FDABT2=3) | 0.9337 | 0.9429 |
| B0: Intercept | 0.0197 | 0.6250 |
| B1: (E4_FDRRV2=2) | 0.3939 | 0.6400 |
| B0: Intercept | 0.0197 | 0.6250 |
| B1: (E7_FDDES2=2) | 0.3939 | 0.6400 |
| B0: Intercept | 0.0200 | 0.4167 | 27.2 |
| B1: (E8_FDWIRK2=1) | 0.7147 | 1.2000 | 33.6 |
| B2: (E8_FDWIRK2=2) | 0.1566 | 1.9556 | 39.2 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B0: Intercept</td>
<td>0,0434</td>
<td>0,6250</td>
</tr>
<tr>
<td>B1: (F1_MARRV2=2)</td>
<td>0,3889</td>
<td>0,5818</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,2920</td>
<td>0,5556</td>
</tr>
<tr>
<td>B1: (G1_JSHER=2)</td>
<td>0,9288</td>
<td>1,0543</td>
</tr>
<tr>
<td>B1: (G8_JSISOJANEIN2=1)</td>
<td>0,0688</td>
<td>0,2632</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,1850</td>
<td>1,7927</td>
</tr>
<tr>
<td>B1: (G8_JSISOKON2=1)</td>
<td>0,2888</td>
<td>0,4762</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,4692</td>
<td>0,7000</td>
</tr>
<tr>
<td>B1: (G8_JSISODAUER2=1)</td>
<td>0,4851</td>
<td>0,6349</td>
</tr>
<tr>
<td>B2: (G8_JSISODAUER2=2)</td>
<td>0,7791</td>
<td>0,8571</td>
</tr>
<tr>
<td>B3: (G8_JSISODAUER2=3)</td>
<td>0,9521</td>
<td>0,9524</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0168</td>
<td>0,5250</td>
</tr>
<tr>
<td>B1: (G8_JSISOKON2=1)</td>
<td>0,0002</td>
<td>6,4889</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0017</td>
<td>0,4915</td>
</tr>
<tr>
<td>B1: (G9_JSISOKON2=1)</td>
<td>0,2207</td>
<td>1,7438</td>
</tr>
<tr>
<td>B2: (G9_JSISODAUER2=2)</td>
<td>0,4142</td>
<td>1,6954</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0056</td>
<td>0,4634</td>
</tr>
<tr>
<td>B1: (H8_JEVMHYO2=1)</td>
<td>0,0256</td>
<td>3,2327</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0056</td>
<td>0,4634</td>
</tr>
<tr>
<td>B1: (H8_JEVMHYO2=1)</td>
<td>0,3008</td>
<td>1,4765</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0000</td>
<td>0,4110</td>
</tr>
<tr>
<td>B1: (H11_JEVMHYO2=1)</td>
<td>0,0004</td>
<td>6,4889</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0069</td>
<td>0,5370</td>
</tr>
<tr>
<td>B1: (H11_JEVMHYO2=1)</td>
<td>0,5447</td>
<td>1,2662</td>
</tr>
</tbody>
</table>

geringe Frequenzen in einer Gruppe
Gruppengrösse kritisch
(Isojanein=0)
<table>
<thead>
<tr>
<th>B0: Intercept</th>
<th>B1: (H12_JEVAPP=1)</th>
<th>B0: Intercept</th>
<th>B1: (J9_JSBO2=2)</th>
<th>B0: Intercept</th>
<th>B1: (J10_JSTRENNW2=2)</th>
<th>B0: Intercept</th>
<th>B1: (J11_JSFUTT2=2)</th>
<th>B0: Intercept</th>
<th>B1: (J14_JSZUL2=2)</th>
<th>B0: Intercept</th>
<th>B1: (J15_JSABLU2=2)</th>
<th>B0: Intercept</th>
<th>B1: (O4_AFBOBUCHTB=2)</th>
<th>B0: Intercept</th>
<th>B1: (O5_AFBONESTB=2)</th>
<th>B0: Intercept</th>
<th>B1: (O6_AFHEIZB=2)</th>
<th>B0: Intercept</th>
<th>B1: (O7_AFZULUFTB=2)</th>
<th>B0: Intercept</th>
<th>B1: (O8_AFABLUFTB=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0065</td>
<td>0,9288</td>
<td>0,0511</td>
<td>0,8290</td>
<td>0,0127</td>
<td>0,5739</td>
<td>0,0653</td>
<td>0,5322</td>
<td>0,0340</td>
<td>0,3380</td>
<td>0,0263</td>
<td>0,6716</td>
<td>0,1220</td>
<td>0,9517</td>
<td>0,6125</td>
<td>0,1996</td>
<td>0,0108</td>
<td>0,6803</td>
<td>0,0009</td>
<td>0,0382</td>
<td>0,0011</td>
<td>0,1095</td>
</tr>
<tr>
<td>0,5857</td>
<td>0,9485</td>
<td>0,5357</td>
<td>1,0927</td>
<td>0,5122</td>
<td>1,2551</td>
<td>0,6250</td>
<td>0,7724</td>
<td>0,3889</td>
<td>1,6135</td>
<td>0,5152</td>
<td>1,1863</td>
<td>0,5714</td>
<td>0,5938</td>
<td>0,5490</td>
<td>1,1709</td>
<td>0,3659</td>
<td>2,2298</td>
<td>0,5073</td>
<td>2,1686</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang 3

Parameter Significance Tests Section (Reference Group: M_10BSTAT = 0)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wald Prob Level</th>
<th>Wald Odds Ratio Exp(B)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0: Intercept</td>
<td>0,08291</td>
<td>0,47121</td>
<td></td>
</tr>
<tr>
<td>B1: A4_SW0_Verh</td>
<td>0,58715</td>
<td>4,57773</td>
<td></td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,77632</td>
<td>0,73976</td>
<td></td>
</tr>
<tr>
<td>B1: Ratio</td>
<td>0,81893</td>
<td>0,92504</td>
<td></td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,00702</td>
<td>0,3028</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B1: E2_FDMAX2</td>
<td>0,13023</td>
<td>1,00319</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,00112</td>
<td>0,30375</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B1: E2_FDMIN2</td>
<td>0,05355</td>
<td>1,00481</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,00698</td>
<td>0,37837</td>
<td>ansteigender Trend in OR -> als Intervall oder Klassen eingeben</td>
</tr>
<tr>
<td>B1: E3_FDGESAMT</td>
<td>0,15743</td>
<td>1,00039</td>
<td></td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0381</td>
<td>0,51469</td>
<td></td>
</tr>
<tr>
<td>B1: E5_FDLEER</td>
<td>0,63384</td>
<td>1,03443</td>
<td></td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,01475</td>
<td>0,55178</td>
<td></td>
</tr>
<tr>
<td>B1: E8_FODAUER2</td>
<td>0,67022</td>
<td>1,01047</td>
<td></td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,91003</td>
<td>1,1156</td>
<td></td>
</tr>
<tr>
<td>B1: G2_JSREMONR</td>
<td>0,49521</td>
<td>0,9847</td>
<td></td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,00105</td>
<td>0,19394</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B1: G3_JSANZZ</td>
<td>0,01541</td>
<td>1,2008</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,0009</td>
<td>0,33329</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B1: G4_JSMINZ</td>
<td>0,03876</td>
<td>1,03457</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,00125</td>
<td>0,32827</td>
<td>ansteigender Trend in OR -> als Intervall oder Klassen eingeben</td>
</tr>
<tr>
<td>B1: G4_JSMAXZ</td>
<td>0,0453</td>
<td>1,0329</td>
<td>ansteigender Trend in OR -> als Intervall oder Klassen eingeben</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,00009</td>
<td>0,24744</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B1: G5_JSANZT</td>
<td>0,00496</td>
<td>1,00845</td>
<td>kein klarer linearer Trend in odds -> Klassen bilden</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,04802</td>
<td>0,22402</td>
<td>ansteigender Trend in OR -> als Intervall oder Klassen eingeben</td>
</tr>
<tr>
<td>B1: G6_JSALTZ</td>
<td>0,18544</td>
<td>1,00584</td>
<td>ansteigender Trend in OR -> als Intervall oder Klassen eingeben</td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,8855</td>
<td>1,0786</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>B1: I1_AFANZABT</td>
<td>0,21568</td>
<td>0,91133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,10036</td>
<td>0,51002</td>
</tr>
<tr>
<td>B1: I2_AFANZPL</td>
<td>0,71588</td>
<td>1,00202</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,77724</td>
<td>0,81757</td>
</tr>
<tr>
<td>B1: N1_SFUWZMW</td>
<td>0,62262</td>
<td>0,9197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,19201</td>
<td>0,08586</td>
</tr>
<tr>
<td>B1: N2_SFULGEBMW</td>
<td>0,30552</td>
<td>1,16163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,08448</td>
<td>0,49895</td>
</tr>
<tr>
<td>B1: O1_AFSTALLALTMAX</td>
<td>0,66423</td>
<td>1,0111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,00037</td>
<td>0,27319</td>
</tr>
<tr>
<td>B1: O2_AFPLABTMAX</td>
<td>0,01598</td>
<td>1,05562</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,01712</td>
<td>0,45017</td>
</tr>
<tr>
<td>B1: O3_AFVARIAMAX</td>
<td>0,31047</td>
<td>1,03311</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,16799</td>
<td>0,63043</td>
</tr>
<tr>
<td>B1: J1_JSSTALLALT2</td>
<td>0,52259</td>
<td>1,01264</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,0009</td>
<td>0,30086</td>
</tr>
<tr>
<td>B1: J3_JSABT2</td>
<td>0,03437</td>
<td>1,28954</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,2182</td>
<td>0,70712</td>
</tr>
<tr>
<td>B1: J4_JSTPB2</td>
<td>0,68683</td>
<td>0,99025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,00817</td>
<td>0,39088</td>
</tr>
<tr>
<td>B1: J5_JSTPA2</td>
<td>0,20777</td>
<td>1,01885</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,02947</td>
<td>0,51457</td>
</tr>
<tr>
<td>B1: J6_JSQMB2</td>
<td>0,68085</td>
<td>1,00373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,0005</td>
<td>0,22029</td>
</tr>
<tr>
<td>B1: J7_JSQMA2</td>
<td>0,01301</td>
<td>1,01815</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,2182</td>
<td>0,70712</td>
</tr>
<tr>
<td>B1: J8_JSKMA2</td>
<td>0,27235</td>
<td>0,99943</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,00221</td>
<td>0,43566</td>
</tr>
<tr>
<td>B1: J12_JSPRESSP2</td>
<td>0,15112</td>
<td>1,05262</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>0,01096</td>
<td>0,4768</td>
</tr>
<tr>
<td>B1: J13_JSSAUFPC</td>
<td>0,41555</td>
<td>1,03021</td>
<td></td>
</tr>
</tbody>
</table>
Anhang 4

