Funktionalisierung eines Biomaterials zur programmierten Stammzelldifferenzierung mittels sequentieller Wachstumsfaktorfreisetzung

INAUGURAL – DISSERTATION
zur Erlangung des Grades einer Doktorin der Veterinärmedizin -Doctor medicinae veterinariae- (Dr. med. vet.)
vorgelegt von
Maren Brunnemann
aus Bremen

Hannover 2012
Wissenschaftliche Betreuung: Prof. Dr. med. vet. Heiner Niemann, Friedrich-Löffler-Institut Mariensee
Prof. Dr. rer. biol. hum. Wiltrud Richter, Universitätsklinikum Heidelberg

1. Gutachter: Prof. Dr. med. vet. Heiner Niemann
2. Gutachter: Prof. Dr. med. vet. Ingo Nolte

Tag der mündlichen Prüfung: 20.11.2012
Meiner lieben Familie
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.1 Protein-Imprägnierung und Lyophilisation des Trägers</td>
<td>21</td>
</tr>
<tr>
<td>2.7.2 Bindung von Proteinen an den Träger durch Biotin/Streptavidin</td>
<td>21</td>
</tr>
<tr>
<td>2.7.3 Matrix gekoppelter, nicht-viraler Gen-Transfer</td>
<td>22</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Material</td>
<td>23</td>
</tr>
<tr>
<td>3.2 Methoden</td>
<td>28</td>
</tr>
<tr>
<td>Ergebnisse</td>
<td>53</td>
</tr>
<tr>
<td>4.1 Vorversuche</td>
<td>53</td>
</tr>
<tr>
<td>4.1.1 Kultivierung mesenchymaler Stammzellen</td>
<td>53</td>
</tr>
<tr>
<td>4.1.2 Gewinnung und Aufreinigung von Rohkollagen Typ II</td>
<td>54</td>
</tr>
<tr>
<td>4.1.3 Herstellung der Kollagenmatrices durch Lyophilisation</td>
<td>55</td>
</tr>
<tr>
<td>4.1.4 Erste Besiedlungsversuche der Typ II Kollagen Scaffolds</td>
<td>56</td>
</tr>
<tr>
<td>4.2 Hauptversuche</td>
<td>58</td>
</tr>
<tr>
<td>4.2.1 Aufrüstung der Kollagenmatrix durch Lyophilisierung mit verschiedenen Wachstumsfaktoren (FGF-2, TGFβ-1)</td>
<td>58</td>
</tr>
<tr>
<td>4.2.2 Biotin/Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II – Geistlich Biomaterials)</td>
<td>60</td>
</tr>
<tr>
<td>4.2.3 Biotin/Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II – porcin)</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4 Kombinierte Wachstumsfaktorbindung (FGF-2, TGFβ-1, IGF-1)</td>
<td>73</td>
</tr>
<tr>
<td>4.2.5 Kombinierte Wachstumsfaktorfreisetzung (die Rolle von FGF-2)</td>
<td>79</td>
</tr>
<tr>
<td>Zusammenfassung der Ergebnisse</td>
<td>83</td>
</tr>
<tr>
<td>4.3 Vorversuche</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1 Vorversuche</td>
<td>83</td>
</tr>
<tr>
<td>Diskussion</td>
<td>88</td>
</tr>
<tr>
<td>5.1 Diskussion der Methodik</td>
<td>89</td>
</tr>
<tr>
<td>5.2 Diskussion der Analysemethoden</td>
<td>94</td>
</tr>
<tr>
<td>5.3 Diskussion der Ergebnisse</td>
<td>95</td>
</tr>
<tr>
<td>5.4 Limitierungen der Studie</td>
<td>110</td>
</tr>
<tr>
<td>5.5 Fazit und Ausblick</td>
<td>111</td>
</tr>
<tr>
<td>Zusammenfassung</td>
<td>114</td>
</tr>
<tr>
<td>Summary</td>
<td>116</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td>118</td>
</tr>
<tr>
<td>Anhang</td>
<td>148</td>
</tr>
</tbody>
</table>
9.1 Protokolle .. 148
9.2 Versuchsprotokolle der Hauptversuche... 160
10 Danksagung.. 169
Abkürzungsverzeichnis

Allgemeine Abkürzungen

Abb. Abbildung(en)
Aqua dest. destilliertes Wasser (*aqua destillata*)
AK Antikörper
ALP Alkalische Phosphatase
BMP *bone morphogenic protein*
BSA Rinderserum Albumin (*bovine serum albumin*)
CD Oberflächenantigen (*cluster of differentiation*)
CO₂ Kohlenstoffdioxid
DMEM *Dulbeccos modified eagle medium*
DNA Desoxyribonucleinsäure
EDAC Ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride
et al. *et alii*
EZM extrazelluläre Matrix
GAG Glykosaminoglykane
FCS Fötales Kälberserum (*foetal calf serum*)
FGF Fibroblasten-Wachstumsfaktor (*fibroblast growth factor*)
H₂O₂ Wasserstoffperoxid
IGF Insulin-ähnlicher Wachstumsfaktor (*insulin-like growth factor*)
Lsg. Lösung
MSC Mesenchymale Stammzellen (*mesenchymal stem cells*)
MW Mittelwert
NaCl Natriumchlorid
NHS N-hydroxysuccinimide
PBS Phosphatgepufferte Salzlösung *(phosphate buffered saline)*
PFA Paraformaldehyd
RT Raumtemperatur
SEM Standardfehler *(standard error of the mean)*
Tab. Tabelle
TGF-β Transformierender Wachstumsfaktor *(transforming growth factor)*
Ü/N über Nacht
Vol Volumen
XEM Xylolersatzmittel

Einheiten und Vorsätze

- cm Zentimeter
- g Gramm
- h Stunde
- kDa Kilodalton
- sec Sekunde
- µ mikro
- m mili
- n nano
- ph Negativer dekadischer Logarithmus der H_3O^+-Ionen Konzentration
- °C Grad Celsius
1 Einleitung

Im Einzelnen soll ein Faktor durch Lyophilisation auf den Kollagenträger aufgebracht werden, um dann mit einem Maximum innerhalb der ersten 1-3 Tage freigesetzt zu werden. Durch Matrix-assozierten Gentransfer mit einem Plasmid, das für einen 2. Faktor kodiert, soll eine transiente autokrine Induktion mit einem Maximum innerhalb

1.1 Zielsetzung dieser Arbeit

Mit einer einmaligen Bolusgabe dieser Wachstumsfaktoren in Form rekombinanter Proteine, lässt sich aufgrund eines schnellen An- und Abflutens und einer schnellen Proteindegradation lediglich ein schlecht steuerbarer und zeitlich begrenzter Wirkspiegel erzielen (CHUMA et al. 2004). Für eine optimale Steuerung und Induktion der chondrogenen Differenzierung von mesenchymalen Stammzellen wäre nicht nur eine prolongierte lokale Anreicherung, sondern auch eine zeitlich kontrollierte Freisetzung der Wachstumsfaktoren, analog der embryonalen Gewebs-Entwicklung, sinnvoll. Eine mögliche Steuerung dieser prolongierten und sequentiellen Freisetzung der Wachstumsfaktoren soll mit Hilfe eines entsprechenden Trägers (Kollagen Schwamm) erreicht werden, an den die
verschiedenen Faktoren mit unterschiedlichen Bindungstechniken gekoppelt werden. Folgende Schlüsseltechnologien sind hierbei von Bedeutung und wurden bereits für andere Fragestellungen verwendet:

1. Protein-Imprägnierung und Lyophilisation des Trägers (SCHNETTLER et al. 2003)
2. Bindung von Proteinen an den Träger durch Biotin/Streptavidin Kopplung (DAVIS et al. 2006; MILLER et al. 2011)
3. Matrix gekoppelter, nicht-viraler Gen-Transfer (CAPITO u. SPECTOR 2003); (GOOMER et al. 2000); (PARTRIDGE u. OREFFO 2004); (SAMUEL et al. 2002).

Abb. 1: Schematische Darstellung der angestrebten sequentiellen Wachstumsfaktorfreisetzung nach entsprechender Anreicherung der Zielproteine auf dem Kollagen-Träger.

Jede der Techniken verfügt über eine charakteristische zeitliche Freisetzungskinetik:
Faktor 1 wird durch Lyophilisation an den Träger gebunden. **Faktor 2** wird über Matrix gekoppelten Gen-Transfer autokrin von den eingebrachten Stammzellen synthetisiert. **Faktor 3** wird durch Biotin/Streptavidin an den Träger gebunden und entsprechend dessen Degradation freigesetzt.
1.2 Perspektiven dieser Arbeit

Die Perspektive die dieses Vorhaben bietet, ist die Funktionalisierung eines Biomaterials, das biologisch abbaubar ist und das je nachdem, welches Gewebe generiert werden soll, mit verschiedenen Stammzellentitäten und Faktoren ausrüstbar ist. Die Freisetzungskinetik dieser Faktoren soll steuerbar werden, indem unterschiedliche Bindungsmethoden an das Trägermaterial, sowie eine DNA-basierte Zellprogrammierung gewählt werden, so dass zeitlich versetzte Wirksamkeiten erreichbar sind.

Sollte sich die Entwicklung und Herstellung eines derartigen Bioimplantates mit einer kaskadenartigen Freisetzung verschiedener Wachstumsfaktoren in definierter Dosis und zeitlich versetzt realisieren lassen, so stünde für eine Vielzahl an medizinischen Krankheitsbildern, die insbesondere mit strukturellen Schäden und Verlust von funktionellem Gewebe einhergehen, ein universell programmierbarer Zellträger zur Verfügung, um die endogene Geweberegeneration zu steigern. Dieser wäre mit einer deutlichen Kostenreduktion im Vergleich zur in vitro Fertigung weitgehend ausgereifter Ersatzgewebe verbunden. Im Fokus möglicher weiterer klinischer Anwendungen und Zielgewebe stehen Schäden an peripheren Nerven, aber auch des Zentralen Nervensystems und des Rückenmarks bei frischen traumatischen Querschnittslähmungen sowie Schäden und Substanzdefekte an Knochen, Bändern, Sehnen und Bandscheiben.
2 Literaturübersicht

2.1 Knorpelgewebe

2.1.1 Eigenschaften und Funktion

Aufbau

Tabelle 1: Strukturkomponenten und Zusammensetzung des hyalinen Gelenkknorpels (GOTTERBARM et al. 2003)

1-10%	Chondrozyten
70-80%	Wasser
15-30%	Trockensubstanz

60%	Kollagene
90-95%	Kollagen Typ-II
2%	Kollagen Typ-IX

20-25%	Proteoglykane
90%	Aggrekan
10%	nichtaggregierende Proteoglykane

| 15-20% | nichtkollagene Proteine + Glykoproteine |

2.1.2 Der Chondrozyt

2.1.3 Bestandteile der extrazellulären Matrix: Kollagene

2.1.4 Bestandteile der extrazellulären Matrix: Proteoglykanе
2.1.5 Bestandteile der extrazellulären Matrix: Glykoproteine und nicht kollagene Proteine

2.1.6 Zonale Gliederung

II. Es folgt eine Übergangszone, in der die Chondrozyten einen runden Phänotyp annehmen und sich zu Chondronen zusammen lagern.

IV. Am Übergang zum subchondralen Knochen und von der Radiärzone durch die sog. „Tidemark“ getrennt, befindet sich die Zone des mineralisierten Knorpels.
2.2 Reparatur und Regeneration von Knorpeldefekten

2.3 Therapieverfahren

2.3.1 Konservative Behandlung

Mit einer konservativen Behandlung sind die Gabe von Medikamenten, intraartikuläre Injektionen sowie krankengymnastische und physikalische Behandlung gemeint. Medikamentöse Substanzen besitzen keinen tatsächlichen Effekt auf die Proliferation der Chondrozyten und haben somit auch kaum eine positive Wirkung auf die Gewebeheilung bzw. Reparatur. Sie können aber die Krankheitssymptome lindern und zu einer temporären Verbesserung der Lebensqualität beitragen.

2.3.2 Operative Behandlung

2.3.3 Mikrofrakturierung

2.3.4 Osteochondrale Transplantation

2.3.5 Tissue Engineering – Transplantation von körpereigenen Knorpelzellen

2.4 Adulte mesenchymale Stammzellen

Aufgrund der schwierigen Isolation und geringen Ausbeute von Chondrozyten, werden mittlerweile andere Zelltypen erforscht, die zur Knorpelregeneration geeignet sein könnten.

Eine Alternative zu Chondrozyten stellen pluripotente mesenchymale Stammzellen (MSC) eine vielversprechende Zellquelle dar. Sie lassen sich leicht in großer Zahl aus dem Markraum isolieren und anschließend im Monolayer vermehren. Mit Hilfe von Wachstumsfaktoren kann dann eine Differenzierung zu Chondrozyten stimuliert werden (MACKAY et al. 1998; WINTER et al. 2003). Die Reimplantation dieser Stammzellen erfolgt dann auf einer dreidimensionalen Matrix. Trägermaterialien haben hierbei den Vorteil, dass genau definierte Zellmengen eingesetzt werden können und eine gezielte Zellverteilung möglich ist. Sie müssen aber auch gewisse Anforderungen erfüllen. Von vorrangiger Bedeutung ist die Biokompatibilität, d.h. die
Fähigkeit sich im Körpergewebe zu integrieren ohne immunologische oder inflammatorische Reaktionen hervorzurufen. Des Weiteren spielt die Struktur der Matrix eine wichtige Rolle. Es muss eine entsprechende Porosität und Oberflächenbeschaffenheit vorliegen, damit die Zellen in der Lage sind in die Matrix einzudringen, sich anzulagern und extrazelluläre Matrix zu bilden.

Die zwei wichtigsten Komponenten beim Tissue Engineering sind also zum einen die verwendete Zellpopulation und zum anderen die Wahl des Trägermaterials.

Des Weiteren wurde nachgewiesen, dass MSCs die Fähigkeit besitzen an den Ort von Gewebsverletzungen zu migrieren und stark immun-supprimierend zu wirken, was sie für erfolgreiche autologe und möglicherweise auch heterologe Transplantationen nutzbar erscheinen lässt (LE BLANC u. PITTENGER 2005).

Bis zum heutigen Zeitpunkt konnten noch keine spezifischen Marker für MSCs entdeckt werden, was die in vitro Identifizierung als schwierig gestaltet. Um MSCs dennoch charakterisieren zu können, bedient man sich einiger ihrer typischen

2.4.1 Chondrogene Differenzierung mesenchymaler Stammzellen

2.5 Tissue Engineering: Das Kollagen Matrix-Gerüst

2.6 Wachstumsfaktoren zur chondrogenen Differenzierung

Mit über 50 Wachstumsfaktoren und Morphogenen steht ein breites Spektrum hochpotenter Mediatoren zur Vermittlung der Zellanlockung, der Zellvermehrung bis hin zur kontrollierten Differenzierung und endgültigen Funktionalisierung zur Verfügung. Unserem Ansatz liegt zugrunde, die Annahme, dass bei der Reparatur und Regeneration von Geweben embryonale Entwicklungsvorgänge rekapituliert werden. Schlüsselmoleküle der Knorpelzeldifferenzierung und Stimulatoren der knorpelspezifischen extrazellulären Matrixsynthese stellen Wachstumsfaktoren der TGF-β Superfamilie (Transforming Growth Factor-β), der IGFs (Insulin-like Growth Factors) und der bFGF/FGF 2 (Basic Fibroblastic Growth Factor) dar.

2.6.1 TGF-β1

TGF-ß wird hier als Schlüsselfaktor zur Induktion der Chondrozytendifferenzierung eingesetzt.

2.6.2 IGF-1

Bei IGF handelt es sich um Peptide mit niedrigem Molekulargewicht (7.5 kDa) (WROBLEWSKI u. EDWALL-ARVIDSSON 1995). Die zwei wichtigsten Isoformen, IGF-1 und IGF-2, setzten sich aus 70 bzw. 67 Aminosäuren zusammen und besitzen

2.6.3 FGF-2

2.7 Wachstumsfaktorbindung an den Träger

Um eine lokale Anreicherung der Wachstumsfaktoren am Defektor zu erreichen, ist es notwendig, verschiedene Faktoren mit unterschiedlichen Techniken an den Träger zu binden und wieder freizusetzen.

2.7.1 Protein-Imprägnierung und Lyophilisation des Trägers

2.7.2 Bindung von Proteinen an den Träger durch Biotin/Streptavidin Kopplung

2.7.3 Matrix gekoppelter, nicht-viraler Gen-Transfer
3 Material und Methoden

3.1 Material

3.1.1 Chemikalien und Reagenzien

<table>
<thead>
<tr>
<th>Chemikalien und Reagenzien</th>
<th>Hersteller und Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Agarose</td>
<td>PeqLab Biotechnologie Gmbh, Erlangen</td>
</tr>
<tr>
<td>BSA</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Dexamethason</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>DMEM high Glucose</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>DMEM low Glucose</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>EDAC</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Carl Roth Gmbh & Co KG, Karlsruhe</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Pharmacia Biotech, Wien, Österreich</td>
</tr>
<tr>
<td>FCS</td>
<td>Biochrom AG, Berlin</td>
</tr>
<tr>
<td>Ficoll-Paque Plus</td>
<td>GE Healthcare, Uppsala, Schweden</td>
</tr>
<tr>
<td>Hämalaun nach Meyer</td>
<td>Chroma Gmbh & Co KG, Münster</td>
</tr>
<tr>
<td>HCL</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Hico-Mic</td>
<td>Hirtz & Co., Köln</td>
</tr>
<tr>
<td>Insulin</td>
<td>Sanofi-Aventis, Frankfurt am Main</td>
</tr>
<tr>
<td>Insulin-Transferrin-Selenit (ITS)</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>L-Ascorbinsäure-2-Phosphat</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>NaOH</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Natriumpyruvat</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Paraffin</td>
<td>Leica Microsystems GmbH, Nussloch</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>PFA</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Tris base</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
</tbody>
</table>
Material und Methoden

Trypan Blau: Sigma-Aldrich, Steinheim
Trypsin EDTA: Biochrom AG, Berlin
Türk’sche Lösung: Sigma-Aldrich, Steinheim
Streptavidin: Fisher Scientific GmbH
Streptavidin Phycoerythrin: R&D Systems, Wiesbaden-Nordenstadt
N-Hydroxy-Succinimide (NHS): Sigma-Aldrich, Steinheim
XEM: Vogel GmbH, Giessen

3.1.2 Puffer und Lösungen

PBS Puffer: 8 g/l NaCl, 0.2 g/l KCl, 1.44 g/l Na$_2$HPO$_4$, 0.24 g/l KH$_2$PO$_4$, pH 7.4

PFA (4 %): 40 g/l PFA in PBS

TAE (50x): 242 g/l Tris base, 57.1 g/l Eisessig, 100 m/l 0.5 M EDTA pH 8

TBS (10x): 8.77 g/l NaCl, 6.07 g/l Tris

3.1.3 Kulturmedien

3.1.3.1 Expansionsmedien für MSCs

Standard Expansionsmedium: DMEM 4.5 g/l Glucose, 40 % MCDB 201, 2 % FCS, 0.02 µM Dexamethason, 0.1 mM Ascorbinsäure, 1 % Penicillin/Streptomycin, 2 % ITS, 10 ng/ml EGF, 10 ng/ml PDGF-BB

Embryonal-Stammzell Medium (ES): DMEM 4.5 g/l Glucose, 11 g/l Pyruvat ohne Glutamin, 1 % L-Glutamin, 1 % nicht-essentielle Aminosäuren, 0.1 % ß-Mercaptoethanol
3.1.3.2 Induktionsmedium
Chondrogenes Induktionsmedium
DMEM 4.5 g/l Glucose, 1 % ITS, 1.25 mg/ml BSA, 0.35 mM Prolin, 0.1 µM Dexamethason, 0.17 mM Ascorbinsäure, 1 mM Natriumpyruvat, 10 ng/ml TGFβ-3

3.1.4 Enzyme und Wachstumsfaktoren
- rh FGF basic: R&D Systems, Wiesbaden-Nordenstadt
- rh IGF-1: R&D Systems, Wiesbaden-Nordenstadt
- Biotiniertes IGF-1: IBT Systems, Reutlingen
- Pepsin: Sigma-Aldrich, Steinheim
- Proteinase K: Roche, Mannheim
- rh TGFβ-1: R&D Systems, Wiesbaden-Nordenstadt
- rh TGFβ-3: R&D Systems, Wiesbaden-Nordenstadt
- Trypsin/EDTA: Biochrom AG, Berlin

3.1.5 Antikörper
- Maus anti-human Kollagen Typ I (Klon II-4C11): MP Biomedicals GmbH, Eschwege
- Ziege anti-Maus IgG, Biotin-konjugiert: Dianova GmbH, Hamburg
3.1.6 Farblösungen

Soweit nicht anders beschrieben, waren alle in der vorliegenden Arbeit verwendeten Farblösungen gekaufte Fertiglösungen.