Parameter Significance Tests Section (Reference Group: \textit{M_10BSTAT} = 0)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Level Exp(B)</th>
<th>Odds Ratio</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0: Intercept</td>
<td>0,023</td>
<td>0,026</td>
<td>noting different from 1</td>
</tr>
<tr>
<td>B1: (E2_FDMAX2x=2)</td>
<td>0,862</td>
<td>1,090</td>
<td>Kein linearer Trend in OR, Kat 2+3 nicht unterschiedlich von 1</td>
</tr>
<tr>
<td>B2: (E2_FDMAX2x=3)</td>
<td>0,937</td>
<td>1,048</td>
<td>Kein linearer Trend in OR, Kat 2+3 nicht unterschiedlich von 1</td>
</tr>
<tr>
<td>B3: (E2_FDMAX2x=4)</td>
<td>0,147</td>
<td>2,121</td>
<td>ggf. als kategorische Variable mit nur 2 Klassen (1-3 vs. 4)</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,005</td>
<td>0,030</td>
<td>Korrelation (Spearman >0.7) mit den</td>
</tr>
<tr>
<td>B1: (E2_FDMIN2x=2)</td>
<td>0,114</td>
<td>2,327</td>
<td>Kein linearer Trend in OR, insbes. Kat 2 + 4 aber deutlich höhere OR als 1</td>
</tr>
<tr>
<td>B2: (E2_FDMIN2x=3)</td>
<td>0,673</td>
<td>1,314</td>
<td>Option: als Intervall-Variable eingeben</td>
</tr>
<tr>
<td>B3: (E2_FDMIN2x=4)</td>
<td>0,085</td>
<td>2,669</td>
<td>Alternative: 2 Klassen (1+2 vs 3+4) oder 3 Klassen (1+2, 3, 4)</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,005</td>
<td>0,032</td>
<td>Korrelation (Spearman >0.7) mit den</td>
</tr>
<tr>
<td>B1: (E3_FDGESAMTx=2)</td>
<td>0,462</td>
<td>1,494</td>
<td>ansteigender Trend in OR</td>
</tr>
<tr>
<td>B2: (E3_FDGESAMTx=3)</td>
<td>0,284</td>
<td>1,838</td>
<td>Option: als Intervall-Variable eingeben</td>
</tr>
<tr>
<td>B3: (E3_FDGESAMTx=4)</td>
<td>0,014</td>
<td>3,794</td>
<td>Alternative: 2 Klassen (1+2 vs 3+4) oder 3 Klassen (1+2, 3, 4)</td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,001</td>
<td>0,285</td>
<td>Korrelation (Spearman >0.7) mit den</td>
</tr>
<tr>
<td>B1: (G3_JSANZZx=2)</td>
<td>0,071</td>
<td>2,462</td>
<td>Kein linearer Trend in OR, insbes. Kat 2 + 4 aber deutlich höhere OR als 1</td>
</tr>
<tr>
<td>B2: (G3_JSANZZx=3)</td>
<td>0,267 1,833</td>
<td>nicht als Intervall-Variable eingeben ggf. als kategoriale Variable mit 3 Klassen (1, 2+3 und 4)</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>B3: (G3_JSANZZx=4)</td>
<td>0,004 9,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0: Intercept Baseline = 1 Quartil</td>
<td>0,001 0,342</td>
<td>Korrelation (Spearman >0.7) S.O.</td>
<td></td>
</tr>
<tr>
<td>B1: (G4_JSMINZx=2)</td>
<td>0,360 1,701</td>
<td>Kein klarer linearer Trend in OR, insbes. 4 aber deutlich höhere OR als 1 nicht als Intervall-Variable eingeben ggf. als kategoriale Variable mit 3 Klassen (1, 2+3 und 4) oder 2 Klassen (1-3 vs 4)</td>
<td></td>
</tr>
<tr>
<td>B2: (G4_JSMINZx=3)</td>
<td>0,448 1,458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3: (G4_JSMINZx=4)</td>
<td>0,003 4,666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0: Intercept Baseline = 1 Quartil</td>
<td>0,010 0,384</td>
<td>Korrelation (Spearman >0.7) S.O.</td>
<td></td>
</tr>
<tr>
<td>B1: (G4_JSMAXZx=2)</td>
<td>0,774 1,17</td>
<td>sichtbarer ansteigender Trend in OR Option: als Intervall-Variable eingeben</td>
<td></td>
</tr>
<tr>
<td>B2: (G4_JSMAXZx=3)</td>
<td>0,441 1,505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3: (G4_JSMAXZx=4)</td>
<td>0,036 2,971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0: Intercept Baseline = 1 Quartil</td>
<td>0,002 0,296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1: (G5_JSANZTx=2)</td>
<td>0,605 1,349</td>
<td>Kein klarer linearer Trend in OR, insbes. 4 aber deutlich höhere OR als 1 nicht als Intervall-Variable eingeben ggf. als kategoriale Variable mit 3 Klassen (1, 2+3 und 4) oder 2 Klassen (1-3 vs 4)</td>
<td></td>
</tr>
<tr>
<td>B2: (G5_JSANZTx=3)</td>
<td>0,536 1,406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3: (G5_JSANZTx=4)</td>
<td>0,000 8,437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0: Intercept Baseline = 1 Quartil</td>
<td>0,020 0,416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1: (G6_JSALTZx=2)</td>
<td>0,543 1,326</td>
<td>sichtbarer ansteigender Trend in OR Option: als Intervall-Variable eingeben</td>
<td></td>
</tr>
<tr>
<td>B2: (G6_JSALTZx=3)</td>
<td>0,489 1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0: Intercept</td>
<td>0,003</td>
<td>0,354</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Baseline = 1 Quartil</td>
<td>15</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>B1: (J3_JSABT2x=2)</td>
<td>0,217</td>
<td>1,878</td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Kein klarer linearer Trend in OR, insbes. 4 aber deutlich höhere OR als 1 nicht als Intervall-Variable eingeben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2: (J3_JSABT2x=3)</td>
<td>0,282</td>
<td>2,254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>ggf. als kategoriale Variable mit 2 Klassen (1 vs 2-4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3: (J3_JSABT2x=4)</td>
<td>0,119</td>
<td>2,254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B0: Intercept</th>
<th>0,001</th>
<th>0,173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline = 1 Quartil</td>
<td>24</td>
<td>91</td>
</tr>
<tr>
<td>B1: (J7_JSQMA2x=2)</td>
<td>0,486</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>0,003</td>
<td>7,187</td>
</tr>
<tr>
<td>Kein klarer linearer Trend in OR, insbes. 3+4 aber deutlich höhere OR als 1 nicht als Intervall-Variable eingeben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2: (J7_JSQMA2x=3)</td>
<td>0,003</td>
<td>6,192</td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>31</td>
</tr>
<tr>
<td>ggf. als kategoriale Variable mit 2 Klassen (1+2 vs 3+4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3: (J7_JSQMA2x=4)</td>
<td>0,006</td>
<td>1,642</td>
</tr>
<tr>
<td></td>
<td>0,483</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B0: Intercept</th>
<th>0,021</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline = 1 Quartil</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>B1: (J12_JSPRESSP2x=2)</td>
<td>0,829</td>
<td>1,148</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Kein klarer linearer Trend in OR, insbes. 4 aber höhere OR als 1 nicht als Intervall-Variable eingeben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2: (J12_JSPRESSP2x=3)</td>
<td>0,688</td>
<td>0,803</td>
</tr>
<tr>
<td></td>
<td>0,803</td>
<td></td>
</tr>
<tr>
<td>ggf. als kategoriale Variable mit 2 Klassen (1-3 vs 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3: (J12_JSPRESSP2x=4)</td>
<td>0,119</td>
<td>2,254</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B0: Intercept</th>
<th>0,000</th>
<th>0,333</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline = 1 Quartil</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>B1: (O2_AFPLABTMAXx =2)</td>
<td>0,020</td>
<td>3,666</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td>Kein linearer Trend in OR, insbes. Kat 2+4 aber deutlich höhere OR als 1 nicht als Intervall-Variable eingeben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2: (O2_AFPLABTMAXx =3)</td>
<td>0,932</td>
<td>0,954</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>ggf. als kategorische Variable mit 3 Klassen (1, 2+3 und 4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang 5

Spearman Correlations Section (Pair-Wise Deletion)

<table>
<thead>
<tr>
<th>M_10BSTAT</th>
<th>A1_TYP</th>
<th>D4_ASVSIV</th>
<th>G11_JSVPCV2</th>
<th>H9_JEVPCV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_10BSTAT</td>
<td>1</td>
<td>-0.13016</td>
<td>0.34645</td>
<td>0.344298</td>
</tr>
<tr>
<td>A1_TYP</td>
<td>0.051896</td>
<td>1</td>
<td>0.084691</td>
<td>0.031589</td>
</tr>
<tr>
<td>D4_ASVSIV</td>
<td>-0.13016</td>
<td>0.084691</td>
<td>1</td>
<td>0.02656</td>
</tr>
<tr>
<td>G11_JSVPCV2</td>
<td>0.34645</td>
<td>0.002656</td>
<td>1</td>
<td>0.605658</td>
</tr>
<tr>
<td>H9_JEVPCV2</td>
<td>0.344298</td>
<td>0.002656</td>
<td>1</td>
<td>0.605658</td>
</tr>
<tr>
<td>O5_AFBONESTB</td>
<td>-0.11527</td>
<td>-0.02371</td>
<td>0.114123</td>
<td>-0.17966</td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>0.187071</td>
<td>0.009176</td>
<td>-0.18934</td>
<td>0.05364</td>
</tr>
<tr>
<td>O8_AFABLUFTB</td>
<td>0.145179</td>
<td>-0.04327</td>
<td>0.089087</td>
<td>0.017082</td>
</tr>
<tr>
<td>A3_SGcalc2</td>
<td>0.144582</td>
<td>0.238469</td>
<td>-0.10756</td>
<td>0.243568</td>
</tr>
<tr>
<td>A3_AG2</td>
<td>0.162284</td>
<td>-0.02371</td>
<td>0.114123</td>
<td>-0.17966</td>
</tr>
<tr>
<td>B1_GGEB2</td>
<td>-0.04907</td>
<td>-0.1167</td>
<td>0.072361</td>
<td>-0.07324</td>
</tr>
<tr>
<td>C1_AFRHY2</td>
<td>0.242174</td>
<td>0.114394</td>
<td>-0.21427</td>
<td>0.076028</td>
</tr>
<tr>
<td>C2_AFRRV2</td>
<td>0.187764</td>
<td>0.20631</td>
<td>0.006865</td>
<td>-0.13229</td>
</tr>
<tr>
<td>C4_AFLER2</td>
<td>-0.21113</td>
<td>-0.09203</td>
<td>0.185779</td>
<td>-0.09959</td>
</tr>
<tr>
<td>C10_AFSCHK2</td>
<td>-0.13091</td>
<td>-0.06724</td>
<td>-0.04153</td>
<td>-0.13091</td>
</tr>
<tr>
<td>C12_AFOM2</td>
<td>0.161436</td>
<td>-0.01861</td>
<td>-0.17733</td>
<td>0.089068</td>
</tr>
<tr>
<td>C14_AFVMYO2</td>
<td>0.170328</td>
<td>-0.15354</td>
<td>-0.10124</td>
<td>0.055784</td>
</tr>
<tr>
<td>C15_AFBPRSV2</td>
<td>0.214803</td>
<td>-0.03416</td>
<td>-0.0445</td>
<td>0.253215</td>
</tr>
<tr>
<td>E8_FDWIRK2</td>
<td>0.135125</td>
<td>-0.03389</td>
<td>0.077269</td>
<td>0.150057</td>
</tr>
<tr>
<td>G8_JSISOJANEIN2</td>
<td>-0.1725</td>
<td>0.11822</td>
<td>0.227969</td>
<td>0.148373</td>
</tr>
<tr>
<td>G8_JSISOKON2</td>
<td>0.003394</td>
<td>-0.01049</td>
<td>-0.06313</td>
<td>0.19136</td>
</tr>
<tr>
<td>H7_JEVMHYO2</td>
<td>0.20676</td>
<td>0.141783</td>
<td>0.02919</td>
<td>0.254009</td>
</tr>
<tr>
<td>E2_FDMAX2x</td>
<td>0.121399</td>
<td>0.110069</td>
<td>-0.17867</td>
<td>0.15123</td>
</tr>
<tr>
<td>E2_FDMIN2x</td>
<td>0.120923</td>
<td>0.01423</td>
<td>-0.06351</td>
<td>0.180007</td>
</tr>
<tr>
<td>E3_FDGESAMTx</td>
<td>0.224976</td>
<td>0.210787</td>
<td>-0.13071</td>
<td>0.296009</td>
</tr>
<tr>
<td>G3_JSANNZx</td>
<td>0.204463</td>
<td>0.051057</td>
<td>-0.14081</td>
<td>0.134782</td>
</tr>
<tr>
<td>G4_JSNNINZx</td>
<td>0.241135</td>
<td>0.226924</td>
<td>0.001855</td>
<td>0.287008</td>
</tr>
<tr>
<td>G4_JSMAXZx</td>
<td>0.189833</td>
<td>0.250886</td>
<td>-0.01537</td>
<td>0.277266</td>
</tr>
<tr>
<td>G5_JSANNZTx</td>
<td>0.321786</td>
<td>0.282223</td>
<td>-0.13765</td>
<td>0.366703</td>
</tr>
<tr>
<td>G6_JSALTZx</td>
<td>0.132351</td>
<td>-0.06224</td>
<td>-0.1311</td>
<td>0.006667</td>
</tr>
<tr>
<td>J3_JSABT2x</td>
<td>0.16197</td>
<td>0.009448</td>
<td>-0.14336</td>
<td>0.16978</td>
</tr>
<tr>
<td></td>
<td>M_{10BSTAT}</td>
<td>A1_TYP</td>
<td>D4_ASVSIV</td>
<td>G11_JSVPCV2</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>J7_JSQMA2x</td>
<td>0.336219</td>
<td>0.036741</td>
<td>-0.23333</td>
<td>0.16855</td>
</tr>
<tr>
<td>J12_JSPRESSP2x</td>
<td>0.110566</td>
<td>-0.03258</td>
<td>0.296985</td>
<td>0.082897</td>
</tr>
<tr>
<td>O2_AFPLABTMAXx</td>
<td>0.194341</td>
<td>0.146417</td>
<td>-0.05565</td>
<td>0.16047</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M_{10BSTAT}</th>
<th>A1_TYP</th>
<th>D4_ASVSIV</th>
<th>G11_JSVPCV2</th>
<th>H9_JEVPCV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5_AFBONESTB</td>
<td>-0.11527</td>
<td>0.187071</td>
<td>0.145179</td>
<td>0.144582</td>
<td>0.162284</td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>0.02371</td>
<td>0.009176</td>
<td>-0.04327</td>
<td>0.238469</td>
<td>0.290472</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>-0.09602</td>
<td>0.275732</td>
<td>0.191668</td>
<td>0.045954</td>
<td></td>
</tr>
<tr>
<td>O8_AFABLUFTB</td>
<td>0.089596</td>
<td>0.275732</td>
<td>0.046198</td>
<td>1</td>
<td>0.731958</td>
</tr>
<tr>
<td>A3_SGcalc2</td>
<td>-0.05637</td>
<td>0.045954</td>
<td>0.074598</td>
<td>0.731958</td>
<td>1</td>
</tr>
<tr>
<td>B1_GGEB2</td>
<td>0.152556</td>
<td>-0.07987</td>
<td>-0.06362</td>
<td>-0.18739</td>
<td>-0.18458</td>
</tr>
<tr>
<td>C1_AFRHY2</td>
<td>-0.1599</td>
<td>0.078371</td>
<td>-0.12482</td>
<td>0.00979</td>
<td>0.252264</td>
</tr>
<tr>
<td>C2_AFRRV2</td>
<td>-0.03056</td>
<td>-0.14071</td>
<td>-0.03303</td>
<td>-0.06582</td>
<td>-0.03924</td>
</tr>
<tr>
<td>C4_AFLEER2</td>
<td>0.029149</td>
<td>-0.06181</td>
<td>0.084787</td>
<td>-0.29473</td>
<td>-0.35297</td>
</tr>
<tr>
<td>C10_AFSCHK2</td>
<td>0.193088</td>
<td>-0.07868</td>
<td>-0.01031</td>
<td>-0.05481</td>
<td>0.031011</td>
</tr>
<tr>
<td>C12_AFOM2</td>
<td>-0.05979</td>
<td>0.064782</td>
<td>-0.17234</td>
<td>-0.03499</td>
<td>0.00973</td>
</tr>
<tr>
<td>C14_AFMHYO2</td>
<td>-0.15578</td>
<td>0.040394</td>
<td>-0.04605</td>
<td>0.056562</td>
<td>-0.00149</td>
</tr>
<tr>
<td>C15_AFVPRRSV2</td>
<td>0.15183</td>
<td>-0.00417</td>
<td>0.088793</td>
<td>-0.04444</td>
<td>-0.07312</td>
</tr>
<tr>
<td>E8_FDWIRK2</td>
<td>0.006836</td>