Anilinblau, Fisher Scientific GmbH
2.5 g Anilin Blau + 2 ml Eisessig ad 100 ml Aqua dest.

Eosin; Firma Chroma Waldeck
konz. wässrig 2%ig; 1:1 mit H₂O und Essigsäure

Fast-Green; Firma Merck
0,16 g Fast-Green + 0,8 ml Essigsäure ad 400 ml Aqua dest.

SafraninO; Firma Chroma Waldeck
0,8 g SafraninO + 4 ml Essigsäure ad 400 ml Aqua dest.

3.1.7 Kits

Fugene Transfection Reagent Roche Applied Science, Mannheim
GenePorter 2 Transfection Reagent Genlantis, San Diego, USA
Human FGF basic Immunoassay R&D Systems, Wiesbaden-Nordenstadt
Quantikine
Human IGF-1 Immunoassay Quantikine R&D Systems, Wiesbaden-Nordenstadt
Human TGF-1 Immunoassay Quantikine R&D Systems, Wiesbaden-Nordenstadt
JB-4 Embedding Kit Polysciences, Inc.; Eppelheim
Picogreen Assay dsDNA kit Invitrogen, Oregon, USA
3.1.8 Verbrauchsmaterialien

Biopsy Punch Hautstanzen: Stiefel Laboratorium, Offenbach
Deckgläser: Gerhard Menzel GmbH, Braunschweig
96 Deep Well Platten: Fisher Scientific, Niederau
Einweg-Skalpelle: Feather Safety Razor Co., LTD Japan
Einwegklingen Typ 818: R.JUNG GmbH, Nussloch
Handschuhe (Latex): Paul Hartmann AG, Heidenheim
Handschuhe (Nitril): Ansell LTD, Red Bank, USA
Objektträger: Gerhard Menzel GmbH, Braunschweig
Reaktionsgefäße bis 2 ml: Eppendorf AG, Hamburg
Reaktionsgefäße 15 ml, 50 ml: BD Biosciences GmbH, Heidelberg
Serologische Pipetten: BD Biosciences GmbH, Heidelberg
Sterilfilter: Fisher Scientific, Niederrau
12 Well Multischalen (beschichtet): Neolab, Heidelberg
Zellkulturflaschen/-platten: Greiner bio-one GmbH, Essen

3.1.9 Geräte

AxioCam HRC: Carl Zeiss AG, Oberkochen
AxioCam MRC: Carl Zeiss AG, Oberkochen
Feinwaage: Sartorius AG, Göttingen
Heizblock: UniEquip GmbH, Planegg
Mikroskop Axioplan2 Imaging: Carl Zeiss AG, Oberkochen
Mikroskop Axiovert 25: Carl Zeiss AG, Oberkochen
Nanodrop ND-100 Spectrophotometer: Kisker Biotech GbR, Steinfurt
Neubauer-Zählkammer: Brand GmbH & Co KG, Wertheim
3.2 Methoden

3.2.1 Isolierung und Kultivierung humaner MSC aus dem Knochenmark

3.2.1.1 Isolierung humaner MSC aus dem Knochenmark

Humane mesenchymale Stammzellen (bone marrow-derived mesenchymal stem cells, BMSC) wurden aus 2-10 ml humanen Knochenmarks mittels einer Dichtegradienten-Zentrifugation (Ficoll-Paque Plus) isoliert. Das Knochenmark wurde zunächst 2x mit dem zweifachen Volumen PBS gewaschen und bei 650x g für 10 min zentrifugiert. Das Zellpellet wurde im Anschluss im zweifachen Ausgangsvolumen mit PBS aufgenommen und vorsichtig auf 20 ml Ficoll in einem 50 ml Falcon geschichtet. Durch 30 min Zentrifugation bei 1400x g ohne Bremse kam es zu einer Trennung der einzelnen Zellfraktionen. Nach der Zentrifugation sammelten sich hierbei die Lymphozyten und Monozyten entsprechend ihrer spezifischen Dichte in der Interphase zwischen dem Überstand (Plasma/Thrombozyten) und dem Ficoll-Gradienten an. Erythrozyten und Granulozyten sedimentierten als rotes Zellpellet am Boden. Die Interphase („Buffy-

3.2.1.2 Kultivierung humaner MSC

Je nach Experiment wurden die Zellen in unterschiedlichen Expansionsmedien kultiviert und unterschiedlich lang expandiert.

DMEM-Medium:
Unmittelbar nach der Isolierung wurden die Zellen in einer Dichte von 500.000 Zellen pro cm² ausgesät (Passage 0) und bei 37 °C und 5 % CO₂ kultiviert (Standardbedingungen). 24 Stunden nach der Isolierung aus dem Knochenmark wurde das Medium aus der Flasche abgenommen und die Zellen 1x mit ca. 5 ml PBS gewaschen. Dadurch konnten die nicht adhärennten Zellen entfernt werden. Anschließend wurde frisches DMEM-Medium + 4 ng/ml FGF hinzugegeben. Ein Mediumwechsel erfolgte alle 3 Tage. Sobald die Zellen in der Kulturflasche eine Konfluenz von 80 % erreichten, wurde das Medium aus der Flasche abgesaugt, die Zellen mit 5 ml PBS gewaschen, mittels 1 % Trypsin/EDTA von der Oberfläche gelöst und erneut in DMEM-Medium ausgesät (Passage 1; 4500-5000 Zellen/cm²). Um das Ablösen der Zellen zu beschleunigen, wurden die Flaschen für 3 min in den Inkubator gelegt und anschließend leicht geschüttelt. Je nach Versuchsanforderungen wurden die Zellen bis zur 4. Passage kultiviert.

ES-Medium:
0.1 % Gelatine wurde in PBS aufgekocht und anschließend in eine Kulturflasche pipettiert (10 ml pro Flasche). Nach einer 30-minütigen Polymerisationsphase wurde das Gelatine-PBS Gemisch abgesaugt und unmittelbar das ES-Medium + 4 ng/ml FGF hinzugegeben, um ein Austrocknen des Flaschenbodens zu verhindern. Die MSC wurden nach der Isolierung in einer Dichte von 125.000 Zellen/cm² in die mit Gelatine beschichteten Flaschen ausgesät (Passage 0) und unter den genannten

3.2.2 Kollagen Scaffolds

3.2.2.1 Isolierung und Aufreinigung von Rohkollagen aus Schweinegelenken

3.2.2.2 Kollagen Typ II von Geistlich Biomaterials

Schweine Rohkollagen Typ II wurde von Geistlich Biomaterials, Schweiz zur Verfügung gestellt und bis zur Weiterverarbeitung in einem Trockenexsikkator aufbewahrt.

3.2.2.3 Scaffold Herstellung und chemische Quervernetzung (cross-linking)

Die Herstellung der Kollagenmembranen erfolgte nach einem bereits etablierten Verfahren (O'BRIEN et al. 2004). Das entsprechende Rohkollagen wurde mit 10 mM Essigsäurelösung versetzt (1-2 % (w/v) Kollagen Typ II) und anschließend bei 1500 g durchmischt, bis eine gleichmäßige, visköse Kollagensuspension entstand. Während des gesamten Prozesses wurde diese Kollagensuspension auf Eis gelagert. Um die Suspension zu entgasen, wurde sie in 50 ml Falcons überführt und bei 4 °C, 5 min und 4600x g zentrifugiert. Gasblasen stiegen hierdurch an die Oberfläche des Falcons und die visköse Suspension (50 ml) konnte nun ohne Lufteinschlüsse in eine entsprechende Form (Aluminium, 8 cm x 12 cm, Wandstärke 0.8 mm) gebracht und in einem Gefriertrocknungsgerät (Virtis AdVantage 2.0 XL) durch entsprechende Programmsteuerung kontrolliert, stufenweise bis auf eine Temperatur von -10 °C tiefgefroren und anschließend lyophilisiert werden. Hierdurch entstand eine hochporöse interkonnekierende Kollagen-Matrix (O'BRIEN et al. 2004).

Zur Weiterverarbeitung wurde das Kollagen mit einem großen Histo-Skalpell in 2 mm dicke, gleichmäßige Streifen geschnitten. Im Anschluss erfolgten die Sterilisation und eine erste physikalische Quervernetzung des Kollagenschwammes im Vakuumofen bei 105 °C für 24 h. Mit Hilfe von Biopsiestanzen (Stiefel Laboratorium) konnten dann unter einer sterilen Werkbank kreisrunde, 8x2 mm große Scaffolds ausgestanzt werden. Es folgte dann eine weitere chemische Quervernetzung dieser Kollagen-Scaffolds um die mechanische Stabilität und Degradierbarkeit zu steuern. Diese Lösung setzte sich zusammen aus Ethyl-3(3-dimethylaminopropyl) carbodiimide
Material und Methoden

hydrochloride (EDAC; Sigma Chemical Co., St.Louis, MO) und N-hydroxysuccinimide (NHS; Sigma). Das Verhältnis von EDAC:NHS:Carbonsäuregruppen des Kollagens zueinander betrug 2.5:1:5. In zahlreichen Vorversuchen hatte dieses Verhältnis zu einer ausreichend mechanisch stabilen Quervernetzung geführt, die eine Chondrogenese der MSCs noch zuließ (VICKERS et al. 2010). In dieser Lösung wurden die Scaffolds für 30 min inkubiert (1 ml/Scaffold). Um im Anschluss überschüssige cross-linking Lösung zu entfernen, wurden die Scaffolds 2x mit sterlem PBS gewaschen und vor der Besiedlung mittels Filterpapier getrocknet.

3.2.2.4 Besiedlung der Typ II Kollagen Scaffolds

Die Besiedlung erfolgte mit 1 Mio MSCs pro Scaffold, aufgenommen in 20 µl chondrogenem Medium. Um eine gleichmäßige Verteilung der Zellen innerhalb des Scaffolds zu erreichen, erfolgte eine beidseitige Besiedlung. Zunächst wurden die Scaffolds in chondrogenes Medium ohne Zusätze eingelegt und dann auf Filterpapier getrocknet. Zur Besiedlung wurden die Zellen in mit Agarose beschichteten 12 well Platten überführt und zunächst auf eine Seite des Scaffolds 10 µl Suspension (0.5 x 10⁶ MSCs in chondrogenem Medium ohne Zusätze) aufgetragen, nach 10 min Inkubation unter Standardbedingungen das Scaffolds umgedreht und dann die restlichen 10 µl auf die zweite Seite aufgetragen. Die Zellbesiedelten Matrices wurden in einer mit Agarose beschichteten 12 well Platte platziert und nach 10 min Inkubation vorsichtig, ohne die Zellen aufzuschwemmen, chondrogenes Medium hinzugegeben (pro well 2 ml). Inkubiert wurde bei 37 °C und 5 % CO₂. Mediumwechsel (2ml/Well) fand bis zum Ende der Kultivierungsperiode alle 3 Tage statt.

3.2.2.5 Scaffold Kontraktion

Alle drei Tage, bei jedem Mediumwechsel, wurde der Durchmesser der Zellbesiedelten Scaffolds ermittelt. Hierzu wurde die Größe der Scaffolds durch kreisrunde Schablonen mit Durchmessern von 1 mm bis 10 mm bestimmt, indem die
besiedelten Scaffolds in den durchsichtigen Wells auf die Schablonen passender Größe deckungsgleich aufgelegt wurden.

3.2.2.6 Bestimmung der Porendurchmesser

3.2.3 Aufbringen der Wachstumsfaktoren

3.2.3.1 Lyophilisation (Gefriertrocknung)

3.2.3.2 Matrix assoziierter Gen-Transfer durch DNA-Plasmid-Nano-Liposomen mit FGF-2, TGF-β1 und IGF-1

In diesem Versuchsansatz sollten die gewählten Wachstumsfaktoren durch Transfektion der MSCs über die für sie codierende cDNA von den Zellen selbst produziert und auto-/parakrin sezerniert werden. Die clonierten Plasmid-Konstrukte enthielten neben der für das Protein codierenden DNA auch noch ein vorgeschaltetes Promotorelement. Dieses stellte sicher, dass das entsprechende codierende Gen in Säugerzellen, die das Plasmid aufgenommen haben, in Protein umgesetzt wurde. Für die Aufnahme der Plasmid-DNA in Säugerzellen wurde eine nicht-virale Transfektionsmethode gewählt. Damit wurde das Plasmid nicht „nackt“, sondern in Liposomen (Geneporter2 - Transfektions Reagents, Genlantis, USA) verpackt in die Zellen geschleust.

Im ersten Arbeitsschritt wurden zunächst die notwendigen Plasmide hergestellt. Diese Plasmide für die o.g. Wachstumsfaktoren wurden mit dem Expressionsvektor pcDNA3.1 Zeo kloniert und anschließend durch Sequenzy analyse auf Ihre Integrität überprüft. Mittels Elektroporation wurden die einzelnen Plasmide in Monolayer kultivierte UMR106 Zellen eingebracht und die exprimierten Proteine im Überstand nachgewiesen. Funktionsfähige Plasmide für die nicht-viralen, Kollagenmatrix gebundenen 3D-Transfektionsversuche lagen damit vor (Daten nicht gezeigt).

Im zweiten Arbeitsschritt konnte der 3D-Matrix assoziierter Gentransfer nach den Herstellerangaben des Geneporter Transfektions Reagent durchgeführt werden. Anhand des Protokolls wurde der Geneporter 2 Reagent mit serumfreien Medium gelöst und anschließend 5 min lang mit 10 µg Plasmid inkubiert. Hierbei bildeten sich
die gewünschten nano-Lipid/DNA Komplexe. 50 % dieser Lipid/DNA-Komplexe wurden zuerst mittels EDAC-cross-linking an den Kollagen Träger gebunden und 50 % frisch vor der Besiedelung mit 1 Mio Stammzellen aufgebracht. Durchgeführt wurde der Gentransfer mit 10 µg Plasmid DNA kodierend für TGF-ß1 und IGF-1.

3.2.3.3 Biotin/Streptavidin Koppelung an den Kollagenträger

3.2.4 Biochemische Analytik

Die Zell-besiedelten Scaffolds wurden nach Beendigung der Kultivierungsperiode mit PBS gewaschen und bis zur DNA-bzw. GAG Analyse bei -20 °C gelagert. Bevor der GAG-bzw. DNA-Gehalt der Scaffolds bestimmt werden konnte, mussten sie zunächst lyophilisiert und über Nacht mit Proteinase K (100 µg/ml; Sigma) und Tris-HCl-Puffer (50 mM Tris, 1 mM CaCl₂, pH 8.0) bei 60 °C verdaut werden (1 ml/Scaffold).

3.2.4.1 Bestimmung des DNA-Gehaltes

Material und Methoden

3.2.4.2 Berechnung des GAG-Gehaltes

Für den Standard wurde Chondroitin Sulfat (Stock 10 mg/ml) 1:20 mit TE verdünnt und eine absteigende Reihe beginnend bei 500 µg/ml bis hin zu 7.8125 µg/ml pipettiert. 30 µl der zuvor mit Proteinase K verdauten Proben wurden zusammen mit dem Standard in eine 96well Platte aufgetragen. Im Anschluss erfolgte die Pipettierung von 200 µl der DMMB Färbelösung pro Well und die Messung der Absorption bei 530 nm am Wallac 1420 multilabel counter (EG&G WALLAC, Finnland).

3.2.5 Immunologische Analytik

3.2.5.1 IGF-1 ELISA (Insulin-like growth factor 1)

Zur Bestimmung des IGF-1 Gehaltes im Kulturüberstand wurde die quantitative Proteinbestimmung mittels ELISA angewandt. Die Arbeitsvorschrift für die Bestimmung von IGF-1 (Human IGF-1-Kit, R&D Systems, Minneapolis, MN, USA) ist im Folgenden kurz dargestellt:

In die, bereits mit monoklonalen Antikörpern (spezifisch für IGF-1) beschichtete Platte, wurden je 150 µl des Verdünnungsmittels RD1-53 und je 50 µl der Standardlösungen, bzw. der Proben pipettiert. Es folgte eine zweistündige Inkubation.
bei 2 - 8 °C. Anschließend wurde die Platte 4x mit Waschpuffer gewaschen und gründlich auf Papiertüchern ausgeklopft, um die Waschpufferreste zu entfernen. Anschließend wurden je 200 µl des IGF-1-Konjugats (Enzymgebundener polyklonaler Antikörper, spezifisch für IGF-1) zugegeben und nochmals für 1 Stunde bei 2 - 8 °C inkubiert. Nach erneutem gründlichem Waschen wurden 200 µl Substratlösung zugesetzt und für 30 min unter Lichtausschluss inkubiert. Nach Zugabe von 100 µl Stopplösung, wurde die Platte im ELISA MRX Lesegerät (Dynatech Laboratories, Chantilly, USA) bei 450/570 nm gemessen. Die Standardreihe wurde mit dem beigefügten humanen IGF-1 in einer Verdünnungsreihe von 0.094 ng/ml bis 60 ng/ml hergestellt.

3.2.5.2 TGF-ß1 ELISA (Transforming-growth-factor-ß1)

3.2.5.3 FGF-2 ELISA (Fibroblast-growth-factor 2)

In die bereits mit Antikörper (spezifisch für FGF-2) beschichtete Platte wurden je 100 µl des Verdünnungsmittels RD1-43 und je 100 µl der Standardlösungen, bzw. der Proben pipettiert. Nach Inkubation für zwei Stunden bei Raumtemperatur wurde die Platte 4x mit Waschpuffer gewaschen und anschließend, zur Entfernung aller
Material und Methoden

3.2.6 Histologische Untersuchung

3.2.6.1 Fixierung und Einbettung der Scaffold-Konstrukte

Die Scaffold-Konstrukte wurden 2 h in 4 % PFA fixiert, jeweils 2 h in 70 %, 96 % und 100 % Isopropanol entwässert und 2 Stunden lang in 100 % Aceton inkubiert, um den Übergang von Alkohol zu Paraffin zu erleichtern. Anschließend wurden die Scaffolds 2 h im flüssigen Paraffin infiltriert und eingebettet.

3.2.6.2 Anfertigung von Paraffinschnitten

3.2.6.3 Hämatoxylin-/Eosin-Übersichtsfärbung (H&E)

Zur Durchführung:
Die Paraffinschnitte wurden zunächst 4 x 4 min in XEM (Xylolersatzmittel) entparaffiniert, in einer fallenden Alkoholreihe rehydriert (100 %, 96 %, 70 % und 50 % Isopropanol jeweils 5 min) und nachfolgend 2 x 3 min in Aqua dest. gewaschen. Die Zellkerne wurden 6 min lang mit Hämalaun nach Meyer gefärbt und 3 min in Aqua dest. gewaschen. Anschließend wurden die Schnitte mit 1 % Eosin-Lösung 1-2 min lang gegengefärbt und 3x in Aqua dest. gespült. Die Ausdifferenzierung der Färbung erfolgte mittels aufsteigender Alkoholreihe (96 %, 2x 100 % Isopropanol, jeweils 10-30 sek), gefolgt von einer 4 x 3-minütigen Entwässerung in XEM. Alle Präparatschnitte wurden mit Hico-Mic (LMV Medizintechnik) eingedeckelt.

Färbergebnis:
Zellkerne: blau
Hyaline Knorpel-Interzellularksubstanz: blaßblau-violett
Cytoplasma: blaßrosa
Kollagene Bindegewebsfasern: rot
Elastische Bindegewebsfasern: blaßrosa
Erythrozyten: rot (bis orange)

3.2.6.4 SafraninO/FastGreen
Zur Durchführung:
Die Paraffinschnitte wurden zunächst 4 x 4 min in XEM (Xylolersatzmittel) entparaffiniert, in einer fallenden Alkoholreihe rehydriert (100 %, 96 %, 70 % und 50 % Isopropanol jeweils 5 min) und nachfolgend 2 x 3 min in Aqua dest. gewaschen. Es folgte eine 10 minütige SafraninO Färbung, eine Spülung mit dest. Wasser und eine anschließende Gegenfärbung für 10-15 sek mit FastGreen. Die Schnitte wurden daraufhin 3 x mit Aqua dest gespült. Die Ausdifferenzierung der Färbung erfolgte mittels aufsteigender Alkoholreihe (96 %, 2x 100 % Propanol, jeweils 10-30 sek). Es folgte eine 4 x 10-minütige Entwässerung in XEM und das anschließende Eindeckeln mit Hico-Mic (LMV Medizintechnik)

Färbeergebnis:
Knorpel und saure Mucopolysaccharide: orange-rot
Hintergrund: grün

3.2.6.5 Kollagen II Immunhistologie

Tag 1:
Die Paraffinschnitte wurden zunächst 4 x 4 min in XEM (Xylolersatzmittel) entparaffiniert, in einer fallenden Alkoholreihe rehydriert (100 %, 96 %, 70 % und 50 % Propanol jeweils 5 min) und nachfolgend 5 min in Aqua dest. und anschließend in PBS (Phosphat Buffered Saline = Phosphat gepufferte Kochsalzlösung) gewaschen. Alle nachfolgenden Schritte wurden in einer „feuchten Kammer“ durchgeführt. In einer Plastikbox wurde durch Einlegen von wassergetränkten Tüchern eine hohe
Luftfeuchtigkeit erzeugt und dadurch ein Austrocknen der Gewebeschnitte während der langen Inkubationszeiten verhindert. Durch Verdau mit entsprechenden Enzymen wurden die Epitope im Gewebe aufgebrochen und für die Antikörper zugänglich gemacht. Zwischen den nachfolgenden Schritten wurden die Präparatschnitte jeweils 2-3x 2 min in PBS gewaschen. Der Verdau erfolgte mit 4 mg/ml Hyaluronidase/PBS (pH 5.5) für 15 min und mit 1 mg/ml Pronase/PBS (pH 7.4) für 30 min bei 37 °C. Unspezifische Antikörperreaktion wurde mit Hilfe einer 5 % BSA/PBS-Lösung für 30 min bei RT geblockt. Ein monoklonaler Maus anti-Human Kollagen Typ II Primärantikörper wurde anschließend aufgetragen und über Nacht bei 4 °C inkubiert. Der Primärantikörper wurde zuvor 1:1000 in 1 % BSA/PBS verdünnt.

Tag 2:
Zwischen den darauffolgenden Schritten wurden die Präparatschnitte jeweils 3x 5 min in TBS gewaschen. Der Biotin-konjugierter Ziege anti-Maus Antikörper wurde 1:500 in TBS verdünnt und nachfolgend für 30 min bei RT auf den Schnitten inkubiert. Es folgte eine 30-minütige Inkubation mit Alkalischer Phosphatase (Vector Kit; nach Herstellerangaben 30 min vor Gebrauch anmischen). Das Entwickeln der alkalischen Phosphatase erfolgte mit Fast Red für 10-15 min (1 Tablette lösen in 2 ml 0,1 M Tris/HCL; pH 8,2). Die Schnitte wurden daraufhin 3x mit Aqua dest. gewaschen und die Zellkerne 3 min mit Hämalaun nach Mayer gegengefärbt. Anschließend wurden die Präparatschnitte 15 min in Leitungswasser gebläut und in AquaTex (Merck) eingedeckelt.

3.2.6.6 Anilinblau Färbung
Zur Messung der Porendurchmesser, müssen die Scaffolds zuvor mit Anilinblau Lösung gefärbt werden. Dazu wurden die Schnitte für 2 min in Anilinblau Lösung inkubiert und anschließend für 1 min in 2 % Essigsäure platziert. Es folgte 5-10x eintunken in 95 % Alkohol, bis der Großteil der Hintergrundfärbung nicht mehr sichtbar war. Zuletzt wurden die Schnitte 5-10x in 100 % Alkohol gewaschen und in AquaTex (Merck) eingedeckelt.
3.2.6.7 Biotin-Nachweis der biotinylierten Kollagen Typ II Scaffolds mittels HRPO-konjugierten Streptavidin

Um eine erfolgreiche Biotinylierung der Scaffolds direkt nachweisen zu können, wurde folgender Versuch durchgeführt:
Die Paraffinschnitte wurden zunächst 4 x 5 min in XEM (Xylolersatzmittel) entparaffiniert, in einer fallenden Alkoholreihe rehydriert (100 %, 96 %, 70 % und 50 % Propanol jeweils 5 min) und nachfolgend 5 min in TBS gespült. Anschließend erfolgte eine 30-minütige Inkubation bei RT mit 1 % H₂O₂ in TBS (2,5 ml H₂O₂ auf 250 ml TBS). Nachdem 3x für jeweils 2 min mit TBS gespült und nachfolgend 2 % BSA in TBS (0,2 g auf 10 ml) aufgetragen wurde, konnten die Schnitte nun für 2h in eine feuchten Kammer gelegt werden. Das BSA wurde anschließend vorsichtig abgeklopft und 3x für jeweils 2 min mit TBS gespült. Es folgte die Inkubation mit HRPO-konjugierten Streptavidin (2 µg/ml) über Nacht bei 4 °C in einer feuchten Kammer. Nach 3-maligen Spülen für jeweils 2 min in TBS folgte die Entwicklung mit DAB (Substrat) für 30 min bei RT im Dunkeln. Zuletzt wurden die Schnitte noch 2 x 5 min mit Aqua dest. gewaschen und in AquaTex (Merck) eingedeckt.

3.2.6.1 Biotin-Nachweis der selbstisolierten Typ II Scaffolds mittels Streptavidin- Phycoerythrin

Ein weiterer direkter Nachweis der Biotinylierung erfolgte mittels Immunfluoreszenz. Die Paraffinschnitte der selbstisolierten Scaffolds sowie die der Geistlich Scaffolds wurden hierfür zunächst 4 x 5 min in XEM (Xylolersatzmittel) entparaffiniert, in einer fallenden Alkoholreihe rehydriert und anschließend 5 min in Aqua dest. und weitere 5 min in PBS gespült. Im Anschluss wurden 50 µl einer 1:20 verdünnten Streptavidin-Phycoerythrin Lösung (100 µg/ml) pro Schnitt aufgetragen. Die Inkubation erfolgte für 45 min im Dunkeln bei 4 °C. Nach der Inkubation wurden die Schnitte in PBS
gewaschen, kurz mit Aqua dest. gespült und anschließend mit AquaTex (Merck) eingedeckt. Die Auswertung erfolgte am Immunfluoreszenzmikroskop.

3.2.7 Versuchsanleitung der Hauptversuche

Folgende Versuche wurden im Laufe der Arbeit durchgeführt:

3.2.7.1 Aufrüstung der Kollagenmatrix durch Lyophilisierung mit verschiedenen Wachstumsfaktoren (FGF-2, TGF-β1)

Material und Methoden

1. FGF-2 Gruppe 1 µg FGF-2 auflyophilisiert; 10 ng/ml TGF-ß1 im chondrogenen Medium

2. TGF-ß1 Gruppe 1 µg TGFß auflyophilisiert; ohne TGF-ß1 im chondrogenen Medium

3. FGF-2 / TGF-ß1 Gruppe 1 µg FGF-2 + 1 µg TGFß aufllyophilisiert; ohne TGF-ß1 im chondrogenen Medium

4. Kontrollgruppe anstelle von Wachstumsfaktoren nur PBS auflyophilisiert; 10 ng/ml TGF-ß1 im chondrogenen Medium

Tab. 2: Zusammensetzung der Versuchsgruppen; insgesamt MSCs von 4 humanen Spendern (n=4), pro Spender 4 Scaffolds. Kultivierungsduer 3 und 21 Tage/3 Wochen.

Auswertung

GAG/DNA
Um die Glykosaminoglykan- sowie die DNA-Menge ermitteln zu können, wurde an Tag 3 und 21 aus jeder Gruppe ein Scaffold bei -20 °C weggefahren. Am Ende der Kultivierungsperiode wurden die Scaffolds über Nacht mit Proteinase K verdaut und anschließend mittels DMMB- und Picogreen Assay ausgewertet.

Freisetzungskinetik
Um die Releasekinetik der aufgebrachten Wachstumsfaktoren zu ermitteln, wurden alle drei Tage bei jedem Wechsel die Medienüberstände gesammelt und bis zum Ende der Kultivierungsperiode bei -20 °C weggefahren. Am Ende der Kultivierungsperiode konnten dann mittels IGF-1 ELISA und TGF-ß1 ELISA die Wachstumsfaktormenge in den Überständen gemessen werden.

Histologie
Ergänzend zu der im DMMB-Assay ermittelten Proteoglykanmenge, wurde der Einfluss der aufgebrachten Wachstumsfaktoren auf die Differenzierung der humanen MSCs untersucht. Histologisch wurden die chondrogene Differenzierung und die Ablagerung der Proteoglykane in der extrazellulären Matrix dargestellt. Nach 3
Wochen wurde hierfür aus jeder Gruppe ein Scaffold mit SafraninO/FastGreen gefärbt.

3.2.7.2 Aufrüstung der Kollagenmatrix mit DNA-Nano-Liposomen zum 3-D Matrix assoziierten nicht viralen Gentransfer

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGF-2 Gruppe</td>
<td>10 μg FGF-2 Plasmid pro Scaffold, TGF-ß1 im chondrogenen Medium</td>
</tr>
<tr>
<td>TGF-ß1 Gruppe</td>
<td>10 μg TGF-ß1 Plasmid pro Scaffold, ohne TGF-ß1 im chondrogenen Medium</td>
</tr>
<tr>
<td>LV Gruppe</td>
<td>Leervektor ohne Faktor codierende DNA, TGF-ß1 im chondrogenen Medium</td>
</tr>
</tbody>
</table>

Tab. 3: Zusammensetzung der Versuchsgruppen; insgesamt 6 Spender (n=6), pro Spender 5 Scaffolds. Kultivierungsduer 3, 14, 28 Tage/4 Wochen.

Auswertung

Kontraktion der Scaffolds

Um die Interaktion der Zellen mit den Scaffolds zu beobachten, wurde an Tag 3, 14 und 28 deren Durchmesser mittels einer Schablone bestimmt.
GAG/DNA
Um die Glykosaminoglykan- sowie die DNA-Menge ermitteln zu können, wurden an Tag 3 und Tag 14 aus jeder Gruppe ein Scaffold und an Tag 28 aus jeder Gruppe zwei Scaffold bei -20 °C weggezogen. Am Ende der Kultivierungsperiode wurden die Scaffolds über Nacht mit Proteinase K verdaut und anschließend mittels DMMB- und Picogreen Assay (siehe Protokoll Seite 173/174) ausgewertet.

Freisetzungskinetik
Um die Releasekinetik der aufgebrachten Wachstumsfaktoren ermitteln zu können, wurden alle drei Tage die Medienüberstände (2 ml) gesammelt und bis zum Ende der Kultivierungsperiode bei -20 °C weggezogen. Am Ende der Kultivierungsperiode konnte dann mittels FGF-2 ELISA und TGF-β1ELISA die Wachstumsfaktormenge in den Überständen gemessen werden.

Histologie

3.2.7.3 Biotin/Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II - Geistlich Biomaterials)
Bevor die biotinylierten Scaffolds mit Zellen besiedelt werden konnte, musste zuvor die Funktionalität der Biotin/Streptavidin Bindung überprüft werden. Im folgenden Versuch wurden vier biotinylierte Scaffolds mit Streptavidin inkubiert und entsprechend dem molaren Verhältnis mit biotinyliertem IGF-1 (bIGF-1) gesättigt (Biotin-Streptavidin Verhältnis von 1:1). In der Negativkontrolle wurden die Scaffolds nur mit bIGF-1 gesättigt, ohne Streptavidin als Brücke zwischen Wachstumsfaktor und Scaffold (Tab. 2). Anschließend wurden die Scaffolds 3x mit PBS gewaschen um nicht gebundenes bIGF-1 zu entfernen.
4 x biotinylierte Scaffolds mit 0,1 µg bIGF-1 + Streptavidin
4 x biotinylierte Scaffolds mit 0,1 µg bIGF-1 - Streptavidin

Tab. 4: Zusammensetzung der Versuchsgruppen, n=4.

Auswertung
Freisetzungskinetik
Um festzustellen, ob in der Gruppe mit Streptavidin mehr IGF gebunden wurde als in der Gruppe ohne Streptavidin, wurde mittels ELISA der IGF-1 Gehalt im Überstand nach 30 min, 1 h, 2 h, 4 h und 24 h bestimmt.

<table>
<thead>
<tr>
<th>0.1 µg bIGF-1 Gruppe</th>
<th>1 µg bIGF-1 Gruppe</th>
<th>biotinylierte Kollagen Typ II Scaffolds mit 0,1µg bIGF + Streptavidin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollgruppe; biotinlierte Kollagen Typ II Scaffolds ohne bIGF und Streptavidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. K Gruppe</td>
<td>1 µg bIGF-1 Gruppe</td>
<td>biotinylierte Kollagen Typ II Scaffolds mit 1 µg bIGF + Streptavidin</td>
</tr>
</tbody>
</table>

Tab. 5: Zusammensetzung der Versuchsgruppen; insgesamt 6 Spender (n=6), pro Spender 5 Scaffolds. Kultivierungsduauer 3, 14, 28 Tage/4 Wochen
Auswertung

Kontraktion der Scaffolds
Um die Interaktion der Zellen mit den Scaffolds zu beobachten, wurde an Tag 3, 14 und 28 deren Durchmesser mittels einer Schablone bestimmt.

GAG/DNA
Um die DNA Menge sowie den Proteoglykangehalt der Scaffolds zu berechnen, wurden an Tag 3 und 14 aus jeder Gruppe ein Scaffold und an Tag 28 aus jeder Gruppe zwei Scaffolds bei -20 °C weggezogen. Am Ende der Kultivierungsperiode wurden die Scaffolds über Nacht mit Proteinase K verdaut und anschließend mittels DMMB- und Picogreen Assay ausgewertet.

Freisetzungskinetik
Um die Freisetzungskinetik von IG-F1 im Laufe der 28 Tage Inkubationsdauer ermitteln zu können, wurde nach jedem Mediumwechsel der Überstand bei -20°C weggezogen und hieraus nach Beendigung des Versuches mittels ELISA der IGF Gehalt ermittelt.

Histologie
An Tag 28 wurde aus jeder Gruppe ein Scaffold mit SafraninO/FastGreen gefärbt, um die Glykosaminoglykane in der extrazellulären Matrix darzustellen.