<td>-0.08807</td>
<td>0.106412</td>
<td>0.020475</td>
<td>0.023979</td>
</tr>
<tr>
<td>G8_ISSISOJANEIN2</td>
<td>-0.10477</td>
<td>-0.06423</td>
<td>0.042384</td>
<td>0.222728</td>
<td>0.196779</td>
</tr>
<tr>
<td>G8_ISSISOKON2</td>
<td>-0.24209</td>
<td>0.09141</td>
<td>-0.02819</td>
<td>0.029948</td>
<td>0.120525</td>
</tr>
<tr>
<td>H7_JEVMHYO2</td>
<td>-0.09947</td>
<td>0.002933</td>
<td>0.120432</td>
<td>0.127542</td>
<td>0.179172</td>
</tr>
<tr>
<td>E2_FDMAX2x</td>
<td>-0.1426</td>
<td>0.143605</td>
<td>0.074927</td>
<td>0.429813</td>
<td>0.534861</td>
</tr>
<tr>
<td>E2_FDMIN2x</td>
<td>0.023177</td>
<td>0.175847</td>
<td>0.102529</td>
<td>0.32296</td>
<td>0.38448</td>
</tr>
<tr>
<td>E3_FDGESAMTx</td>
<td>-0.09849</td>
<td>0.067043</td>
<td>0.08703</td>
<td>0.780604</td>
<td>0.887148</td>
</tr>
<tr>
<td>G3_JSANZx</td>
<td>-0.04144</td>
<td>0.013562</td>
<td>0.046342</td>
<td>0.05575</td>
<td>0.0788</td>
</tr>
<tr>
<td>G4_JSMINZx</td>
<td>-0.14188</td>
<td>0.211255</td>
<td>0.024785</td>
<td>0.465771</td>
<td>0.377114</td>
</tr>
<tr>
<td>G4_JSMAXZx</td>
<td>-0.20109</td>
<td>0.224418</td>
<td>0.033406</td>
<td>0.44169</td>
<td>0.353855</td>
</tr>
<tr>
<td>G5_JSANZTx</td>
<td>-0.15316</td>
<td>0.209732</td>
<td>0.071428</td>
<td>0.51329</td>
<td>0.490681</td>
</tr>
<tr>
<td>G6_JSALTZx</td>
<td>-0.03687</td>
<td>0.114223</td>
<td>-0.02867</td>
<td>0.009179</td>
<td>0.013932</td>
</tr>
<tr>
<td>J3_JSABT2x</td>
<td>-0.01933</td>
<td>0.176977</td>
<td>-0.0088</td>
<td>0.173021</td>
<td>0.219009</td>
</tr>
<tr>
<td>J7_JSQMA2x</td>
<td>-0.13484</td>
<td>0.141397</td>
<td>0.155556</td>
<td>0.383706</td>
<td>0.292986</td>
</tr>
<tr>
<td>J12_JSPRESSP2x</td>
<td>0.055094</td>
<td>-0.03996</td>
<td>0.138719</td>
<td>0.149745</td>
<td>0.034642</td>
</tr>
<tr>
<td>O2_AFPLABTMAXx</td>
<td>-0.15584</td>
<td>0.247874</td>
<td>0.033156</td>
<td>0.411591</td>
<td>0.245626</td>
</tr>
<tr>
<td></td>
<td>B1_GGEB2</td>
<td>C1_AFRHY2</td>
<td>C2_AFRRV2</td>
<td>C4_AFLEER2</td>
<td>C10_AFSCHK2</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>M_10BSTAT</td>
<td>-0.04907</td>
<td>0.242174</td>
<td>0.187764</td>
<td>-0.21113</td>
<td>-0.13091</td>
</tr>
<tr>
<td>A1_TYP</td>
<td>-0.1167</td>
<td>0.114394</td>
<td>0.20631</td>
<td>-0.09203</td>
<td>-0.06724</td>
</tr>
<tr>
<td>D4_ASVSIV</td>
<td>0.072361</td>
<td>-0.21427</td>
<td>0.006865</td>
<td>0.185779</td>
<td>-0.04153</td>
</tr>
<tr>
<td>G11_JSVPCV2</td>
<td>-0.07324</td>
<td>0.076028</td>
<td>-0.13229</td>
<td>-0.09959</td>
<td>-0.13091</td>
</tr>
<tr>
<td>H9_JEVPCV2</td>
<td>-0.09493</td>
<td>0.152164</td>
<td>-0.09187</td>
<td>-0.10783</td>
<td>-0.16812</td>
</tr>
<tr>
<td>O5_AFBONESTB</td>
<td>0.152556</td>
<td>-0.01599</td>
<td>-0.03056</td>
<td>0.029149</td>
<td>0.193088</td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>-0.07987</td>
<td>0.078371</td>
<td>-0.14071</td>
<td>-0.06181</td>
<td>-0.07868</td>
</tr>
<tr>
<td>O8_AFABLUFTB</td>
<td>-0.06362</td>
<td>-0.12482</td>
<td>-0.03303</td>
<td>0.084787</td>
<td>-0.01031</td>
</tr>
<tr>
<td>A3_SGcalc2</td>
<td>-0.18458</td>
<td>0.252264</td>
<td>-0.03924</td>
<td>-0.35297</td>
<td>0.031011</td>
</tr>
<tr>
<td>A3_AG2</td>
<td>-0.18739</td>
<td>0.175891</td>
<td>0.09767</td>
<td>0.09767</td>
<td>-0.09767</td>
</tr>
<tr>
<td>C12_AFOM2</td>
<td>0.04693</td>
<td>0.118309</td>
<td>0.028776</td>
<td>-0.08115</td>
<td>0.049732</td>
</tr>
<tr>
<td>C14_AFVMHYO2</td>
<td>0.095887</td>
<td>0.103468</td>
<td>-0.20762</td>
<td>-0.01723</td>
<td>-0.03073</td>
</tr>
<tr>
<td>C15_AFVPRRSV2</td>
<td>-0.08674</td>
<td>-0.06056</td>
<td>-0.03654</td>
<td>0.104821</td>
<td>-0.11531</td>
</tr>
<tr>
<td>E8_FDWIRK2</td>
<td>-0.17632</td>
<td>-0.05226</td>
<td>-0.06023</td>
<td>0.163718</td>
<td>-0.04456</td>
</tr>
<tr>
<td>G8_JSISOJANEIN2</td>
<td>-0.21347</td>
<td>-0.04662</td>
<td>-0.07431</td>
<td>0.099871</td>
<td>0.088293</td>
</tr>
<tr>
<td>G8(JSISOKON2)</td>
<td>-0.06942</td>
<td>0.06294</td>
<td>-0.06002</td>
<td>-0.05253</td>
<td>-0.1167</td>
</tr>
<tr>
<td>H7_JEVMHYO2</td>
<td>0.047759</td>
<td>0.068649</td>
<td>0.011723</td>
<td>-0.08447</td>
<td>-0.18277</td>
</tr>
<tr>
<td>E2_FDMAX2x</td>
<td>-0.15485</td>
<td>0.16406</td>
<td>0.036272</td>
<td>-0.21799</td>
<td>-0.00256</td>
</tr>
<tr>
<td>E2_FDMIN2x</td>
<td>-0.02374</td>
<td>0.145602</td>
<td>-0.005</td>
<td>-0.21197</td>
<td>-0.02703</td>
</tr>
<tr>
<td>E3_FDGESAMTx</td>
<td>-0.17423</td>
<td>0.204484</td>
<td>-0.06533</td>
<td>-0.25223</td>
<td>-0.05969</td>
</tr>
<tr>
<td>G3_JSANZTx</td>
<td>0.026487</td>
<td>-0.04379</td>
<td>0.061321</td>
<td>-0.02556</td>
<td>-0.12278</td>
</tr>
<tr>
<td>G4_JSMINz</td>
<td>-0.12551</td>
<td>0.095127</td>
<td>-0.11447</td>
<td>-0.20974</td>
<td>-0.02199</td>
</tr>
<tr>
<td>G4_JSMAXz</td>
<td>-0.11856</td>
<td>0.147352</td>
<td>-0.09236</td>
<td>-0.24984</td>
<td>-0.08756</td>
</tr>
<tr>
<td>G5_JSANZTx</td>
<td>-0.16138</td>
<td>0.086783</td>
<td>-0.02408</td>
<td>-0.23066</td>
<td>-0.09315</td>
</tr>
<tr>
<td>G6_JSALTz</td>
<td>0.098844</td>
<td>0.041267</td>
<td>-0.09573</td>
<td>-0.07464</td>
<td>-0.04219</td>
</tr>
<tr>
<td>J3_JSABT2x</td>
<td>-0.01272</td>
<td>0.020678</td>
<td>-0.02035</td>
<td>-0.09284</td>
<td>0.056281</td>
</tr>
<tr>
<td>J7_JSQMA2x</td>
<td>-0.01025</td>
<td>0.049827</td>
<td>-0.00899</td>
<td>-0.15844</td>
<td>-0.06694</td>
</tr>
<tr>
<td>J12_JSPRESSP2x</td>
<td>0.090713</td>
<td>0.008169</td>
<td>0.095905</td>
<td>-0.06142</td>
<td>-0.01954</td>
</tr>
<tr>
<td>O2_AFPLABTMAXx</td>
<td>-0.00783</td>
<td>-0.03945</td>
<td>0.049671</td>
<td>-0.17223</td>
<td>0.002414</td>
</tr>
</tbody>
</table>