3.2.7.4 Biotin/Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II - porcin)
Im Unterschied zu vorherigen Versuchen, wurden die Zellen im ES-Medium kultiviert. Jedes Scaffolds wurde mit 1 Mio Zellen besiedelt. Die Durchführung sowie die Auswertung dieses Versuches erfolgten wie bei 3.2.7.3.
Material und Methoden

<table>
<thead>
<tr>
<th>0.1µg bIGF-1 Gruppe</th>
<th>Biotinlierte Schweine Scaffolds mit 0.1µg bIGF + Streptavidin</th>
</tr>
</thead>
<tbody>
<tr>
<td>rh IGF-1IM Gruppe</td>
<td>Biotinlierte Schweine Scaffolds mit IGF-1 im chondrogenen Medium (100 ng/ml)</td>
</tr>
<tr>
<td>K Gruppe</td>
<td>Kontrollgruppe; Biotinlierte Schweine Scaffolds ohne IGF-1</td>
</tr>
</tbody>
</table>

Tab. 6: Zusammensetzung der Versuchsgruppen; insgesamt 6 Spender (n=6), pro Spender 5 Scaffolds. Kultivierungsdauer 3, 14, 28 Tage/4 Wochen

3.2.7.5 Kombinierte Wachstumsfaktorfreisetzung (FGF-2, TGF-ß1, IGF-1)

Um die kombinierte Freisetzung von FGF-2, TGF-ß1 und IGF-1 zu untersuchen, wurden biotinlierte Kollagen Typ II Scaffolds zunächst mit Streptavidin inkubiert und dann im Verhältnis von 1:1 mit biotinyliertem IGF-1 gesättigt (0.5 µg bIGF-1 pro Scaffold). Zweimaliges Waschen mit PBS nach einer Inkubationsperiode von 15 min entfernte nicht gebundenes bIGF-1. Im weiteren Verlauf wurden TGF-ß1 und FGF-2 auf die Scaffolds aufgetragen (jeweils 1 µg pro Scaffold). Als Vergleichsgruppen dienten besiedelte biotinlierte Kollagen II Scaffolds mit auflyophilisierten IGF-1 und FGF-2, sowie biotinlierte Kollagen II Scaffolds ohne Wachstumsfaktoren (Tab. 5). Es folgte die Lyophilisation bei −40°C über Nacht. Nach der Lyophilisation wurden die Scaffolds mit jeweils 1 Mio Zellen besiedelt. Die Zellen wurden zuvor in ES-Medium expandiert und befanden sich zum Zeitpunkt der Besiedlung in Passage 2-3. Um die chondrogene Differenzierung zu intensivieren, wurde die Inkubationsdauer der Scaffolds von 4 Wochen auf 6 Wochen verlängert. Das TGF-ß1 befand sich bei beiden Vergleichsgruppen im chondrogenen Medium. In der Gruppe mit auflyophilisierten TGF-ß1 wurde kein zusätzliches TGFß im Medium hinzugegeben (siehe Protokoll Seite 166).
2WF Gruppe | Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1 und 1 µg FGF-2; chondrogenes Medium mit 10 ng/ml TGF-β1

3WF Gruppe | Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1, 1 µg FGF-2 und 1 µg TGF-β1; chondrogenes Medium ohne TGF-β1

K Gruppe | Kontrollgruppe; Biotinylierte Kollagen Typ II Scaffolds ohne Wachstumsfaktoren; chondrogenes Medium mit 10 ng/ml TGF-β1

Tab. 7: Zusammensetzung der Versuchsgruppen; insgesamt 6 Spender (n=6), pro Spender 5 Scaffolds. Kultivierungsduer 3, 14, 42 Tage/6 Wochen

Auswertung

Kontraktion der Scaffolds
Um die Interaktion der Zellen mit den Scaffolds zu beobachten, wurden nach 3, 14 und 42 Tagen deren Durchmesser mittels einer Schablone bestimmt.

GAG/DNA

Freisetzungs kinetik
Um die Freisetzungskinetik von IGF-1, FGF-2 und TGF-β1 bestimmen zu können, wurden alle drei Tage die Medienüberstände gesammelt und bei -20 °C bis zum Ende der Inkubationsperiode eingefroren. Mittels ELISA konnte dann der Wachstumsfaktorengehalt in diesen Überstanden bestimmt werden.
Histologie
Um die chondroge Zelldifferenzierung und Gewebeneubildung mit deponierten Glykosaminoglykanen in der extrazellulären Matrix darzustellen, wurde nach 6 Wochen aus jeder Gruppe ein Scaffold mit SafraninO/FastGreen gefärbt.

3.2.7.6 Kombinierte Wachstumsfaktorfreisetzung (die Rolle von FGF-2)
Da aufgrund der Ergebnisse des vorherigen Versuches die Vermutung bestand, dass FGF-2 zur negativen Beeinflussung der chondrogenen Differenzierung führte, wurde der folgende Versuch zur Bestätigung dieser Hypothese durchgeführt. Wie im vorherigen Experiment wurden die Zellen im ES-Medium kultiert. Jedes Scaffolds wurde mit 1 Mio Zellen besiedelt. Die Durchführung sowie die Auswertung dieses Versuches erfolgte wie bei 3.2.7.5.

<table>
<thead>
<tr>
<th>2WF -FGF Gruppe</th>
<th>Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1 und 1 µg TGF-β1; chondrogenes Medium ohne TGF-β1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3WF +FGF Gruppe</td>
<td>Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1, 1 µg FGF-2 und 1 µg TGF-β1; chondrogenes Medium ohne TGF-β1</td>
</tr>
<tr>
<td>K Gruppe</td>
<td>Kontrollgruppe; Biotinylierte Kollagen Typ II Scaffolds ohne Wachstumsfaktoren; chondrogenes Medium mit 10 ng/ml TGF-β1</td>
</tr>
</tbody>
</table>

Tab. 8: Zusammensetzung der Versuchsgruppen; insgesamt 6 Spender (n=6), pro Spender 5 Scaffolds. Kultivierungsdauer 3, 14, 42 Tage/6 Wochen
3.2.8 Statistische Analysen

Alle statistischen Analysen wurden mit der Software StatView (SAS Institute Inc., Cary, N.C.) durchgeführt. Statistische Unterschiede wurden mit Hilfe der Varianzanalyse (ANOVA) und Fisher´s PLSD post-hoc testing untersucht, wobei p-Werte \(\leq 0.05 \) als signifikant unterschiedlich angesehen wurden. Alle Daten wurden als Durchschnittswerte ± std error of the mean (SEM) angegeben.
4 Ergebnisse

4.1 Vorversuche

4.1.1 Kultivierung mesenchymaler Stammzellen

![Abb.4: Humane mesenchymale Stammzellen in Passage 2 mit fibroblastenartiger Morphologie.](image)

Die weitere Kultivierung führte zu progredienter Proliferation der Zellen. Sobald eine Zellkonfluenz von ungefähr 80 % erreicht wurde, konnten die Zellen von der Flasche abgelöst und neu ausgelegt werden. Nach 2 bis 3x Passagieren wurde die gewünschte Zellanzahl erreicht und es konnte mit der Besiedlung der Scaffolds begonnen werden.

4.1.2 Gewinnung und Aufreinigung von Rohkollagen Typ II
Aus Kniegelenken und Füßen von Schlachttieren wurden mittels Skalpell Knorpelstücke zur Kollagen Typ II Gewinnung herausgelöst (Abb. 5). Der Gesamtzeitaufwand für die Isolierung von Typ II Kollagen aus diesen Knorpelstücken betrug etwa 2 Wochen. Insgesamt wurden 20 Schweinegelenke aufgearbeitet. Im Rahmen dieser Aufarbeitung konnten aus 100 g Schweineknorpel durchschnittlich 3 g Rohkollagen gewonnen werden.

Abb. 5: Aus Schweinegelenken exzidierte Knorpelstücke zur Gewinnung von Kollagen Typ II.

4.1.3 Herstellung der Kollagenmatrices durch Lyophilisation

Die Herstellung der Kollagenmembranen erfolgte nach einem bereits etablierten Verfahren (O'BRIEN et al. 2004). Nach der Lyophilisation und physikalischen Quervernetzung der Kollagenschwämme im Vakuumofen konnten aus dem fertigen Kollagen-Träger 8 x 2 mm große, runde Scheiben ausgestanzt werden (Abb. 6).
Diese wurden anschließend mit verschiedenen Proteinen ausgestattet und mit Zellen besiedelt.

Abb. 6: Ausgestanztes Kollagen Typ II Scaffold (8 x 2 mm Durchmesser).

4.1.4 Erste Besiedlungsversuche der Typ II Kollagen Scaffolds
Abb. 7: Mit hMSCs besiedelte Kollagen Typ II Membranen (Geistlich Biomaterials) nach 21tägiger Kultivierung in chondrogenem Standardmedium. Die Schnitte A/a und B/b wurden SafraninO-FastGreen gefärbt, wodurch die Anreicherung von sulfatierten Glykosaminoglykanen (GAG) nachgewiesen wird. C/c zeigen Kollagen Typ II immunhistochemisch gefärbte Schnitte mit eindeutig positiv (rot) angefärbten Arealen. A, B (x5, x10) und C (x10): zeigt den vertikalen Schnitt zentral durch die Membranen; a, b (x5, x10) und c (x10): zeigt den horizontalen Schnitt durch die Membran.
4.2 Hauptversuche

4.2.1 Aufrüstung der Kollagenmatrix durch Lyophilisierung mit verschiedenen Wachstumsfaktoren (FGF-2, TGFβ-1)

4.2.1.1 Quantifizierung der Glykosaminoglykan- und DNA-Menge

Im Laufe der 21 Tage konnte nur in der FGF- sowie FGF/TGF- Gruppe eine Zunahme in der Zelldichte festgestellt werden (Abb. 8 A). In beiden Gruppen stieg die DNA-Menge im Durchschnitt um 25.5 % und erreichte somit nach 21 Tagen signifikant höhere Werte als die Kontrollgruppe (ANOVA, p = 0.02). In der Kontrollgruppe sowie in der TGF Gruppe kam es indes zu einem Abfall in der Zelldichte um 36 % bzw. 14 %.

Die GAG Synthese nahm konstant bei allen Gruppen im Laufe der 21 Tage zu (Abb. 8 B). Nach 21 Tagen wiesen die FGF/TGF-Konstrukte signifikant höhere Werte auf als die Kontrollgruppe (ANOVA, p = 0.04).

Abb. 8: Vergleich der DNA Menge (A) und der GAG Synthese (B) nach 3 Wochen Kultur unter chondrogenen Bedingungen. 1 Mio Zellen/Scaffold. Mean + SEM (n=4).
4.2.1.2 Freisetzungskinetik der aufgebrachten Wachstumsfaktoren

Abb. 9: FGF-ELISA der Medienüberstände. 1 Mio Zellen/Scaffold.

Im TGF-ELISA konnte in beiden Gruppen über die gesamte Kultivierungsdauer TGF-ß1 im Medium nachgewiesen werden. An Tag 6 kam es in beiden Gruppen zu einem Freisetzungspeak, wobei in der FGF/TGF-Gruppe signifikant mehr TGF-ß1 freigesetzt wurde (Abb. 10).

Abb. 10: TGF-ELISA der Medienüberstände. 1 Mio Zellen/Scaffold.
4.2.1.3 Histologischer Vergleich der Scaffold-Konstrukte

Abb. 11: SafraninO/FastGreen Färbung der MSC besiedelten Scaffolds nach 21 Tagen Kultivierung unter chondrogenen Bedingungen. (A) TGFß-1; (B) FGF-2; (C) FGF-2/TGFß-1; (D) PBS; Skalierung = 500 µm.

4.2.2 Biotin/Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II - Geistlich Biomaterials)

Neben der Lyophilisation von Wachstumsfaktoren auf dem Scaffold, stellt die Biotin-Streptavidin-Kopplung eine weitere Option dar, um Wachstumsfaktoren am Scaffold zu immobilisieren. Eine Freisetzung des Proteins wurde hierbei maßgeblich durch die Degradation des Trägers gesteuert und nicht wie bei der Lyophilisation durch die Löslichkeit des Wachstumsfaktors.
4.2.2.1 Porenanalyse der biotinylierten Kollagen Typ II Scaffolds

Um festzustellen, ob sich die Struktur der Scaffolds durch die Biotinylierung verändert hat, wurde deren Porendurchmesser bestimmt (Abb. 12).

Matrices aus biotinyliertem Kollagen im Vergleich zu unbehandeltem Rohkollagen zeigten eine vergleichbare Porengröße (290 µm vs 275 µm) und Porenwandstruktur. Dementsprechend führte die Biotinylierung zu keiner Veränderung hinsichtlich makroskopischer Struktur des Scaffolds.

![Rohkollagen (290 µm) vs Biot. Kollagen (275µm)](image)

Abb. 12: Anilinblau-Färbung der Kollagen Typ II Scaffolds sowie der biotinylierten Kollagen Typ II Scaffolds zur Darstellung der Porenwände; n = 4.

4.2.2.2 Direkter und indirekter Nachweis der Biotinylierung

Um eine erfolgreiche Biotinylierung der Scaffolds direkt nachweisen zu können, wurden 5 µm dünne Schnitte angefertigt und mit Streptavidin-konjugiertem Phycoerythrin inkubiert. Die Auswertung erfolgte am Auflicht-Fluoreszenzmikroskop. Als Negativkontrolle dienten nicht biotinylierte Kollagen Typ II Scaffolds.

In der Negativkontrolle zeigte sich in der Auflichtfluoreszenz Mikroskopie lediglich eine leichte Hintergrundfluoreszenz. Es hatte also keine Bindung des Streptavidins
am Scaffold stattgefunden (Abb. 13 A). In dem biotinylierten Scaffold ist eine deutliche Fluoreszenz (grün leuchtende Bereiche) erkennbar, was darauf schließen lässt, dass Streptavidin durch das Biotin auf dem Scaffold gebunden wurde (Abb. 13 B).

Abb. 13: Mit Streptavidin-konjugiertem Phycoerythrin inkubierte Kollagen Typ II Scaffolds (A) sowie mit Streptavidin-konjugiertem Phycoerythrin inkubierte biotinylierte Kollagen Typ II Scaffolds, die deutlich die positive Immunfluoreszenz zeigten (B). Skalierung = 100 µm.

Auch indirekt konnte durch eine Streptavidin-Peroxidase Färbung die Biotinylierung nachgewiesen werden.

Abb.14: Mit DAB Substrat entwickeltes Kollagen Typ II Scaffold (A) sowie biotinyliertes Kollagen Typ II Scaffold mit positivem Nachweis der Biotinylierung (B) (DAB=braun). Skalierung = 200 µm.

Die mechanischen Eigenschaften im „Handling“ und bei der Besiedelung zeigten sich aber nach der Biotinylierung als wesentlich fragiler, was die Weiterverarbeitung der biotinylierten Scaffolds während der Kultur und der histologischen Aufarbeitung erschwerte.

4.2.2.3 Biotin/Streptavidin Koppelung von IGF-1 an den Kollagenträger

Nachdem die erfolgreiche Biotinylierung der Matrices nachgewiesen werden konnte, war der nächste Schritt die Überprüfung der Funktionalität der Streptavidin/Biotin Bindung.

Streptavidin setzt sich aus vier identischen Untereinheiten zusammen, von denen jede mit sehr hoher Affinität ein Molekül Biotin binden kann. Um sicher zu gehen, dass nach der Inkubation mit dem biotinylierten Wachstumsfaktor noch freie Bindungsstellen am Streptavidin-Molekül für die Verankerung am biotinylierten Scaffold übrig waren, wurde ein Biotin/Streptavidin Verhältnis von 1:1 und nicht 1:4
gewählt. Mittels ELISA konnte dann indirekt der IGF-1 Gehalt im Überstand gemessen werden (Abb. 15).

Innerhalb von 24h wurde in der Gruppe ohne Streptavidin Koppelung ca. 50 % der aufgebrachten 0.1 µg bIGF-1 ans Medium abgegeben, wohingegen mit Streptavidin Koppelung nur ca. 10 % in 24h freigesetzt wurde (A). Der kumulative IGF-Gehalt war in der Gruppe ohne Streptavidin signifikant höher als in der Gruppe mit Streptavidin (B). Anhand des Kurvenverlaufs konnte also von einer erfolgreichen Biotin/Streptavidin Bindung von IGF-1 an den Kollagenen Träger ausgegangen werden.

Abb. 15: Zeitliche Freisetzungs kinetik von IGF-1 ins Medium (A) und kumulativer IGF-1 Gehalt im Medium (B). n=4.

4.2.2.4 Besiedlung der biotinylierten Scaffolds mit MSCs

Nachdem nun bIGF-1 erfolgreich mittels Biotin/Streptavidin Bindung am Scaffold immobilisiert wurden, konnte im Anschluss der erste Besiedlungsversuch der Scaffolds mit MSCs durchgeführt werden.
4.2.2.5 Kontraktion der Scaffolds

Zwischen Tag 3 und 14 kam es in allen drei Gruppen zu einer hoch signifikanten und zwischen Tag 14 und 28 zu einer signifikanten Abnahme des Durchmessers und damit zu einer zellvermittelten Kontraktion. Die stärkste Kontraktion an Tag 28 zeigten die Scaffolds mit 0.1 µg bIGF-1, jedoch ohne signifikanten Unterschied zu den anderen beiden Gruppen (Abb. 16).

![Durchmesser der Scaffolds über 28 Tage Inkubationsdauer.](image)

Abb. 16: Durchmesser der Scaffolds über 28 Tage Inkubationsdauer.

4.2.2.6 Quantifizierung der Glykosaminoglykan- und DNA-Menge

Im Laufe der 28tägigen Inkubationsperiode konnte in der 0.1 µg Gruppe ein Anstieg im DNA Gehalt von 21%, in der 1 µg Gruppe von 14% und in der Kontrollgruppe von 10% festgestellt werden (Abb. 17 A). Der Glykosaminoglykanengehalt zeigte bei allen Gruppen eine deutliche Zunahme im Laufe der 28 Tage (Abb. 17 B). In der 0.1 µg Gruppe kam es innerhalb der 28 Tage zu einem 5fachen Anstieg, in der 1 µg Gruppe zu einem 8fachen Anstieg und in der Kontrollgruppe zu einem 4fachen Anstieg. Von Tag 3 bis Tag 14 zeigte nur die 1 µg Gruppe einen signifikanten Anstieg (ANOVA, p...
= 0.01) und erreichte an Tag 14 sogar einen signifikant höheren Wert als die Kontrollgruppe (ANOVA, p = 0.03).

Abb. 17: Quantitativer Vergleich der DNA Menge (A) und der GAG Synthese (B) nach 4 Wochen Kultur unter chondrogenen Bedingungen. Mean + SEM (n=5-8).

4.2.2.7 Freisetzungskinetik von IGF-1 ins Medium

An Tag 3 konnte in der 1 µg Gruppe eine signifikant höhere IGF-1 Menge detektiert werden als in den anderen beiden Gruppen. Von Tag 6 bis Tag 28 wurden in der 1µg Gruppe sowie in der 0.1 µg Gruppe nur noch sehr geringe IGF-1 Mengen im Überstand gemessen (Abb. 18).
4.2.2.8 Histologischer Vergleich der Scaffold-Konstrukte

Histologisch konnte kein Unterschied hinsichtlich der Proteoglykanablagerung festgestellt werden. Alle drei Konstrukte zeigten am Rande des Scaffolds intensive rot-orange gefärbte Bereiche als Zeichen einer GAG-Deposition in der EZM.

Abb. 18: IGF-1 Freisetzung über 28 Tage.

Abb. 19: SafraninO/FastGreen Färbung der Scaffolds nach 28 Tagen Kultivierung unter chondrogenen Bedingungen. (A) 0.1 µg bIGF; (B) 1 µg bIGF; (C) Kontrolle. Skalierung = 100 µm.
4.2.3 Biotin/Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II – porcin)

Nachdem ca. 3 g Kollagen Typ II aus den Schweinegelenken isoliert werden konnten, wurde ein Teil davon biotinyliert, im Verhältnis 1:10 mit dem restlichen Rohkollagen vermischt und hieraus eine 2%ige Kollagen Typ II Suspension hergestellt. Diese biotinylierte Kollagensuspension wurde daraufhin lyophilisiert, in Streifen geschnitten und im Vakuumofen sterilisiert. Morphologisch zeigten die so hergestellten Kollagenträger keinen Unterschied gegenüber den Geistlich Matrices. Sobald jedoch Medium hinzugefügt wurde, veränderte sich die Konsistenz ins gelartige und die Stabilität ließ im Vergleich zum Geistlich Rohkollagen deutlich nach. Die Besiedlung sowie die histologische Aufarbeitung dieser Matrices gestalteten sich damit als wesentlich schwieriger.

4.2.3.1 Biotin-Streptavidin-Koppelung von IGF-1 an den Kollagenträger

In der Gruppe ohne Streptavidin konnte zu jedem Zeitpunkt, abgesehen nach 4 h und 96 h, signifikant mehr IGF-1 im Überstand gemessen werden als in der Gruppe mit Streptavidin (A). Die kumulative IGF-1 Menge ergab in der Gruppe ohne Streptavidin einen signifikant höheren Wert als in der Gruppe mit Streptavidin (B).
4.2.3.2 Besiedlung der biotinylierten Schweine Scaffolds mit MSCs

Nachdem bIGF-1 mittels Biotin-Streptavidin Bindung am Scaffolds immobilisiert werden konnte, wurde im Anschluss der erste Besiedlungsversuch der Scaffolds mit MSCs durchgeführt.
4.2.3.3 Kontraktion der Scaffolds

Eine Kontraktion der Scaffolds konnte über die Dauer von 28 Tagen nicht festgestellt werden.

4.2.3.4 Quantifizierung der Glykosaminoglykan- und DNA-Menge

Anhand der biochemischen Assays nahm die Zellmenge über den Zeitraum von 4 Wochen bei allen drei Gruppen zu, am stärksten in der Kontrollgruppe (Abb. 20 A). Diese erreichte nach 28 Tagen eine Zunahme in der mittleren DNA Menge um 70 %, die 0.1 µg Gruppe eine Zunahme von 36 %, während die Gruppe mit IGF im Medium hingegen nur eine Zunahme um 19 % erreichte. Ein statistisch signifikanter Unterschied konnte aber nicht gefunden werden. Der GAG Gehalt nahm in den Gruppen mit 0.1 µg bIGF-1 und rekombinantem IGF-1 im Medium nach 28 Tagen am stärksten zu, ohne sich jedoch signifikant von den Kontrollgruppen zu unterscheiden. Die 0.1 µg Gruppe nahm mit einem Wert von 74.4 µg/ml nach 28 Tagen (SEM ± 7.5 µg) um das 5fache zu, die IM Gruppe nahm ebenfalls um das 5fache zu, mit einem Wert von 78.6 µg/ml (SEM ± 6.7 µg) und die Kontrollgruppe erreichte nur einen 4fachen Anstieg, mit einem finalen Wert von 61.4 µg/ml (SEM ± 13.6 µg) (Abb. 20 B). Statistisch zeigte sich aber kein signifikanter Unterschied zwischen den Gruppen zu allen drei Zeitpunkten. Demnach kann geschlossen werden, dass 0.1 µg Biotin/Streptavidin gebundenes IGF-1 den gleichen Effekt erzielt wie 100 ng/ml IGF-1, welches alle drei Tage frisch hinzugegeben wurde.
Abb. 20: Quantitativer Vergleich der DNA Menge (A) und der GAG Synthese (B) nach 4 Wochen Kultur unter chondrogenen Bedingungen. Mean + SEM (n=6).
4.2.3.5 Freisetzungskinetik von IGF-1 ins Medium

Da in der IM Gruppe bei jedem Mediumwechsel eine definierte Menge von 100 ng/ml IGF-1 frisch hinzugefügt wurde, war eine Quantifizierung des IGF-1 Gehaltes der Medienüberstände nur in der 0,1 µg und in der K Gruppe sinnvoll.

In der 0.1 µg Gruppe konnte bis Tag 6 signifikant mehr IGF-1 im Überstand nachgewiesen werden als in der Kontrollgruppe. Bis Tag 9 konnten noch geringe Mengen an IGF-1 im Überstand gemessen werden (Abb. 21).

4.2.3.6 Histologischer Vergleich der Scaffold-Konstrukte

Nachdem sich herausgestellt hatte, dass die Schweine Scaffolds sehr aufwendig in der Herstellung waren und zu Schwierigkeiten in der Besiedlung sowie in der Histologie führten, wurden alle weiteren Versuche mit den Geistlich Membranen durchgeführt.

4.2.4 Kombinierte Wachstumsfaktorbindung (FGF-2, TGF-β1, IGF-1)

Aufgrund nicht zufrieden stellender Ergebnisse der 3D-Matrix Transfektion mit dem Wachstumsfaktor kodierenden Plasmid (Ausbleiben der Neochondrogenese und Untergang von ca. 30 % der humanen MSCs in den ersten drei Tagen, Ergebnisse hier nicht gezeigt), wurden im weiteren Laufe des Projektes folgende Bindungstechniken der drei Wachstumsfaktoren eingebaut: IGF-1 über Biotin-Streptavidin-Bindung, TGFβ-1 und FGF-2 mittels Lyophilisation. Diese Bindungstechniken kamen unserem ursprünglichen Ziel, nämlich eine prolongierte IGF-1 Freisetzung über 30 Tage (siehe 4.2.2.7 Abb. 18), eine TGFβ Freisetzung über 15 Tage (siehe 4.2.1.2 Abb. 10) und eine FGF-2 Freisetzung über 3 Tage (siehe 4.2.1.2 Abb. 9), am nächsten.

Abb. 22: SafraninO/FastGreen Färbung der Scaffolds nach 28 Tagen Kultivierung unter chondrogenen Bedingungen. (A) 0.1 µg bIGF; (B) IGF-1 im Medium; (C) Kontrollgruppe. Skalierung = 500 µm.
4.2.4.1 Besiedlung mit MSCs

In diesem Versuch wurde folgende Gruppenzusammenstellung vorgenommen:

- K Gruppe: Biotinylierte Kollagen Typ II Scaffolds ohne Wachstumsfaktoren; chondrogenes Medium mit 10 ng/ml TGF-β1.
- 2WF Gruppe: Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1 und 1 µg FGF-2; chondrogenes Medium mit 10 ng/ml TGF-β1.
- 3WF Gruppe: Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1, 1 µg FGF-2 und 1 µg TGF-β1; chondrogenes Medium ohne TGF-β1

4.2.4.2 Kontraktion der Scaffolds

Im Laufe der 42tägigen Inkubationsperiode kam es bei allen drei Gruppen zu einer signifikanten Abnahme des Durchmessers (ANOVA, p < 0.0001). Zwischen den Gruppen konnte nur an Tag 3 ein signifikant höherer Durchmesser der Kontrollgruppe gegenüber der 3WF und 2WF Gruppe festgestellt werden und ein signifikant höherer Durchmesser der 3WF Gruppe gegenüber der 2WF Gruppe. Nach 42 Tagen hatten die Scaffolds der Kontrollgruppe eine durchschnittliche Größe von 3.6 mm, die der 2WF Gruppe von 3.8 mm und die der 3WF Gruppe von 3.6 mm (Abb. 23).
4.2.4.3 Quantifizierung der Glykosaminoglykan- und DNA-Menge

Eine deutliche Proliferation der Zellen konnte im Laufe der 42 Tage in keiner der drei Gruppen festgestellt werden (Abb. 24 A). Dementsprechend ist die Zelldichte der Scaffolds in allen drei Gruppen nach 6wöchiger Inkubationsperiode ähnlich hoch. Während der gesamten Inkubationsperiode schwankte der DNA Gehalt aller drei Gruppen zwischen 6 µg/ml und 9 µg/ml, signifikante Unterschiede konnten nicht ermittelt werden.

In der Proteoglykansynthese hingegen konnten deutliche Unterschiede festgestellt werden (Abb. 24 B). Hier erreichte die 3WF Gruppe an Tag 3 mit 25.625 µg/ml ± 4.719 einen signifikant höheren Wert als die 2WF Gruppe mit 4.972 µg/ml ± 4.719 (ANOVA, p=0.0121) und einen signifikant höheren Wert als die Kontrollgruppe mit 7.24 µg/ml ± 3.271 (ANOVA, p=0.0221). Auch an Tag 14 konnte in der 3WF Gruppe noch signifikant mehr gemessen werden als in der 2WF Gruppe (ANOVA, p=0.0362), jedoch erreichte die Kontrollgruppe mit 60.902 µg/ml ± 8.062 den absolut höchsten Wert und war damit signifikant höher als die 2WF Gruppe mit 3.067 µg/ml ± 2.091 (ANOVA, p<0.0001) und die 3WF Gruppe mit 23.308 µg/ml ± 6.414 (ANOVA,
Ergebnisse

p=0,0009). Auch an Tag 42 erreichte die Kontrollgruppe mit 56.217 µg/ml ± 8.904 den signifikant höchsten Wert im Vergleich zu der 2WF Gruppe mit 17.25 µg/ml ± 5,073 (ANOVA; p=0,0003) und der 3WF Gruppe mit 32.128 µg/ml ± 5,318 (ANOVA, p=0.0166). Alle Gruppen mit FGF-2 zeigten demnach eine signifikant geringere GAG Synthese als ohne FGF-2.

Abb. 24: Quantitater Vergleich der DNA Menge (A) und der GAG Synthese (B) nach 6 Wochen Kultur unter chondrogenen Bedingungen. Mean + SEM (n=5).
4.2.4.4 Freisetzungskinetik der aufgebrachten Wachstumsfaktoren

FGF-2 konnte im Überstand bis Tag 9 nachgewiesen werden (Abb. 25 A). In der 2WF Gruppe wurde hierbei an Tag 3 im Mittel 2756.67 pg/ml freigesetzt ± 267.44, in der 3WF Gruppe 2911.11 pg/ml ± 513.067 und in der Kontrollgruppe 0.89 pg/ml ± 0.89. An Tag 9 konnte im Überstand nur noch 29.98 pg/ml in der 2WF Gruppe ± 8.25, 33.14 pg/ml in der 3WF Gruppe ± 7.33 und 0.89 pg/ml in der Kontrollgruppe ± 0.89 gemessen werden.

IGF-1 war bis Tag 6 nachweisbar (Abb. 25 B). In der 2WF Gruppe konnte hierbei am dritten Tag durchschnittlich 9090.75 pg/ml gemessen werden ± 1279.28, in der 3WF Gruppe 8947.26 pg/ml ± 2304.68 und in der Kontrollgruppe 205.10 pg/ml ± 191.77. An Tag 6 konnte in der 2WF Gruppe nur noch 13.78 pg/ml ± 7.49, in der 3WF Gruppe 7.58 pg/ml ± 2.694 und in der Kontrollgruppe nichts mehr gemessen werden.

HISTOMORPHOLOGISCHER VERGLEICH DER SCAFFOLD-KONSTRUKTE

Histomorphologisch zeigten sich nach 42 Tagen deutliche Anzeichen einer chondrogenen Differenzierung in der 3 WF Gruppe (Abb. 26 B) und eine sehr kräftige GAG Anreicherung und Knorpelneubildung in der Kontrollgruppe (Abb. 26 C). In der Gruppe mit 2 WF konnten nur vereinzelt Zeichen der Chondrogenese mit extrazellulärer GAG Deposition identifiziert werden (Abb. 26 A).

Abb. 25: Zeitliche Freisetzungskinetik von FGF-2 (A), IGF-1 (B), TGFβ (C) ins Medium; Kumulativer Wachstumsfaktorengehalt im Medium der 3WF Gruppe (D).

Abb. 26: SafraninO/FastGreen Färbung der Scaffolds nach 42 Tagen Kultivierung unter chondrogenen Bedingungen. (A) 2WF; (B) 3WF; (C) Kontrollgruppe. Skalierung = 500 µm.
4.2.5 Kombinierte Wachstumsfaktorfreisetzung (die Rolle von FGF-2)

Die Ergebnisse des vorherigen Versuches ließen vermuten, dass 1 µg FGF-2 die chondrogene Differenzierung nachteilig beeinflusst. Aus diesem Grund wurde im folgenden Versuch die Gruppenzusammenstellung dieser Hypothese entsprechend angepasst und FGF-2 selektiv hinzugegeben oder weggelassen.

4.2.5.1 Besiedlung mit MSCs

Die Versuchsgruppen setzten sich wie folgt zusammen:

- K Gruppe: Biotinylierte Kollagen Typ II Scaffolds ohne Wachstumsfaktoren; chondrogenes Medium mit 10 ng/ml TGF-β1.
- 2WF –FGF-2 Gruppe: Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1 und 1 µg TGF-β1; chondrogenes Medium ohne TGF-β1.
- 3WF +FGF-2 Gruppe: Biotinylierte Kollagen Typ II Scaffolds mit 0.5 µg bIGF-1, 1 µg FGF-2 und 1 µg TGF-β1; chondrogenes Medium ohne TGF-β1

4.2.5.2 Kontraktion der Scaffolds

Die Zellvermittelte Kontraktion war bei der Gruppe mit FGF-2 zu allen 3 Zeitpunkten signifikant am größten. So erreichten diese Konstrukte nach 42 Tagen von ursprünglich 8 mm einen Restdurchmesser von 3.7 mm, hingegen die beiden anderen von 7.5 mm.
Abb. 27: Durchmesser der Scaffolds über 42 Tage Inkubationsdauer. Mean + SEM (n=5).

4.2.5.3 Quantifizierung der Glykosaminoglykan- und DNA-Menge

Die Ergebnisse zeigten, dass der DNA Gehalt der Zell-Kollagen Konstrukte zu allen Zeitpunkten und zwischen den einzelnen Versuchsgruppen über den Kultivierungszeitraum von 3, 14 und 42 Tagen ohne signifikanten Unterschied war (Abb. 28 A).

4.2.5.4 Freisetzungskinetik der aufgebrachten Wachstumsfaktoren

Die Freisetzungskinetik wurde in diesem Versuch kein weiteres Mal ermittelt, da die Gruppe der 3WF derselben entsprach wie im vorherigen Versuch.

4.2.5.5 Histologischer Vergleich der Scaffold-Konstrukte

Abb 29: SafraninO/Fast_Green Färbung der Scaffolds nach 42 Tagen Kultivierung unter chondrogenen Bedingungen. (A) 3WF; (B) 2WF; (C) Kontrollgruppe. Skalierung = 500 µm.
4.3 Zusammenfassung der Ergebnisse

4.3.1 Vorversuche

- Erfolgreiche Herstellung eines Kollagen-Schwammes, der sich durch eine definierte Porengröße, biologische Degradierbarkeit und mechanischer Stabilität auszeichnet (Abb. 6).
- Über biochemische und biophysikalische Modifikation wurde der Träger so stabilisiert, dass eine homogene Besiedelung mit humanen Stammzellen aus dem Knochenmark möglich wurde (Abb. 7).

4.3.2 Hauptversuche

Aufrüstung der Kollagenmatrix durch Lyophilisierung mit verschiedenen Wachstumsfaktoren (FGF-2, TGF-ß1)

- Nach 21 Tagen erreichten die FGF-2 Gruppe sowie die FGF-2/TGF-ß1-Gruppe eine im Vergleich zur Kontrollgruppe signifikant höhere Proliferationsrate (Abb. 8 A).
- Die GAG Synthese erreichte in der FGF-2/TGF-ß1-Gruppe einen signifikant höheren Wert als die Kontrollgruppe (Abb. 8 B).
- FGF-2 konnte im Überstand bis Tag 6 nachgewiesen werden (Abb. 9).
- TGFß-1 konnte während des gesamten Zeitrums (21 Tage) nachgewiesen werden (Abb. 10).
- In der SafraninO/FastGreen Färbung konnten in allen Gruppen geringe Proteoglykanmengen festgestellt werden (Abb. 11).
Aufrüstung der Kollagenmatrix mit DNA-Nano-Liposomen zum 3-D Matrix assoziierten nicht viralen Gentransfer (Ergebnisse nicht gezeigt)

- Positive Expression der Zielproteine im Vergleich zum Leervektor innerhalb der ersten 14 Tage.
- Biochemische Quantifizierung der GAG bestätigte, dass sowohl mit TGFβ als auch mit IGF-1 keine GAG Deposition trotz erfolgreicher Transfektion stattfand. Ca. 30% der aufgebrachten Zellen gingen dabei innerhalb der ersten drei Tage zu Grunde.
- Die Zellen in den Zell/Kollagen Matrices zeigten über 21 Tage histologisch keine Merkmale der Neochondrogenese.

Biotin-Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II – Geistlich)

- Matrices aus biotinyliertem Kollagen im Vergleich zu unbehandeltem Rohkollagen zeigten eine vergleichbare Porenrössse und Porenwandstruktur (Abb. 12).
- Die erfolgreiche Biotinylierung der Scaffolds konnte direkt sowie indirekt nachgewiesen werden (Abb. 13/14).
- Erfolgreiche Wachstumsfaktorbindung mittels Biotin-Streptavidin-Komplex. Dabei wurden innerhalb der ersten 24h nur 10% des aufgebrachten IGF-1 freigesetzt (Abb. 15).
- Nach der Besiedlung mit MSCs, nahm der Durchmesser der Scaffolds während 28 tägiger Inkubation in allen drei Gruppen signifikant ab, am stärksten in der Gruppe mit 0.1 µg bIGF-1 Bindung (Abb. 16).
- Biotin/Streptavidin gekoppeltes IGF-1 führte zu keiner Zunahme der Zellzahl der aufgebrachten MSCs (Abb. 17 A).
- an Tag 14 konnte signifikant mehr GAG in der 1 µg bIGF-1 Gruppe im Vergleich zur Kontrollgruppe gemessen werden (Abb. 17 B).
Ergebnisse

- Von Tag 3 bis Tag 14 konnte in der 1 µg Gruppe ein signifikant höherer Anstieg der extrazellulären GAG Deposition festgestellt werden (Abb. 17 B).
- Bis Tag 28 konnten in beiden Gruppen sehr geringe Mengen bIGF-1 im Überstand detektiert werden (Abb. 18).
- Histomorphologisch zeigten alle drei Gruppen Zeichen der chondrogenen Differenzierung nach 28 Tagen (Abb. 19).

Biotin-Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II-porcin)
- Biotinylierung der Scaffolds konnte direkt sowie indirekt nachgewiesen werden (Abb. 13/14).
- Erfolgreiche Wachstumsfaktorbindung mittels Biotin-Streptavidin-Komplex (Abb. 19).
- Eine Abnahme im Durchmesser konnte während 28tägiger Inkubation nicht festgestellt werden.
- Die Zellzahl der MSCs nahm über den Zeitraum von 4 Wochen bei allen drei Gruppen unwesentlich zu, am stärksten in der Kontrollgruppe (Abb. 20 A).
- Der GAG Gehalt in der Gruppe mit 0.1 µg bIGF-1 und IGF-1 im Medium zeigte einen Trend zur Zunahme über die Kultivierungsdauer, ohne sich aber nach 28 Tagen signifikant von der Kontrolle zu unterscheiden (Abb. 20 B).
- IGF-1 konnte im Überstand bis zum 9. Tag nachgewiesen werden (Abb. 21).
- Histomorphologisch zeigten alle drei Gruppen Zeichen der chondrogenen Differenzierung (Abb. 22).