176
<table>
<thead>
<tr>
<th>C12_AFOM2</th>
<th>C14_AFVMHYO2</th>
<th>C15_AFVPRRSV2</th>
<th>E8_FDWIRK2</th>
<th>G8_JSISOJANEIN2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_10BSTAT</td>
<td>0.161436</td>
<td>0.170328</td>
<td>0.214803</td>
<td>0.135125</td>
</tr>
<tr>
<td>A1_TYP</td>
<td>-0.01861</td>
<td>-0.15354</td>
<td>-0.00416</td>
<td>-0.03389</td>
</tr>
<tr>
<td>D4_ASVSIV</td>
<td>-0.17733</td>
<td>-0.10124</td>
<td>-0.00445</td>
<td>0.077269</td>
</tr>
<tr>
<td>G11_JSVPCV2</td>
<td>0.089068</td>
<td>0.055784</td>
<td>0.253215</td>
<td>0.150057</td>
</tr>
<tr>
<td>H9_JEVPCV2</td>
<td>0.105744</td>
<td>0.124333</td>
<td>0.123752</td>
<td>0.113769</td>
</tr>
<tr>
<td>O5_AFBONES7B</td>
<td>-0.05979</td>
<td>-0.15578</td>
<td>0.15183</td>
<td>0.006836</td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>0.064782</td>
<td>0.040394</td>
<td>-0.00417</td>
<td>-0.08807</td>
</tr>
<tr>
<td>A3_TYP</td>
<td>-0.01861</td>
<td>0.094733</td>
<td>-0.04352</td>
<td>-0.03486</td>
</tr>
<tr>
<td>C1_AFRHY2</td>
<td>0.118309</td>
<td>0.103468</td>
<td>-0.06056</td>
<td>-0.05226</td>
</tr>
<tr>
<td>C2_AFRRV2</td>
<td>0.028776</td>
<td>-0.20762</td>
<td>-0.03654</td>
<td>-0.06023</td>
</tr>
<tr>
<td>C4_AFLEER2</td>
<td>-0.08115</td>
<td>0.001723</td>
<td>0.104821</td>
<td>0.163718</td>
</tr>
<tr>
<td>C10_AFSCHK2</td>
<td>0.049732</td>
<td>0.03073</td>
<td>0.11531</td>
<td>-0.04456</td>
</tr>
<tr>
<td>C12_AFOM2</td>
<td>0.17234</td>
<td>0.04605</td>
<td>0.088793</td>
<td>0.106412</td>
</tr>
<tr>
<td>C14_AFVMHYO2</td>
<td>0.094733</td>
<td>1</td>
<td>-0.07642</td>
<td>0.04441</td>
</tr>
<tr>
<td>C15_AFVPRRSV2</td>
<td>-0.04352</td>
<td>-0.07642</td>
<td>1</td>
<td>0.096498</td>
</tr>
<tr>
<td>E8_FDWIRK2</td>
<td>-0.03486</td>
<td>0.04441</td>
<td>0.096498</td>
<td>1</td>
</tr>
<tr>
<td>G8_JSISOJANEIN2</td>
<td>-0.0727</td>
<td>-0.05967</td>
<td>0.016627</td>
<td>0.263064</td>
</tr>
<tr>
<td>G10_JEVPCV2</td>
<td>0.179212</td>
<td>0.104606</td>
<td>0.027633</td>
<td>0.03333</td>
</tr>
<tr>
<td>H7_JEVMMHYO2</td>
<td>0.038233</td>
<td>0.111363</td>
<td>-0.02448</td>
<td>0.026227</td>
</tr>
<tr>
<td>E2_FDMAX2x</td>
<td>-0.06826</td>
<td>-0.01697</td>
<td>-0.01849</td>
<td>-0.04395</td>
</tr>
<tr>
<td>E2_FDMIN2x</td>
<td>-0.1599</td>
<td>-0.01376</td>
<td>-0.00655</td>
<td>0.061556</td>
</tr>
<tr>
<td>E3_FDGESAMTx</td>
<td>-0.04598</td>
<td>0.059369</td>
<td>-0.00955</td>
<td>0.040828</td>
</tr>
<tr>
<td>G3_JSANZzX</td>
<td>0.09525</td>
<td>-0.00434</td>
<td>-0.00296</td>
<td>0.058654</td>
</tr>
<tr>
<td>G4_JSMINES7X</td>
<td>0.079604</td>
<td>0.034116</td>
<td>0.045059</td>
<td>0.03476</td>
</tr>
<tr>
<td>G4_JSMAXzX</td>
<td>0.062636</td>
<td>0.037966</td>
<td>-0.00478</td>
<td>0.03083</td>
</tr>
<tr>
<td>G5_JSANZTx</td>
<td>0.014385</td>
<td>-0.0132</td>
<td>-0.02707</td>
<td>0.090603</td>
</tr>
<tr>
<td>G6_JSALTzX</td>
<td>0.018062</td>
<td>0.119665</td>
<td>-0.06039</td>
<td>0.077488</td>
</tr>
<tr>
<td>J3_JSABT2x</td>
<td>0.184735</td>
<td>0.043658</td>
<td>0.10962</td>
<td>-0.03978</td>
</tr>
<tr>
<td>J7_JSQMAX2x</td>
<td>-0.02392</td>
<td>0.087442</td>
<td>0.019371</td>
<td>0.011964</td>
</tr>
<tr>
<td>J12_JSPRESSP2x</td>
<td>-0.01121</td>
<td>0.026725</td>
<td>0.033711</td>
<td>0.053637</td>
</tr>
<tr>
<td>O2_AFPLABTMAXx</td>
<td>-0.08969</td>
<td>0.04966</td>
<td>-0.09684</td>
<td>-0.05924</td>
</tr>
<tr>
<td></td>
<td>G8_JSISOKON2</td>
<td>H7_JEVMHYO2</td>
<td>E2_FDMAX2x</td>
<td>E2_FDMIN2x</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>M_10BSTAT</td>
<td>0.003394</td>
<td>0.20676</td>
<td>0.121399</td>
<td>0.120923</td>
</tr>
<tr>
<td>A1_TYP</td>
<td>-0.01049</td>
<td>0.141783</td>
<td>0.110069</td>
<td>0.01423</td>
</tr>
<tr>
<td>D4_ASVSIV</td>
<td>-0.06313</td>
<td>0.02919</td>
<td>-0.17867</td>
<td>-0.06351</td>
</tr>
<tr>
<td>G11_JSVPCV2</td>
<td>0.19136</td>
<td>0.254009</td>
<td>0.15123</td>
<td>0.180007</td>
</tr>
<tr>
<td>H9_JEVPCV2</td>
<td>0.207368</td>
<td>0.468624</td>
<td>0.075165</td>
<td>0.136677</td>
</tr>
<tr>
<td>O5_AFBONESTB</td>
<td>-0.24209</td>
<td>-0.09947</td>
<td>-0.1426</td>
<td>0.023177</td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>0.09141</td>
<td>0.002933</td>
<td>0.143605</td>
<td>0.175847</td>
</tr>
<tr>
<td>O8_AFABLULFTB</td>
<td>-0.02819</td>
<td>0.120432</td>
<td>0.074927</td>
<td>0.102529</td>
</tr>
<tr>
<td>A3_SGcalc2</td>
<td>0.029948</td>
<td>0.127542</td>
<td>0.429813</td>
<td>0.32296</td>
</tr>
<tr>
<td>A3_AG2</td>
<td>0.120525</td>
<td>0.179172</td>
<td>0.543861</td>
<td>0.38448</td>
</tr>
<tr>
<td>B1_GGEB2</td>
<td>-0.06942</td>
<td>0.047759</td>
<td>-0.09947</td>
<td>-0.02374</td>
</tr>
<tr>
<td>C1_AFRHY2</td>
<td>0.06294</td>
<td>0.068649</td>
<td>0.16406</td>
<td>0.145602</td>
</tr>
<tr>
<td>C2_AFRRV2</td>
<td>-0.06002</td>
<td>0.011723</td>
<td>0.036272</td>
<td>-0.005</td>
</tr>
<tr>
<td>C4_AFLEER2</td>
<td>-0.05253</td>
<td>-0.08447</td>
<td>-0.21799</td>
<td>-0.21197</td>
</tr>
<tr>
<td>C10_AFSCHK2</td>
<td>-0.1167</td>
<td>-0.18277</td>
<td>-0.00256</td>
<td>-0.02703</td>
</tr>
<tr>
<td>C12_AFOM2</td>
<td>0.179212</td>
<td>0.038233</td>
<td>-0.06826</td>
<td>-0.1599</td>
</tr>
<tr>
<td>C14_AFVMHYO2</td>
<td>0.104606</td>
<td>0.111363</td>
<td>-0.01697</td>
<td>-0.01376</td>
</tr>
<tr>
<td>C15_AFVPRRSV2</td>
<td>0.027633</td>
<td>-0.02448</td>
<td>-0.01849</td>
<td>-0.00655</td>
</tr>
<tr>
<td>E8_FDWIRK2</td>
<td>-0.03333</td>
<td>0.026227</td>
<td>-0.04395</td>
<td>0.061556</td>
</tr>
<tr>
<td>G8_JSISOJANEIN2</td>
<td>0.082348</td>
<td>0.026093</td>
<td>0.136445</td>
<td>0.098409</td>
</tr>
<tr>
<td>G8_JSISOKON2</td>
<td>0.036975</td>
<td>0.036975</td>
<td>0.229074</td>
<td>0.199235</td>
</tr>
<tr>
<td>H7_JEVMHYO2</td>
<td>0.036975</td>
<td>1</td>
<td>0.009666</td>
<td>0.059739</td>
</tr>
<tr>
<td>E2_FDMAX2x</td>
<td>0.229074</td>
<td>0.009666</td>
<td>1</td>
<td>0.391747</td>
</tr>
<tr>
<td>E2_FDMIN2x</td>
<td>0.199235</td>
<td>0.059739</td>
<td>0.391747</td>
<td>1</td>
</tr>
<tr>
<td>E3_FDGESAMTx</td>
<td>0.060872</td>
<td>0.17491</td>
<td>0.515237</td>
<td>0.382279</td>
</tr>
<tr>
<td>G3_JSANZx</td>
<td>-0.04846</td>
<td>0.046036</td>
<td>0.100546</td>
<td>-0.07213</td>
</tr>
<tr>
<td>G4_JSMINz</td>
<td>0.070732</td>
<td>0.108209</td>
<td>0.330276</td>
<td>0.305988</td>
</tr>
<tr>
<td>G4_JSMAXz</td>
<td>0.138232</td>
<td>0.122709</td>
<td>0.297115</td>
<td>0.319595</td>
</tr>
<tr>
<td>G5_JSANz</td>
<td>0.035378</td>
<td>0.123397</td>
<td>0.426964</td>
<td>0.286467</td>
</tr>
<tr>
<td>G6_JSALTz</td>
<td>0.118023</td>
<td>-0.09565</td>
<td>0.045253</td>
<td>0.101611</td>
</tr>
<tr>
<td>J3_JSABT2x</td>
<td>0.186083</td>
<td>-0.04749</td>
<td>0.146329</td>
<td>0.118836</td>
</tr>
<tr>
<td>J7_JSQMA2x</td>
<td>0.120929</td>
<td>0</td>
<td>0.365508</td>
<td>0.259511</td>
</tr>
<tr>
<td>J12_JSPRESS2x</td>
<td>-0.04796</td>
<td>0.085111</td>
<td>0.087693</td>
<td>0.152885</td>
</tr>
<tr>
<td>O2_AFPLABTMAXx</td>
<td>0.046177</td>
<td>0.108892</td>
<td>0.372086</td>
<td>0.322598</td>
</tr>
<tr>
<td></td>
<td>G3_JSANZZx</td>
<td>G4_JSMINZx</td>
<td>G4_JSMAXZx</td>
<td>G5_JSANZTx</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>M_10BSTAT</td>
<td>0.204463</td>
<td>0.241135</td>
<td>0.189833</td>
<td>0.321786</td>
</tr>
<tr>
<td>A1_TYP</td>
<td>0.051057</td>
<td>0.226924</td>
<td>0.250886</td>
<td>0.288223</td>