Kombinierte Wachstumsfaktorfreisetzung (FGF-2, TGF-ß1, IGF-1)
- Im Laufe der 6wöchigen Inkubationsdauer zeigten die Scaffolds keine signifikanten Unterschiede im Kontraktionsverhalten (Abb. 23).
• Der DNA-Gehalt war bei allen drei Gruppen über die 6 Wochen Inkubationsdauer ohne signifikante Unterschiede. Es gab somit keine Steigerung in der Zellproliferation (Abb. 24 A).

• An Tag 3 zeigten 3WF signifikant höhere GAG Werte als 2WF und Kontrolle (Abb. 24 B).

• An Tag 14 zeigten 3WF signifikant höhere GAG Werte als 2WF (Abb. 24 B).

• Nach 14 und 28 Tagen waren die GAG Werte in der Kontrollgruppe signifikant höher als in den beiden anderen Behandlungsgruppen, die mit 1 µg FGF-2 ausgestattet waren. (Abb. 24 B).

• Im Überstand konnte IGF-1 an Tag 3 und 6, FGF-2 an Tag 3, 6 und 9 nachgewiesen werden (Abb. 25).

• TGF-ß1 zeigte eine 46fach höhere lokale Anreicherung als IGF-1 und FGF-2 und war über 24 Tage nachweisbar (Abb. 25 D).

• Histomorphologisch zeigten sich nach 42 Tagen die deutlichsten Anzeichen einer chondrogenen Differenzierung in der 3 WF-Gruppe und der Kontrollgruppe. 1 µg FGF-2 pro Scaffold schien die chondrogene Differenzierung zu kompromittieren (Abb. 26).

Kombinierte Wachstumsfaktorfreisetzung (die Rolle von FGF-2)

• Im Laufe der 42tägigen Inkubationsdauer zeigte nur die 3WF Gruppe (mit FGF-2) eine signifikante Reduktion im Durchmesser (Abb. 27).

• Der DNA-Gehalt war bei allen drei Gruppen über die 6 Wochen Inkubationsdauer ohne signifikante Unterschiede. Es gab somit keine Steigerung in der Zellproliferation (Abb. 28 A).

• An Tag 14 zeigte die Kontrollgruppe einen signifikant höheren GAG Wert als die 3WF +FGF-2 Gruppe (Abb. 28 B).
• An Tag 42 zeigte die 2WF –FGF-2 Gruppe sowie die Kontrollgruppe signifikant höhere GAG Werte als die 3WF +FGF-2 Gruppe (Abb. 28 B).

• Histomorphologisch zeigten sich nach 42 Tagen die deutlichsten Anzeichen einer chondrogenen Differenzierung in der 2WF –FGF-2 Gruppe und der Kontrollgruppe. 1 µg FGF-2 zeigte eine deutliche Reduktion der Neochondrogenese von MSCs in vitro (Abb. 29).
5 Diskussion

Im Zuge der Versuchsdurchführung und Auswertung sollten Antworten auf folgende Fragestellungen gefunden werden:

- Ermöglichen die verschiedenen Protein/DNA Bindungstechniken eine zeitlich versetzte Freisetzung aller drei Wachstumsfaktoren?
- Beeinflussen die Bindungstechniken und die einzelnen Wachstumsfaktoren die chondrogene Differenzierung der mesenchymalen Stammzellen?
- Wie wirkt sich die Kombination aller drei Wachstumsfaktoren auf die chondrogene Differenzierung der mesenchymalen Stammzellen aus?
- Kann durch die zeitlich versetzte Abgabe aller drei WF die chondrogene Differenzierung der MSC gesteigert werden?
5.1 Diskussion der Methodik

5.1.1 Kollagenscaffold als Trägermaterial

Als alternative Rohkollagenquelle konnte in der vorliegenden Arbeit auf Kollagen Typ II von Geistlich Pharma AG zurückgegriffen werden. Mit Säurelösung versetzt,
Diskussion

5.1.2 MSCs als Zellquelle

Wie in der vorliegenden Arbeit gezeigt wurde, ist es möglich, humane mesenchymale Stammzellen aus Aspiraten des Knochenmarks adulter Spender mittels Ficoll-Dichtegradientenzentrifugation zu isolieren und anschließend in vitro in Kultur zu nehmen und zu expandieren. Obwohl dies die bekannteste und am häufigsten angewendete Methode ist, darf nicht davon ausgegangen werden, dass durch diesen Vorgang eine 100%ige homogene Zellpopulation zustande kommt. Man geht davon aus, dass MSC aus dem Knochenmark eine heterogene Population darstellen, die

5.2 Diskussion der Analysemethoden

5.2.1 DMMB-Assay/ PicoGreen-Assay
5.2.2 SafraninO/FastGreen Färbung

5.3 Diskussion der Ergebnisse

5.3.1 Effekt der Wachstumsfaktoren

5.3.1.1 Einfluss von IGF-1

Glykosaminoglykansynthese im Vergleich zur Kontrollgruppe (Scaffold ohne gekoppeltes IGF-1).

Die Arbeitsgruppe um An et al. fanden heraus, dass die Kombination von IGF-1 und TGF-ß1 zu einem signifikanten Anstieg in der Glykosaminoglykansynthese von hMSCs führt und somit einen synergistischen Effekt ausübt (AN et al. 2010). Ebenso konnten Indrawattana et al. zeigen, dass die Kombination von 100 ng/ml IGF-1 und 10 ng/ml TGF-ß1 eine starke Expression von sox 9 sowie extrazellulären Matrixgenen bewirkte, hingegen der alleinige Einsatz von 100 ng/ml IGF-1 nach 21 Tagen keine Chondrogenese von hMSCs in Pelletkulturen induzierte (INDRAWATTANA et al. 2004). Auch die vorliegende Studie demonstrierte, dass die Kombination dieser beiden Wachstumsfaktoren zu einer erfolgreichen chondrogenen Differenzierung von hMSCs führt.

5.3.1.2 Einfluss von FGF-2

5.3.1.3 Einfluss von TGFß-1

5.3.2 Aufrüstung der Kollagenmatrix durch Lyophilisierung mit verschiedenen Wachstumsfaktoren (FGF-2, TGF-β1)

Die Möglichkeit mittels Lyophilisation Wachstumsfaktoren am Scaffold zu immobilisieren, wurde bereits mehrfach untersucht. Berscht et al. immobilisierten bFGF mittels Lyophilisation an Chitosan Matrices. FGF Konzentrationen von 0.01 - 500 ng/ml wurden eingesetzt und über einen Zeitraum von 4 Tagen die FGF Freisetzung mittels ELISA Reader gemessen. In dieser Studie wurde innerhalb der ersten 48 h der Großteil des FGF freigesetzt (BERSCHT et al. 1994). Elcin et al. untersuchten die Freisetzungskinetik von VEGF (human vascclar endothelial growth factor) gebunden an PLGA Schwämmen. 2.5 µg und 5 µg VEGF Konzentrationen wurden mittels Lyophilisation an den Schwämmen gebunden und mittels ELISA Reader die Freisetzung über einen Zeitraum von 3 Wochen gemessen. Auch hier wurde der Großteil des VEGF innerhalb der ersten drei Tage freigesetzt. Nach 3 Wochen waren von den eingesetzten 2.5 µg VEGF fast die gesamte Menge (94 %)

Zusammenfassend kann jedoch geschlossen werden, dass die zeitlich versetzte Abgabe zweier Wachstumsfaktoren einen synergistischen Effekt auf die chondrogene Differenzierung mesenchymaler Stammzellen ausgeübt hat und dass die Lyophilisation nicht zu Beeinträchtigung der Funktionalität der chondrogenen Differenzierung führte. Gleichzeitig hatte das aufläppilitisierte TGF-ß1 über den zeitlichen Verlauf den gleichen Effekt wie alle drei Tage frisch hinzugegebnes TGF-ß1(Vergleich Kontrollgruppe mit TGF Gruppe). Demnach kann geschlossen werden,
dass einmalig auflyophilisiertes TGF-β1 ausreichend lange aktiv bleibt um seine Wirkung auf die Chondrogense zu entfalten.

5.3.3 Biotin/Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II-Geistlich Biomaterials/Kollagen Typ II-porcin)
Diskussion

ansprechen als auf 100 ng IGF-1/ml (LOESER et al. 2003b). Da es zum Zeitpunkt dieser Studie nur wenige Erfahrungsberichte bezüglich der erforderlichen Dosierung von biotinyliertem IGF im Zusammenhang mit der chondrogenen Differenzierung von MSCs gab, wurden zwei unterschiedliche Konzentrationen untersucht (0.1 µg IGF-1/Scaffold und 1 µg IGF-1/Scaffold).

Insgesamt wurde jedoch nur ein Bruchteil der ursprünglich aufgetragenen IGF-1 Menge in der vorliegenden Studie freigesetzt. Eine ähnliche Feststellung machte

Diskussion

Biotin/Streptavidin Bindung schlussendlich zu stark ist, um genügend bIGF-1 freizusetzen (MILLER et al. 2011).

Die Kollagen Typ II Scaffolds von Geistlich Biomaterials zeigten im Laufe der 28 Tage, in der 0.1 µg Gruppe sowie in der 1 µg Gruppe, eine deutliche Zunahme an Proteoglykanen. Die 1 µg erreichte hierbei den höchsten Wert, jedoch ohne sich signifikant von der Kontrollgruppe zu unterscheiden. Ferner zeigten auch histomorphologisch alle drei Gruppen Zeichen der chondrogenen Differenzierung.

5.3.4 Kombinierte Wachstumsfaktorfreisetzung (IGF-1, TGF-ß1, FGF-2)

Im DNA Gehalt konnten keine signifikanten Unterschiede zwischen den Gruppen festgestellt werden. In der Glykosaminoglykansynthese erreichte die Kontrollgruppe nach 42 Tagen den signifikant höchsten Wert. Beim alleinigen Vergleich der 2WF Gruppe gegenüber der 3 WF Gruppe, erreichte die 3 WF Gruppe an Tag 3 sowie an Tag 14 signifikant höhere Werte in der GAG Synthese. Es kann also geschlossen werden, dass das lyophilisierte TGF-β1 in diesem Zeitraum einen größeren Effekt auf die Zellen ausübte, als das regelmäßig zugegebene TGF-β1 im Medium, dieses allerdings nachweislich nur bis zum 14. Tag. Die SafraninO/FastGreen Färbung konnte dieses Ergebnis bestätigen.

5.3.5 Kombinierte Wachstumsfaktorfreisetzung (die Rolle von FGF-2)
Um die zuvor gestellte Hypothese einer hemmenden FGF-2 Wirkung auf die chondrogene Differenzierung von MSCs zu überprüfen, wurde die Gruppenzusammenstellung des kombinierten Wachstumsfaktorenversuchs der Fragestellung entsprechend angepasst. Die 2WF Gruppe bestand nun aus IGF-1 und TGF-β1, die 3WF Gruppe wie zuvor aus IGF-1, TGF-β1 und FGF-2 und die Kontrollgruppe mit MSCs besiedelten Scaffolds ohne Wachstumsfaktorsubstitution.

5.4 Limitierungen der Studie

Ein letzter Faktor, der ebenfalls mangels Kenntnis der späten Ergebnisse nicht konsequent standardisiert wurde, war die eingesetzte Konzentration der

5.5 Fazit und Ausblick

Ein passender Cocktail von Wachstumsfaktoren ist notwendig, um all die Signalstoffe zur Verfügung zu stellen, die schnelle Regeneration von Knorpelgewebe ermöglichen. In Hauptversuch Nr. 4.2.1 zeigte die Kombination von TGFβ-1 und FGF-2 die höchste GAG-Deposition. Bei der Kombination aller drei Wachstumsfaktoren (Hauptversuch Nr. 4.2.4), machte lyophilisiertes FGF-2 den Eindruck, die chondrogene Differenzierung nachteilig beeinflusst zu haben. Um diese Hypothese zu validieren, wurden in einem weiterführenden Versuch ausschließlich
TGF-β1 und IGF-1 als Wachstumsfaktoren auf dem Scaffold immobilisiert. Die Kombination von lyophilisiertem TGF-β1 und Biotin/Streptavidin gebundenem bIGF-1 erzielte, zusammen mit der Kontrollgruppe, die besten Ergebnisse. Mit Blick auf die programmierte Stammzellendifferenzierung scheint damit das Aufbringen von 1µg FGF-2 die Neochondrogenese in Gegenwart von biotinyliertem IGF-1 und TGF-β nachteilig beeinflusst zu haben. Weiterführende Studien sind demnach notwendig, um die molekularen Signalwege hinsichtlich der Mechanismen der gegenseitigen Beeinflussung dieser Wachstumsfaktor Kombinationen im Detail zu verstehen.

Als Fazit kann also aus den erzielten Resultaten geschlossen werden, dass es gelungen ist, einen Träger herzustellen und derart zu funktionalisieren, dass drei Wachstumsfaktoren zeitlich versetzt freigegeben wurden und an verschiedenen Zeitpunkten ihren jeweiligen Freisetzungspeak erreichten. Das zukünftige Ziel
weiterer Untersuchungen wird sein, die kombinierte Faktorfreisetzung auf die Stammzelldifferenzierung weiter detailliert zu untersuchen und Dosis sowie Freisetzungskinetik weiter zu optimieren.
6 Zusammenfassung

Maren Brunnemann
Funktionalisierung eines Biomaterials zur programmierten Stammzelldifferenzierung mittels sequentieller Wachstumsfaktorfreisetzung

Als Träger wurde sich in der vorliegenden Arbeit für hoch poröse kollagen Scaffolds entschieden, die bereits ihre vielseitige Einsetzbarkeit in Tissue Engineering Anwendungen demonstrieren konnten.

Knorpelneubildung war nach 14 Tagen Kultur am stärksten ausgeprägt und die Freisetzung von IGF-1 erstreckte sich über den gesamten Versuchszeitraum.

In der Zusammenfassung muss aus den erzielten Resultaten geschlossen werden, dass eine programmierte Differenzierung mit Stimulierung oder Reduktion der Knorpelneubildung für die untersuchten Faktoren erfolgen kann. Für die chondogene Differenzierung reichten die beiden Wachstumsfaktoren IGF-1 (Biotin-Streptavidin), TGF-β (Lyophilisation) aus, um ein deutliche Stimulierung der Knorpelneubildung mesenchymaler Stammzellen zu erreichen. Damit ist ein derartig aufgerüstetes Kollagen-Implantat ein aussichtsreicher Kandidat für die Regeneration von Knorpelgewebe.
7 Summary

Maren Brunnemann
Functionalization of a biomaterial for programmed stem cell differentiation by sequential growth factor release

The goal of this study was to develop a bioactive implant, which by combining different binding methods should be capable of a sequential release of different growth factors, in order to control stem cell differentiation. Using stem-cell based chondrogenesis, a sequential release of FGF-2, TGF-β1 and IGF-1 was developed to control stem cell growth, chondrogenic differentiation and maturation to stable chondrocytes. By using different binding-techniques in combination with the carrier, the release kinetic should be controlled.

As a release carrier, we used an absorbable highly porous collagen scaffold which has already shown its versatility for tissue engineering purposes.

The first step of protein immobilization onto the collagen scaffold by freeze-drying was successfully accomplished. The different growth factors showed no homogenous time-release kinetics. The next step was the immobilization of the growth factor protein onto the collagen scaffold by biotin/streptavidin binding. For this purpose, it was necessary to prepare and characterize the biotinylated collagen scaffold. This appeared to have similar characteristics as the original scaffold. Finally, biotinylated IGF-1 successfully incorporated onto the modified scaffold. Through optimization of the biotin/streptavidin binding technique and change of cell culture parameters (cultivation medium, duration of chondrogenic differentiation etc.), scaffolds with MSCs showed typical features of successful chondrogenic differentiation after 28 days. After 14 days, cartilage neoformation showed the greatest effect and the IGF-1 release was extended over the whole trial period.

The combined growth factor release out of the collagen scaffold was also analyzed. TGF-β1 and FGF-2 were bound by freeze-drying and IGF-1 was immobilized by
biotin/streptavidin binding onto the biotinylated scaffold. These scaffolds were then colonized with MSCs followed by a chondrogenic differentiation period. The histological and biochemical results clearly demonstrated that after 42 days, cartilage formation had appeared. However, FGF-2 adversely affected the results. For that reason, a detailed examination of the FGF-2 impact was performed, in another in vitro experiment. Freeze-dried FGF-2 significantly reduced chondrogenic differentiation of MSCs cultured in the collagen scaffold, which was additionally equipped with biotinylated IGF-1 and freeze-dried TGF-β1. In view of the programmed stem cell differentiation, the application of 1 µg FGF-2 in the presence of biotinylated IGF-1 and TGF-β1, has decreased neochondrogenesis. In summarising the results we can conclude, that by using the analyzed factors, a programmed differentiation by either stimulating or reducing the cartilage formation can occur. For chondrogenic differentiation, the two growth factors IGF-1 (biotin/streptavidin) and TGF-β1 (freeze-drying) were sufficient for stimulation of cartilage formation by mesenchymal stem cells. A suchlike prepared scaffold is therefore an ideal candidate for the regeneration of cartilage tissue.
8 Literaturverzeichnis

ABBOTT, J. u. H. HOLTZER (1966):
The loss of phenotypic traits by differentiated cells. 3. The reversible behavior of chondrocytes in primary cultures.
J Cell Biol 28, 473-487

Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester.

IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells.
Ann Biomed Eng 38, 1647-1654

Signal transduction by the TGF-beta superfamily.
Science 296, 1646-1647

The short-term compressive properties of adult human articular cartilage.
Biomed Mater Eng 4, 245-256

Systemic application of growth hormone enhances the early healing phase of osteochondral defects—a preliminary study in micropigs.
Bone 32, 457-467

Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies.
Glycobiology 13, 647-653

Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components.
Exp Cell Res 268, 189-200

BENYA, P. D. u. J. D. SHAFFER (1982):
Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels.
Cell 30, 215-224

Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes.
Biochem Biophys Res Commun 293, 284-292

Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics.
Biomaterials 15, 593-600

Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro.
J Orthop Res 16, 207-216

Differential effects of growth factors on tissue-engineered cartilage.
Tissue Eng 8, 73-84

BOEUF, S. u. W. RICHTER (2010):
Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors.
Stem Cell Res Ther 1, 31

BOSNAKOVSKI, D., M. MIZUNO, G. KIM, T. ISHIGURO, M. OKUMURA, T.
IWANAGA, T. KADOSAWA u. T. FUJINAGA (2004):
Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system.
Exp Hematol 32, 502-509

BOSNAKOVSKI, D., M. MIZUNO, G. KIM, S. TAKAGI, M. OKUMUR u. T.
FUJINAG (2006a):
Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system.
Jpn J Vet Res 53, 127-139

BOSNAKOVSKI, D., M. MIZUNO, G. KIM, S. TAKAGI, M. OKUMURA u. T.
FUJINAGA (2006b):
Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
Biotechnol Bioeng 93, 1152-1163

Lapine and canine bone marrow stromal cells contain smooth muscle actin and contract
a collagen-glycosaminoglycan matrix.
Tissue Eng 7, 829-841

Scaffold-based articular cartilage repair.
IEEE Eng Med Biol Mag 22, 42-50

Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue
engineering.
Gene Ther 14, 721-732

Mesenchymal stem cells.
J Orthop Res 9, 641-650

CAPLAN, A. I. u. S. P. BRUDER (2001):
Mesenchymal stem cells: building blocks for molecular medicine in the 21st century.
Trends Mol Med 7, 259-264

CHEN, F. H. LIN u. H. C. LIU (2008):
Chondrogenesis from immortalized human mesenchymal stem cells: comparison
between collagen gel and pellet culture methods.
Artif Organs 32, 561-566

CHIOU, M., Y. XU u. M. T. LONGAKER (2006):
Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived
mesenchymal cells.
Biochem Biophys Res Commun 343, 644-652

(2006):
TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering.

D. AMIEL (1995):
Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable
porous polylactic acid (PLA): a tissue-engineering study.
J Biomed Mater Res 29, 1147-1154

One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness
defects of articular cartilage in rabbits.
Osteoarthritis Cartilage 12, 834-842

Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels.
Tissue Eng Part A 14, 1121-1131

Matrices for cartilage repair.
Clin Orthop Relat Res S271-279

Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2.
Mol Ther 12, 229-238

The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors.
Exp Biol Med (Maywood) 237, 10-17

Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction.
Proc Natl Acad Sci U S A 103, 8155-8160

DE BARI, C., F. DELL'ACCOI u. F. P. LUYTEN (2004):
Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo.
Arthritis Rheum 50, 142-150

Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis.
Arthritis Rheum 54, 1209-1221

Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels.
Biomaterials 27, 1579-1585

DEKEL, S. u. S. L. WEISSMAN (1978):
Joint changes after overuse and peak overloading of rabbit knees in vivo.
Acta Orthop Scand 49, 519-528

DISCHER, D. E., P. JANNEY u. Y. L. WANG (2005): Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139-1143

Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid.
Arthritis Rheum 52, 1091-1099

Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of
mesenchymal stem cells in modified pellet culture.
Biomacromolecules 9, 927-934

FARNDALE, R. W., D. J. BUTTLE u. A. J. BARRETT (1986):
Improved quantitation and discrimination of sulphated glycosaminoglycans by use of
dimethylmethylene blue.
Biochim Biophys Acta 883, 173-177

Identification, quantification and isolation of mesenchymal progenitor cells from
osteoarthritic synovium by fluorescence automated cell sorting.
Osteoarthritis Cartilage 11, 790-800

Human mesenchymal stem cell proliferation and osteogenic differentiation during long-
term ex vivo cultivation is not age dependent.
J Bone Miner Metab 29, 224-235

FORRIOL, F. (2009):
Growth factors in cartilage and meniscus repair.
Injury 40 Suppl 3, S12-16

Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented
with exogenous insulin-like growth factor-I.
J Orthop Res 17, 467-474

Insulin-like growth factor-I enhances cell-based repair of articular cartilage.
J Bone Joint Surg Br 84, 276-288

FREED, L. E., D. A. GRANDE, Z. LINGBIN, J. EMMANUAL, J. C. MARQUIS u. R.
LANGER (1994):
Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer
scaffolds.
J Biomed Mater Res 28, 891-899

Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair.
J Bone Joint Surg Br 79, 831-836

Fibroblast precursors in normal and irradiated mouse hematopoietic organs.
Exp Hematol 4, 267-274

FUKUCHI, Y., H. NAKAJIMA, D. SUGIYAMA, I. HIROSE, T. KITAMURA u. K.
TSUJI (2004):
Human placenta-derived cells have mesenchymal stem/progenitor cell potential.
Stem Cells 22, 649-658

FUKUMOTO, T., J. W. SPERLING, A. SANYAL, J. S. FITZSIMMONS, G. G.
REINHOLZ, C. A. CONOVER u. S. W. O'DRISCOLL (2003):
Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1
on periosteal mesenchymal cells during chondrogenesis in vitro.
Osteoarthritis Cartilage 11, 55-64

TGF-beta regulates differentially the proliferation of fetal and adult human skin
fibroblasts via the activation of PKA and the autocrine action of FGF-2.
Cell Signal 18, 1417-1429

D. ENEA (2011):
Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage
repair in the knee: histological results of second-look biopsies at 1 year follow-up.
Int J Immunopathol Pharmacol 24, 69-72

GIMBLE, J. u. F. GUILAK (2003):
Adipose-derived adult stem cells: isolation, characterization, and differentiation
potential.
Cytotherapy 5, 362-369

From the laboratory bench to the patient's bedside: an update on clinical trials with
mesenchymal stem cells.
J Cell Physiol 211, 27-35

The control of chondrogenesis.
J Cell Biochem 97, 33-44

GOOMER, R. S., T. M. MARIS, R. GELBERMAN, M. BOYER, M. SILVA u. D.
AMIEL (2000):
Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon
repair.
Clin Orthop Relat Res S189-200

The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects.
Lab Anim 42, 71-82

[Integration of periosteum covered autogenous bone grafts with and without autologous chondrocytes. An animal experiment using the Gottinger minipig].
Orthopade 32, 65-73

GOVINDEN, R. u. K. D. BHOOLA (2003):
Genealogy, expression, and cellular function of transforming growth factor-beta.
Pharmacol Ther 98, 257-265

CSF-1, IGF-1, and the control of postnatal growth and development.
J Leukoc Biol 88, 475-481

Cartilage tissue engineering: current limitations and solutions.
Clin Orthop Relat Res S176-185

The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation.
J Orthop Res 7, 208-218

GREEN, N. M. (1990):
Avidin and streptavidin.
Methods Enzymol 184, 51-67

Surface protein characterization of human adipose tissue-derived stromal cells.
J Cell Physiol 189, 54-63

Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow.
J Cell Sci 116, 1827-1835
Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice.
Orthopedics 21, 751-756

Effects of growth factors and cytokines on proteoglycan turnover in articular cartilage.
Br J Rheumatol 31 Suppl 1, 1-6

[Comparison of chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells].
Acta Chir Orthop Traumatol Cech 78, 138-144

HENNIG, T., H. LORENZ, A. THIEL, K. GOETZKE, A. DICKHUT, F. GEIGER u.
W. RICHTER (2007):
Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6.
J Cell Physiol 211, 682-691

HILDNER, F., A. PETERBAUER, S. WOLBANK, S. NURNBERGER, S.
MARLOVITS, H. REDL, M. VAN GRIENSVEN u. C. GABRIEL (2010):
FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-beta in human adipose derived stem cells.

Combined effects of somatomedin-like growth factors with fibroblast growth factor or epidermal growth factor in DNA synthesis in rabbit chondrocytes.
Mol Cell Biochem 76, 185-193

JANSEN (2005a):
Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.
J Biomed Mater Res A 75, 156-167

Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering.
J Control Release 101, 111-125

Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints.
Biomaterials 23, 4095-4103
Electrophoresis 26, 501-510

Anat Rec A Discov Mol Cell Evol Biol 278, 428-436

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 18, 49-52

Tissue Eng 8, 469-482

Osteoarthritis Cartilage 10, 432-463

Clin Orthop Relat Res S171-181

Clin Exp Pharmacol Physiol 32, 561-570

Tissue Eng 12, 527-536

Biochem Biophys Res Commun 320, 914-919

The therapeutic effects of basic fibroblast growth factor contained in gelatin hydrogel microspheres on experimental osteoarthritis in the rabbit knee.
Arthritis Rheum 54, 264-270

FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling.
Cytotechnology 56, 1-7

Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro.
J Cell Biochem 81, 368-377

The role of proteases in transforming growth factor-beta activation.
Int J Biochem Cell Biol 40, 1068-1078

Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic acid scaffolds for ligament tissue engineering.
Tissue Eng 13, 1573-1582

Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression.
J Biol Chem 279, 18121-18126

A stem cell-based approach to cartilage repair.
Science 336, 717-721

JOHNSON, L. L. (2001):
Arthroscopic abrasion arthroplasty: a review.
Clin Orthop Relat Res S306-317
In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.
Exp Cell Res 238, 265-272

Collagenous matrices as release carriers of exogenous growth factors.
Biomaterials 25, 4513-4520

KARAMICHOOS, D., J. SKINNER, R. BROWN u. V. MUDERA (2008):
Matrix stiffness and serum concentration effects matrix remodelling and ECM regulatory genes of human bone marrow stem cells.
J Tissue Eng Regen Med 2, 97-105

Repair of articular cartilage defects with cultured chondrocytes in Atelocollagen gel.
Comparison with cultured chondrocytes in suspension.
Arch Orthop Trauma Surg 120, 121-127

The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants.
Clin Orthop Relat Res 279-293

Distribution of chondrocytes containing alpha-smooth muscle actin in human articular cartilage.
J Orthop Res 18, 749-755

Fluorometric assay of DNA in cartilage explants using Hoechst 33258.
Anal Biochem 174, 168-176

Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures.
Clin Orthop Relat Res 231-239

Expression of smooth muscle actin in connective tissue cells participating in fracture healing in a murine model.
Bone 30, 738-745

KINNER, B. u. M. SPECTOR (2001):
Smooth muscle actin expression by human articular chondrocytes and their contraction of a collagen-glycosaminoglycan matrix in vitro.
J Orthop Res 19, 233-241

Cell Tissue Res 347, 613-627

Differentiation 68, 235-244

Trends Biotechnol 25, 269-277

Mol Cell Biochem 219, 163-170

Cytotherapy 7, 36-45

J Orthop Res 18, 790-799

J Orthop Res 21, 272-281

Biomaterials 22, 3145-3154
Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment.
Tissue Eng Part A 14, 1843-1851

Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.
Biomaterials 25, 4163-4173

Stem cell plasticity: time for a reappraisal?
Haematologica 90, 360-381

Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family.
J Cell Biochem 113, 2532-2542

Growth hormone in vivo potentiates the stimulatory effect of insulin-like growth factor-1 in vitro on colony formation of epiphyseal chondrocytes isolated from hypophysectomized rats.
Endocrinology 121, 1070-1075

Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold.
Biomaterials 26, 5677-5686

Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold.
Biomacromolecules 8, 1446-1455

The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes.
Arthritis Rheum 48, 2188-2196
LOESER, R. F., M. D. TODD u. B. L. SEELY (2003b):
Prolonged treatment of human osteoarthritic chondrocytes with insulin-like growth
factor-I stimulates proteoglycan synthesis but not proteoglycan matrix accumulation in
alginate cultures.
J Rheumatol 30, 1565-1570

LONGOBARDI, L., L. O'REAR, S. AAKULA, B. JOHNSTONE, K. SHIMER, A.
Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the
presence or absence of TGF-beta signaling.
J Bone Miner Res 21, 626-636

LUBIS, A. M. u. V. K. LUBIS (2012):
Adult bone marrow stem cells in cartilage therapy.
Acta Med Indones 44, 62-68

LUYTEN, F. P., V. C. HASCALL, S. P. NISSLEY, T. I. MORALES u. A. H. REDDI
(1988):
Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine
articular cartilage explants.
Arch Biochem Biophys 267, 416-425

M. F. PITTENGER (1998):
Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.
Tissue Eng 4, 415-428

MAGNUSON, P. B. (1974):
The classic: Joint debridement: surgical treatment of degenerative arthritis.
Clin Orthop Relat Res 4-12

Effects of IGF-I, rGH, FGF, EGF and NCS on DNA-synthesis, cell proliferation and
morphology of chondrocytes isolated from rat rib growth cartilage.
Cell Biol Int Rep 13, 259-270

MANDL, E. W., H. JAHN, J. L. KOEVOET, J. P. VAN LEEUWEN, H. WEINANS, J.
A. VERHAAR u. G. J. VAN OSCH (2004):
Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces
dedifferentiation of human ear chondrocytes in monolayer culture.
Matrix Biol 23, 231-241

MARTIN, I., R. SUETTERLIN, W. BASCHONG, M. HEBERER, G. VUNJAK-
NOVAKOVIC u. L. E. FREED (2001):
Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2
during 2D expansion and BMP-2 during 3D cultivation.
J Cell Biochem 83, 121-128

Biomaterials 3, 81-86

Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18, 769-776

Growth hormone and IGF-I stimulate cell function in distinct zones of the rat epiphyseal growth plate.
Connect Tissue Res 31, 189-195

Cross-linking of dermal sheep collagen using a water-soluble carbodiimide.
Biomaterials 17, 765-773

Marrow stromal stem cells.
J Cell Sci Suppl 10, 63-76

Functional PLGA scaffolds for chondrogenesis of bone-marrow-derived mesenchymal stem cells.
Macromol Biosci 9, 221-229

Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels.
J Biosci Bioeng 106, 74-79

Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies.
Tissue Eng 10, 295-307

Gene delivery to cartilage defects using coagulated bone marrow aspirate.
Gene Ther 11, 133-141

PEK, Y. S., M. SPECTOR, I. V. YANNAS u. L. J. GIBSON (2004):
Degradation of a collagen-chondroitin-6-sulfate matrix by collagenase and by chondroitinase.
Biomaterials 25, 473-482

Joint cartilage repair with transplantation of embryonic chondrocytes embedded in collagen-fibrin matrices.
Clin Exp Rheumatol 18, 13-22
Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.
Clin Orthop Relat Res 212-234

The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds.
Osteoarthritis Cartilage 16, 1237-1244

Multilineage potential of adult human mesenchymal stem cells.
Science 284, 143-147

Composition and structure of articular cartilage - A template for tissue repair.
Clin Orthop Relat R S26-S33

QI, Y. u. W. YAN (2012):
Mesenchymal stem cell sheet encapsulated cartilage debris provides great potential for cartilage defects repair in osteoarthritis.
Med Hypotheses
The restoration of full-thickness cartilage defects with mesenchymal stem cells (MSCs) loaded and cross-linked bilayer collagen scaffolds on rabbit model.
Mol Biol Rep 39, 1231-1237

QUINTARELLI, G. u. M. C. DELLOVO (1965):
The chemical and histochemical properties of alcian blue. IV. Further studies on the methods for the identification of acid glycosaminoglycans.
Histochemie 5, 196-209

Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors.

Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits.
Osteoarthritis Cartilage 6, 50-65
Curr Opin Cell Biol 21, 616-622

RE'EM, T., Y. KAMINER-ISRAELI, E. RUVINOV u. S. COHEN (2012):
Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds.
Biomaterials 33, 751-761

Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.
Blood 98, 2615-2625

Mesenchymal stem cells and cartilage in situ regeneration.
J Intern Med 266, 390-405

Molecular and cell biology of TGF-beta.
Miner Electrolyte Metab 24, 111-119

ROSENBERG, L. (1971):
Chemical basis for the histological use of safranin O in the study of articular cartilage.

[Cartilage regeneration and substitution].
Orthopade 27, W309-321

The role of polyglycolic acid rods in the regeneration of cartilage from perichondrium in rabbits.

SAINI, S. u. T. M. WICK (2003):
Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development.
Biotechnol Prog 19, 510-521

SAKAGUCHI, Y., I. SEKIYA, K. YAGISHITA u. T. MUNETA (2005):
Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source.
Arthritis Rheum 52, 2521-2529
Effects of insulin-like growth factor I on transforming growth factor beta1 induced chondrogenesis of synovium-derived mesenchymal stem cells cultured in a polyglycolic acid scaffold.
Cells Tissues Organs 183, 55-61

Local and remote matrix responses to chondrocyte-laden collagen scaffold implantation in extensive articular cartilage defects.
Osteoarthritis Cartilage 3, 61-70

Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices.
Hum Gene Ther 13, 791-802

A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair.
Osteoarthritis Cartilage 14, 403-412

[Current status of autologous chondrocyte transplantation].
Z Orthop Ihre Grenzgeb 137, 386-392

Arch Biochem Biophys 324, 159-172

Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants.
Biomaterials 24, 4603-4608

In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis.
Proc Natl Acad Sci U S A 99, 4397-4402

In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells.
J Cell Biochem 97, 84-97

Results of arthroscopic abrasion arthroplasty in osteoarthritis of the knee joint.
Singapore Med J 32, 34-37

Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture.
Biomaterials 15, 451-456

Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering.
Expert Opin Drug Deliv 5, 543-566

Effect of gravity on localization of chondrocytes implanted in cartilage defects.
Clin Orthop Relat Res 254-262

Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle.
Tissue Eng 8, 333-347

Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells.
Tissue Eng Part A 16, 1009-1019

FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells.
J Cell Physiol 203, 398-409

The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds.
Tissue Eng 13, 271-280

Morphometry of Cytoplasmic Components of Mammalian Articular Chondrocytes and Corneal Keratocytes - Species and Zonal Variations of Mitochondria in Relation to Nutrition.
J Anat 175, 251-261

Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review.
Biomaterials 21, 2589-2598

Latent TGF-beta binding proteins.
Int J Biochem Cell Biol 37, 38-41

Regulation of growth-plate chondrocytes by insulin-like growth-factor I and basic fibroblast growth factor.
J Bone Joint Surg Am 75, 177-189

Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate.
PLoS One 6, e15978

Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF.
Biochem Biophys Res Commun 288, 413-419

Role of insulin like growth factor-I in repair response in immature cartilage.
Knee 12, 113-119

Human chondrocyte proliferation and matrix synthesis cultured in Atelocollagen gel.
J Biomed Mater Res 50, 138-143

Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells.