</tr>
<tr>
<td>D4_ASVSIV</td>
<td>-0.14081</td>
<td>0.001855</td>
<td>-0.01537</td>
<td>-0.13765</td>
</tr>
<tr>
<td>G11_JSVPCV2</td>
<td>0.134782</td>
<td>0.287008</td>
<td>0.277266</td>
<td>0.366703</td>
</tr>
<tr>
<td>H9_JEVPCV2</td>
<td>0.05893</td>
<td>0.253966</td>
<td>0.24702</td>
<td>0.230838</td>
</tr>
<tr>
<td>O5_AFBONESTB</td>
<td>-0.04144</td>
<td>-0.14188</td>
<td>-0.20109</td>
<td>-0.15316</td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>0.013562</td>
<td>0.211255</td>
<td>0.224418</td>
<td>0.209732</td>
</tr>
<tr>
<td>G8_JSISOJANEIN2</td>
<td>-0.00315</td>
<td>0.182374</td>
<td>0.053192</td>
<td>0.192434</td>
</tr>
<tr>
<td>G8_JISOJANEIN2</td>
<td>-0.04846</td>
<td>0.070732</td>
<td>0.138232</td>
<td>0.035378</td>
</tr>
<tr>
<td>C1_AFRHY2</td>
<td>-0.04379</td>
<td>0.095127</td>
<td>0.147352</td>
<td>0.086783</td>
</tr>
<tr>
<td>C2_AFRRV2</td>
<td>0.061321</td>
<td>-0.11447</td>
<td>-0.09236</td>
<td>-0.02408</td>
</tr>
<tr>
<td>C4_AFLEER2</td>
<td>-0.02556</td>
<td>-0.20974</td>
<td>-0.24984</td>
<td>-0.23066</td>
</tr>
<tr>
<td>C10_AFSCHK2</td>
<td>-0.12278</td>
<td>-0.02199</td>
<td>-0.08756</td>
<td>-0.09315</td>
</tr>
<tr>
<td>C12_AFOM2</td>
<td>0.09525</td>
<td>0.079604</td>
<td>0.062636</td>
<td>0.014385</td>
</tr>
<tr>
<td>C14_AFMHYO2</td>
<td>-0.00434</td>
<td>0.034116</td>
<td>0.037966</td>
<td>-0.0132</td>
</tr>
<tr>
<td>C15_AFMHYO2</td>
<td>-0.00296</td>
<td>0.045059</td>
<td>-0.00478</td>
<td>-0.02707</td>
</tr>
<tr>
<td>E8_FDWIRK2</td>
<td>0.058654</td>
<td>0.03476</td>
<td>-0.03083</td>
<td>0.090603</td>
</tr>
<tr>
<td>G8_JISOJANEIN2</td>
<td>-0.00315</td>
<td>0.182374</td>
<td>0.053192</td>
<td>0.192434</td>
</tr>
<tr>
<td>G8_JISOJANEIN2</td>
<td>-0.04846</td>
<td>0.070732</td>
<td>0.138232</td>
<td>0.035378</td>
</tr>
<tr>
<td>H7_JEVMMHYO2</td>
<td>0.046036</td>
<td>0.108209</td>
<td>0.122709</td>
<td>0.12397</td>
</tr>
<tr>
<td>E2_FDMAX2x</td>
<td>0.100546</td>
<td>0.330276</td>
<td>0.297115</td>
<td>0.426964</td>
</tr>
<tr>
<td>E2_FDMIN2x</td>
<td>-0.07213</td>
<td>0.305988</td>
<td>0.319595</td>
<td>0.286467</td>
</tr>
<tr>
<td>E3_FDGESAMTx</td>
<td>0.032581</td>
<td>0.450102</td>
<td>0.390604</td>
<td>0.526133</td>
</tr>
<tr>
<td>G3_JSANZZx</td>
<td>1</td>
<td>-0.09677</td>
<td>-0.08951</td>
<td>0.407321</td>
</tr>
<tr>
<td>G4_JSMINZx</td>
<td>-0.09677</td>
<td>1</td>
<td>0.885382</td>
<td>0.727929</td>
</tr>
<tr>
<td>G4_JSMAXZx</td>
<td>-0.08951</td>
<td>0.885382</td>
<td>1</td>
<td>0.710184</td>
</tr>
<tr>
<td>G5_JSANZTx</td>
<td>0.407321</td>
<td>0.727929</td>
<td>0.710184</td>
<td>1</td>
</tr>
<tr>
<td>G6_JSALTZx</td>
<td>0.333981</td>
<td>0.007464</td>
<td>0.047716</td>
<td>0.167839</td>
</tr>
<tr>
<td>J3_JSABT2x</td>
<td>0</td>
<td>0.280374</td>
<td>0.296155</td>
<td>0.243545</td>
</tr>
<tr>
<td>J7_JSQMA2x</td>
<td>0.14407</td>
<td>0.39208</td>
<td>0.366677</td>
<td>0.401265</td>
</tr>
<tr>
<td>J12_JSPRESSP2x</td>
<td>-0.07789</td>
<td>0.16126</td>
<td>0.150238</td>
<td>0.111454</td>
</tr>
<tr>
<td>O2_AFPLABTMxx</td>
<td>0.084768</td>
<td>0.362839</td>
<td>0.361425</td>
<td>0.460994</td>
</tr>
<tr>
<td></td>
<td>J3_JSABT2x</td>
<td>J7_JSQMA2x</td>
<td>J12_JSPRESSP2x</td>
<td>O2_AFPLABTMAXx</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>M_10BSTAT</td>
<td>0.16197</td>
<td>0.336219</td>
<td>0.110566</td>
<td>0.194341</td>
</tr>
<tr>
<td>A1_TYP</td>
<td>0.009448</td>
<td>0.036741</td>
<td>-0.03258</td>
<td>0.146417</td>
</tr>
<tr>
<td>D4_ASVSIV</td>
<td>-0.14336</td>
<td>-0.23333</td>
<td>0.296985</td>
<td>-0.05565</td>
</tr>
<tr>
<td>G11_JSVPCV2</td>
<td>0.16978</td>
<td>0.16855</td>
<td>0.082897</td>
<td>0.16047</td>
</tr>
<tr>
<td>H9_JEVPCV2</td>
<td>0.148021</td>
<td>0.010463</td>
<td>0.132999</td>
<td>0.027379</td>
</tr>
<tr>
<td>O5_AFBONESTB</td>
<td>-0.01933</td>
<td>-0.13484</td>
<td>0.055094</td>
<td>-0.15584</td>
</tr>
<tr>
<td>O7_AFZULUFTB</td>
<td>0.176977</td>
<td>0.141397</td>
<td>-0.03996</td>
<td>0.247874</td>
</tr>
<tr>
<td>O8_AFABLUFTRB</td>
<td>-0.0088</td>
<td>0.155556</td>
<td>0.138719</td>
<td>0.033156</td>
</tr>
<tr>
<td>A3_SGcalc2</td>
<td>0.173021</td>
<td>0.383706</td>
<td>0.149745</td>
<td>0.411591</td>
</tr>
<tr>
<td>A3_AG2</td>
<td>0.219009</td>
<td>0.292986</td>
<td>0.034642</td>
<td>0.245626</td>
</tr>
<tr>
<td>B1_GGEB2</td>
<td>-0.01272</td>
<td>-0.01025</td>
<td>0.090713</td>
<td>-0.00783</td>
</tr>
<tr>
<td>C1_AFRHY2</td>
<td>0.020678</td>
<td>0.049827</td>
<td>0.008169</td>
<td>-0.03945</td>
</tr>
<tr>
<td>C2_AFRRV2</td>
<td>-0.02035</td>
<td>-0.00899</td>
<td>0.095905</td>
<td>0.049671</td>
</tr>
<tr>
<td>C4_AFLEER2</td>
<td>-0.09284</td>
<td>-0.15844</td>
<td>-0.06142</td>
<td>-0.17223</td>
</tr>
<tr>
<td>C10_AFSCHK2</td>
<td>0.056281</td>
<td>-0.06694</td>
<td>-0.01954</td>
<td>0.002414</td>
</tr>
<tr>
<td>C12_AFOM2</td>
<td>0.184735</td>
<td>-0.02392</td>
<td>-0.01121</td>
<td>-0.08969</td>
</tr>
<tr>
<td>C14_AFVMHYO2</td>
<td>0.043658</td>
<td>0.087442</td>
<td>0.026725</td>
<td>-0.04966</td>
</tr>
<tr>
<td>C15_AFVPRRSV2</td>
<td>0.10962</td>
<td>0.019371</td>
<td>0.033711</td>
<td>-0.09684</td>
</tr>
<tr>
<td>E8_FDWIRK2</td>
<td>-0.03978</td>
<td>0.011964</td>
<td>0.053637</td>
<td>-0.05924</td>
</tr>
<tr>
<td>G8_ISISJANEIN2</td>
<td>0</td>
<td>0</td>
<td>0.14407</td>
<td>0.084768</td>
</tr>
<tr>
<td>G8_JUISOKON2</td>
<td>0.186083</td>
<td>0.120929</td>
<td>-0.04796</td>
<td>0.046177</td>
</tr>
<tr>
<td>H7_JEVMHYO2</td>
<td>-0.04749</td>
<td>0</td>
<td>0.085111</td>
<td>0.108892</td>
</tr>
<tr>
<td>E2_FDMAX2x</td>
<td>0.146329</td>
<td>0.365508</td>
<td>0.087693</td>
<td>0.372086</td>
</tr>
<tr>
<td>E2_FDMIN2x</td>
<td>0.118836</td>
<td>0.259511</td>
<td>0.152885</td>
<td>0.322598</td>
</tr>
<tr>
<td>E3_FDGESAMTx</td>
<td>0.206855</td>
<td>0.338892</td>
<td>0.135463</td>
<td>0.265597</td>
</tr>
<tr>
<td>G3_ISANZx</td>
<td>0</td>
<td>0.14407</td>
<td>-0.07789</td>
<td>0.084768</td>
</tr>
<tr>
<td>G4_JSMINZx</td>
<td>0.280374</td>
<td>0.39208</td>
<td>0.16126</td>
<td>0.362839</td>
</tr>
<tr>
<td>G4_JSMAXZx</td>
<td>0.296155</td>
<td>0.366677</td>
<td>0.150238</td>
<td>0.361425</td>
</tr>
<tr>
<td>G5_ISANZTx</td>
<td>0.243545</td>
<td>0.401265</td>
<td>0.111454</td>
<td>0.460994</td>
</tr>
<tr>
<td>G6_JSALTz2x</td>
<td>0.003999</td>
<td>0.104114</td>
<td>-0.21525</td>
<td>0.007039</td>
</tr>
<tr>
<td>J3_JSABT2x</td>
<td>1</td>
<td>0.228874</td>
<td>-0.2754</td>
<td>0.076105</td>
</tr>
<tr>
<td>J7_JSQMA2x</td>
<td>0.228874</td>
<td>1</td>
<td>-0.16394</td>
<td>0.287469</td>
</tr>
<tr>
<td>J12_JSPRESSP2x</td>
<td>-0.2754</td>
<td>-0.16394</td>
<td>1</td>
<td>0.115412</td>
</tr>
<tr>
<td>O2_AFPLABTMAXx</td>
<td>0.076105</td>
<td>0.287469</td>
<td>0.115412</td>
<td>1</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis
Abbildung 1: Anteile *M. hyopneumoniae*-PCR positiver und negativer Saugferkel.. 54
Abbildung 2: Anteile *M. hyopneumoniae*-PCR positiver und negativer
Saugferkelbestände.. 55
Abbildung 3: Nachweishäufigkeit von *M. hyopneumoniae* mittels PCR an
Nasentupfern von jeweils 20 Saugferkeln pro Bestand (n = 125).......................... 56
Abbildung 4: Nachweishäufigkeit von *M. hyopneumoniae* mittels PCR an von sich
selbst entnommenen Nasentupfern von 108 Landwirten................................. 57
Abbildung 5: Genetik der Sauen.. 61
Tabellenverzeichnis

Tabelle 1: Zyklusparameter .. 45
Tabelle 2: Interpretation der *real-time* PCR .. 46
Tabelle 3: Allgemeine Angaben zu den Beständen ... 59
Tabelle 4: Mittlere Altersstruktur der Sauenherde ... 61
Tabelle 5: Managementmerkmale ... 64
Tabelle 6: Haltungsparameter .. 72
Tabelle 7: Impfungen ... 77
Tabelle 8: Regelmäßige Behandlungen ... 87
Tabelle 9: Multivariates Regressionsmodell zur Untersuchung verschiedener allgemeiner Herden- und Managementparameter auf das Vorkommen von *M. hyopneumoniae* beim Saugferkel ... 93
Tabelle 10: Multivariates Regressionsmodell zu Untersuchung des Einflusses verschiedener Hygienemaßnahmen auf das Vorkommen von *M. hyopneumoniae* beim Saugferkel ... 94
Tabelle 11: Multivariates Regressionsmodell zur Untersuchung des Einflusses der Haltung der Saugferkel auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln ... 95
Tabelle 12: Multivariates Regressionsmodell zur Untersuchung des Einflusses verschiedener Behandlungen der Saugferkel auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln ... 97
Tabelle 13: Univariate Betrachtung zur Untersuchung des Einflusses von der Art des bei den Ferkeln eingesetzten Impfstoffes gegen *M. hyopneumoniae* (one- vs. two-shot-Vakzine) auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln .. 98
Tabelle 14: Multivariates Regressionsmodell zur Untersuchung des Einflusses der Haltung von Aufzuchtferkeln auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln ... 99
Tabelle 15: Multivariates Regressionsmodell zur Untersuchung des Einflusses verschiedener Managementfaktoren bei der Jungsaueneingliederung auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln ... 100
Tabelle 16: Multivariables Regressionsmodell zur Untersuchung des Einflusses der Behandlungen von Remonten auf das Vorkommen von *M. hyopneumoniae* bei Saugferkeln ... 101

Tabelle 17: Nachweis (n-PCR) von *M. hyopneumoniae* aus Nasentupfern von Saug- und Absetzferkeln ... 106
Danksagung

Frau Prof. Dr. E. große Beilage danke ich herzlich für die Überlassung des Themas und die jederzeit gewährte freundliche Unterstützung und Betreuung.

Herrn Dr. Heiko Nathues, PhD danke ich für die konstruktive Kritik, die ständige Hilfsbereitschaft bei der Anfertigung und für Spaß an der Arbeit.

Herrn Prof. Dr. M. Doherr und Frau Dr. A. Fahrlion von der Vetsuisse Fakultät, Universität Bern danke ich für die großartige und zeitnahe Unterstützung bei der statistischen Auswertung.

Besonders herzlich möchte ich mich bei allen beteiligten Ringberatern und Landwirten für ihre tatkräftige Unterstützung bedanken, durch sie wurde diese Arbeit erst möglich.

Dem gesamten Team der Außenstelle danke ich für die herzliche Aufnahme, viele schöne gemeinsame Stunden und Spaß bei der Arbeit.

Meinen Eltern und meinem Bruder sowie Bea danke ich für Ihre Unterstützung in verschiedenster Art und Weise, nicht nur im Bezug auf diese Arbeit.

Klaus danke ich für seine zähnen Nerven und seine unermüdliche Gelassenheit besonders in der Endphase dieser Arbeit.

Ein ganz besonderer Dank geht an Beschi: für ihre Hilfe bei der Probenentnahme und –bearbeitung, für ständige Rufbereitschaft, moralische Unterstützung und eine tolle gemeinsame Zeit in und um Bakum. Du bist die Beste!