Responsiveness of bovine chondrocytes to growth factors in medium with different serum concentrations.
J Orthop Res 18, 68-77

Culture of chondrocytes in alginate and collagen carrier gels.
Acta Orthop Scand 66, 549-556

VEILLEUX, N. u. M. SPECTOR (2005):
Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro.
Osteoarthritis Cartilage 13, 278-286

Tissue Eng 10, 119-127

Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG scaffolds seeded with bone marrow-derived mesenchymal stem cells.
J Orthop Res 28, 1184-1192

Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation.
Tissue Eng 12, 1345-1355

VINCENT, T. L. (2011):
Fibroblast growth factor 2: good or bad guy in the joint?
Arthritis Res Ther 13, 127

Interplay of mechanical loading and growth factors in the mandibular condyle.
Arch Oral Biol 53, 709-715

VON DER MARK, K., V. GAUSS, H. VON DER MARK u. P. MULLER (1977):
Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture.
Nature 267, 531-532

Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering.
Biotechnol Prog 14, 193-202

Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.
Muscle Nerve 18, 1417-1426

Healing of defects in canine articular cartilage: distribution of nonvascular alpha-smooth muscle actin-containing cells.
Wound Repair Regen 8, 145-158

Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
Biomaterials 27, 4434-4442

Diffusivity of 125I-labelled macromolecules through collagen: mechanism of diffusion and effect of adsorption.
Biomaterials 8, 105-112

Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells.
Arthritis Rheum 48, 418-429

WIPFF, P. J. u. B. HINZ (2008):
Integrins and the activation of latent transforming growth factor beta1 - an intimate relationship.
Eur J Cell Biol 87, 601-615

J Orthop Res 14, 424-432

Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix.
J Orthop Res 19, 738-749

Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation.
J Bone Miner Res 10, 735-742

Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells.
J Zhejiang Univ Sci B 8, 136-146

Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes.
Exp Cell Res 237, 318-325

Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes.
Arthritis Res Ther 13, R130

YAN, H. u. C. YU (2007):
Repair of full-thickness cartilage defects with cells of different origin in a rabbit model.
Arthroscopy 23, 178-187

Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair.
J Orthop Res 16, 406-413
Growth factor regulation of smooth muscle actin expression and contraction of human articular chondrocytes and meniscal cells in a collagen-GAG matrix.
Exp Cell Res 270, 21-31

Contractile forces generated by articular chondrocytes in collagen-glycosaminoglycan matrices.
Biomaterials 25, 1299-1308

Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems.
Biotechnol Lett 32, 1339-1346

ZHANG, L., T. YUAN, L. GUO u. X. ZHANG (2012):
An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells.
J Biomed Mater Res A

Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts.
Aging Cell 7, 335-343

Multilineage cells from human adipose tissue: implications for cell-based therapies.
Tissue Eng 7, 211-228
9 Anhang

9.1 Protokolle

9.1.1 Scaffoldherstellung

9.1.1.1 Isolation von Kollagen Type II aus Knorpel (Schweineknie)

Materialien

- Kniegelenke vom Schwein
- Skalpell

Lösungen

- 70% 2-Propanol
- Tris-Guanidine-Puffer
- 500 mM Essigsäure
- 70%ige Ameisensäure
- Pepsin
- 5 M NaCl

Methode

- Desinfektion des Knorpels mit 70 % 2-Propanol (oder EtHO).
- Zerkleinerung der Knorpelstücke mittels Skalpell unter Eis (Gewebsstücke mit Eis bedecken).
- Zentrifugieren des Gemisches für ca. 45-60 min bei 4600 g und 4 °C, Überstand verwerfen.
- Resuspendieren des Pellets in ca. 10 ml/g Tris-Guanidine-Puffer, bei 4 °C über Nacht rühren lassen.
- Zentrifugieren der Suspension für 30 min bei 4600 g und 4 °C, Überstand verwerfen.
- Waschen des Pellets mit 15 ml/g kaltem Wasser (3x wiederholen).
• Zentrifugieren der Suspension für 30 min bei 4600 g und 4 °C, Überstand verwerfen.
• Pellet mit 20 Vol 500 mM Essigsäure Resuspendieren und den pH mit 70%iger Ameisensäure (Methansäure) auf 2.8 einstellen.
• Zugabe von 1 g Pepsin zu 20 g Gewicht des Knorpels, ca. 36-48 h bei 4 °C rühren lassen.
• Zentrifugieren der Suspension für 30 min bei 5000 g und 4 °C, Pellet verwerfen.
• (wenn Suspension zu zähflüssig dann mit 500 mM Essigsäure verdünnen.)
• 5 M NaCl sehr langsam hinzugeben auf eine Endkonzentration an NaCl von 800 mM, bei 4 °C für 12-24 h unter langsamen rühren Präzipitieren lassen.
• (Bsp.: zu 100 ml Lösung müssten 16 ml 5 M NaCl hinzugeben werden, dass entspricht einem Verdünnungsfaktor von 1:6.25)
• Zentrifugieren der Suspension für 60 min bei 4600 g und 4 °C, Überstand verwerfen.
• Resuspendieren des Pellets mit 100 mM Essigsäure, über Nacht bei 4 °C rühren.
• Zentrifugieren der Suspension für 60 min bei 5000 g und 4 °C, Pellet verwerfen.
• (wenn Suspension zu zähflüssig dann vor dem Zentrifugieren mit 100 mM Essigsäure verdünnen.)
• 5 M NaCl sehr langsam hinzugeben auf eine Endkonzentration an NaCl von 800 mM, bei 4 °C für 12-24 h unter langsamen rühren Präzipitieren lassen, diesen Fällungsschritt 3x wiederholen.
9.1.1.2 Herstellung der Kollagen Typ II Suspension

Referenz: (O'BRIEN et al. 2004)

Materialien
- Rohkollagen Typ II der Firma Geistlich Biomaterials (Wolhusen, Schweiz) bzw. selbstisoliertes Rohkollagen aus Schweinegelenken

Lösungen
- 0.001 mol/L HCL

Methode
- 1 g Rohkollagen der Firma Geistlich (1 % w/v), bzw. 2 g (2 % w/v) selbstisoliertes Rohkollagen in 100 ml 0.001mol/L HCL einrühren.
- Bei 1500 rpm für 3-5 min Rohkollagensuspension vermischen, während dessen Kollagensuspension auf Eis lagern.
- Visköse Kollagensuspension in 50 ml Falcons überführen.
- Bei 1000 g für 5 min zentrifugieren, um Luftbläschen zu entfernen.
- Kollagensuspension bei 4 °C lagern oder zum Lyophilisieren in Aluminiumwannen überführen.

9.1.1.3 Herstellung der Kollagenscaffolds

Referenz: (O'BRIEN et al. 2004)

Materialien
- Kollagensuspension (Konzentration 1-2 % w/v)
- 9 cm x 9 cm große Aluminiumwannen
- Virtis AdVantage 2.0 XL, Gefriertrocknungsgerät
Methode

- Gefriertrocknungsgerät anschalten.
 - Ölstand der Vakuumpumpe kontrollieren, muss mindestens zu 2/3 gefüllt sein.
 - Tür des Gefriertrocknungsgerät schließen und Gerät einschalten
 - condenser drücken.
 - freeze drücken und Gerät auf ungefähr 20 °C einstellen.
 - dauert ca. 60 min bis sich die richtige Temperatur eingestellt hat und der Kondensator kalt genug ist um fortzufahren.
- 50 ml der Kollagensuspension in Aluminiumwanne pipettieren.
- Mittels 200 µl Spitzen Luftbläschen auf der Oberfläche der Kollagensuspension entfernen und Aluminiumwanne in Gefriertrocknungsgerät platzieren.
- Mittels wizard controller das gewünschte Programm auswählen und enter drücken.
 - Programm 2:

<table>
<thead>
<tr>
<th>Freezing Step</th>
<th>Temperatur (°C)</th>
<th>Zeit (min)</th>
<th>R/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (start)</td>
<td>-20</td>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>2 („ramping“)</td>
<td>-10</td>
<td>20</td>
<td>R</td>
</tr>
<tr>
<td>3 („annealing“)</td>
<td>-10</td>
<td>300</td>
<td>H</td>
</tr>
</tbody>
</table>
- Start drücken
9.1.1.4 Cross-linking der Kollagenscaffolds mittels Dehydrothermal (DHT)

Referenz: (WEADOCK et al. 1995)

Methode:
- Lyophilisierte Kollagenmatrix in Alufolie einwickeln (eine Seite offen lassen).
- In Vakuumofen bei 105 °C legen.
- Vakuumpumpe anschalten (sollte 50 mtorr erreichen).
- Nach 24 Std wieder rausnehmen.
- Je länger die Kollagenmatrix im Vakuumofen verbleibt, desto höher ist die cross-linking Intensität.

9.1.1.5 Chemisches cross-linking der Kollagenscaffolds

Referenz: (OLDE DAMINK et al. 1996; C. R. LEE et al. 2001)

Materialien:
- 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC)
 $MW = 191.7 \text{ g/mol (Sigma-Aldrich; Lagerung bei } -20 \text{ °C)}$
- N-hydroxysuccinimide (NHS)
 $MW = 116 \text{ g/mol (Sigma-Aldrich; Lagerung bei Raumtemperatur)}$
- Steriles, destilliertes Wasser
- 50 ml Falcons
- Sterile Filter
- Sterile Pipetten

Methode:
- EDAC für 30 min auf Raumtemperatur aufwärmen lassen, damit es zu keiner Kondensation von Feuchtigkeit im inneren des Behälttnisses kommt.
• anhand folgender Formel, die Menge an EDAC und NHS für das benötigte Molverhältnis von EDAC:NHS:COOH berechnen.

\[
\begin{align*}
\text{Scaffolds} \times \frac{\text{g collagen/scaffolds}}{\text{mol COOH/ g collagen}} \times \frac{\text{mol EDAC/ mol COOH}}{\text{g EDAC/ mol EDAC}} = \text{g EDAC}
\end{align*}
\]

\[
\begin{align*}
\text{Scaffolds} \times \frac{\text{g collagen/scaffolds}}{\text{mol COOH/ g collagen}} \times \frac{\text{mol NHS/ mol COOH}}{\text{g NHS/ mol NHS}} = \text{g NHS}
\end{align*}
\]

Hierbei wird vorausgesetzt, dass die Scaffolds hauptsächlich aus Kollagen bestehen und das pro mol Kollagen, 1.2 mmol COOH-Gruppen vorhanden sind. Typische Gewichtsangaben für 8 mm Scaffolds sind 2-3 mg.

• Abgewogene Menge an EDAC und NHS in destilliertes Wasser lösen.
 - Benötigt wird 1 ml Lösung pro Scaffold.
• EDAC/NHS Lösung steril filtrieren.
• EDAC/NHS Lösung vorsichtig auf die Scaffolds pipettieren.
• 30 min Inkubation.
• Scaffolds in mit PBS gefüllte 50 ml Falcons überführen, vorsichtig hin und her schwenken, PBS absaugen und neues PBS hinzufügen. Um noch restliche EDAC/NHS Lösung zu entfernen, Falcons für ca. 1 Std auf einem Rüttler vorsichtig schwenken lassen.
• Scaffolds nicht länger als 24 Std in PBS bei 4 °C lagern.

9.1.2 Wachstumsfaktoren

9.1.2.1 TGF-ß1 (R&D, Recombinant Human)

Rekombinantes humanes TGF-ß1 ist ein hydrophobes Protein, welches stark an Oberflächen adhäriert. Lyophilisierte Proben müssen in sterilem 4 mM HCl mit 1 mg/ml BSA auf eine Endkonzentration von nicht weniger als 1 µg/ml TGFß-1 rekonstituiert werden.
Für 2 µg TGF-β1:

- 4 mM HCl herstellen.
- 2.5 mg BSA mit 2.5 ml 4 mM HCl vermischen, gut vortexen und steril filtrieren.
- 2 ml der 4 mM HCl + BSA Lösung mit 2 µg TGF-β1 resuspendieren, auf eine Endkonzentration von 1 µg/ml.
- In sterilen Eppis aliquotieren und bei -70 °C für nicht länger als 3 Monate lagern. Wiederholtes Einfrieren vermeiden.

9.1.2.2 FGF-2 (R&D, Recombinant Human FGF Basic)

Es wird empfohlen, 0.1 % BSA und 1 mM DTT enthaltenes steriles PBS auf die Proben zu geben, um eine Endkonzentration von nicht weniger als 10 µg FGF-2 herzustellen.

Für 25 µg FGF-1:

- 0.0025 g BSA und 0.004 g DTT zu 2.5 ml PBS hinzugeben.
- Steril filtrieren.
- Obige Lösung mit 25 µg FGF-2 resuspendieren, auf eine Endkonzentration von 10 µg/ml.
- In sterilen Eppis aliquotieren und bei -70 °C für nicht länger als 3 Monate lagern. Wiederholtes Einfrieren vermeiden.

9.1.2.3 IGF-1 (R&D, Recombinant Human)

Es wird empfohlen, 0.1 % BSA und 1 mM DTT enthaltenes steriles PBS auf die Proben zu geben, um eine Endkonzentration von nicht weniger als 10 µg IGF-1 herzustellen.
Für 50 µg IGF-1:

- 0.005 g BSA und 0.008 g DTT zu 5 ml PBS hinzugeben.
- Steril filtrieren.
- Obige Lösung mit 50 µg FGF-2 resuspendieren, auf eine Endkonzentration von 10 µg/ml.
- In sterilen Eppis aliquotieren und bei -70 °C für nicht länger als 3 Monate lagern. Wiederholtes Einfrieren vermeiden.

9.1.3 Biochemische Assays

9.1.3.1 Proteinase K Verdau der Scaffolds

Materialien

- UltraPureTris (Invitrogen, Mw = 121.14 g/mol)
- CaCl2 (Sigma, Mw = 147.02 g/mol)
- Proteinase K (Roche, aufbewahren bei -20 °C)

Lösungen

- Tris-HCL Puffer (1 L), Lagerung bei Raumtemperatur
- Folgendes in 900 ml Wasser lösen:
 - 6.1 g UltraPureTris (macht 0.05 M)
 - 0.147 g CaCl2 (macht 1 mM)
 - ph Wert mit NaOH auf 8.0 einstellen
 - Add 1000 ml mit Wasser

Methode

- Proben lyophilisieren.
- Proben bei 60 °C über Nacht in folgender Lösung verdauen:
 - 500 µg/ml Proteinase K Lösung
Für 100 ml:
- 100 ml Tris-HCl Puffer
- 50 mg Proteinase K
- Proteinase K Lösung steril filtrieren.
- Pro Scaffolds 1 ml hinzugeben.
- Proben vortexen.
- Über Nacht bei 60 °C im Rüttler schütteln lassen.
- Verdauten Proben bis zur gag/DNA Analyse bei -20 °C lagern.

9.1.3.2 PicoGreen dsDNA Quantitation Assay
Aus dem Protokoll von Ramille Spector

Materialien
- Picogreen dsDNA Assay Kit (Invitrogen, Oregon USA)
- 96 well Platte mit transparentem Boden
- Wallac 1420 multilabel counter

Lösungen
- 1 x TE Puffer (im Kit enthalten)
 - 1:20 verdünnen mit Wasser
- PicoGreen Färbelösung
 - 1:200 verdünnen mit TE Puffer
 - 100 µl PicoGreen Färbelösung + 19.9 ml TE-Puffer
- Lambda-DNA Standard (Stock 100 µg/ml) wird 1:100 verdünnt mit TE-Puffer auf folgende Endkonzentrationen:
 - (1) 1000 ng/ml
 - (2) 750 ng/ml
 - (3) 500 ng/ml
 - (4) 250 ng/ml
 - (5) 125 ng/ml
 - (6) 62.5 ng/ml
• (7) 31.25 ng/ml
• (8) blank

Methode
• Proben 1:50 verdünnen in TE-Puffer.
• 80 µl TE-Puffer pro well vorlegen.
• 20 µl Standard bzw. Probe auftragen pro well.
• 100 µl der PicoGreen Gebrauchslösung pro well pipettieren.
• 5 min bei Raumtemperatur im Dunkeln inkubieren.
• Messen der Fluoreszens bei 485/538 nm am Wallac Reader.

9.1.3.3 DMMB-Assay
Referenz: (FARNDALE et al. 1986)

Material
• 96 well Platte mit flachem Boden
• Wallac 1420 multilabel counter

Lösungen
• 1x TE-Puffer
• DMMB Färbelösung (DMMB dye solution):
 • 1.52 g Glycin
 • 1.19 g NaCL
 • 10 mg DMMB [1,9-Diethyl-Methylen Blau]
 • Add 500 ml mit Wasser
 • pH auf 3.0 einstellen
 • Lösung im Dunkeln bei RT lagern
• Chondroitin Sulfat Standard (Stock 10 mg/ml bei -20 °C) 1:20 verdünnen mit TE-Puffer
 • 500 µg/ml → diese dann absteigend verdünnen 1:2 mit TE-Puffer bis 7.8125 µg/ml
Methode

- 30 µl Standard bzw. Probe (unverdünnt) auftragen pro well.
- Platte im Wallac platzieren.
- 200 µl der DMBB Gebrauchslösung pro well pipettieren.
- Messen der Absorption bei 530 nm am Wallac Reader (sofort messen, da Chondroitin sehr schnell ausfällt).

9.1.4 Immunologischen Assays

9.1.4.1 TGF-β1 ELISA

Vorbereitung

- Alle Reagenzien auf Raumtemperatur bringen und entsprechend der Herstellerangaben vorbereiten.

Durchführung

- Pro well 50 µl Assay Diluent RD1-21 aufpipettieren.
- Pro well 50 µl der Standards bzw. Proben aufpipettieren und Platte vorsichtig hin und her schwenken.
- 2 h bei Raumtemperatur inkubieren.
- Platte 4x mit Waschpuffer waschen, zwischen drin gut ausklopfen.
- Pro well 100 µl TGF-β1 Konjugat aufpipettieren und 2 h bei Raumtemperatur inkubieren.
- Platte 4x mit Waschpuffer waschen, zwischen drin gut ausklopfen.
- Pro well 100 µl Substrate Solution auftragen und 30 min lichtgeschützt, bei Raumtemperatur inkubieren.
• Pro well 100 µl Stop Solution auftragen und Platte vorsichtig hin und her schwenken.
• Innerhalb 30 min Platte im ELISA Lesegerät bei 450/570 nm messen.

9.1.4.2 IGF-1 ELISA

Vorbereitung
• Alle Reagenzien, mit Ausnahme des IGF-1 Konjugats, auf Raumtemperatur bringen und entsprechend der Herstellerangaben vorbereiten.

Durchführung
• Pro well 150 µl Assay Diluent RD1-53 aufpipettieren.
• Pro well 50 µl der Standards bzw. Proben aufpipettieren und Platte vorsichtig hin und her schwenken.
• 2 h bei 2-8 °C inkubieren.
• Platte 4x mit Waschpuffer waschen, zwischen drin gut ausklopfen.
• Pro well 200 µl kaltes IGF-1 Konjugat aufpipettieren und 1 h bei 2-8 °C inkubieren.
• Platte 4x mit Waschpuffer waschen, zwischen drin gut ausklopfen.
• Pro well 200 µl Substrate Solution auftragen und 30 min, lichtgeschützt, bei Raumtemperatur inkubieren.
• Pro well 50 µl Stop Solution auftragen und Platte vorsichtig hin und her schwenken.
• Innerhalb 30 min Platte im ELISA Lesegerät bei 450/570 nm messen.

9.1.4.3 FGF-2 ELISA

Vorbereitung
• Alle Reagenzien auf Raumtemperatur bringen und entsprechend der Herstellerangaben vorbereiten.
Durchführung

- Pro well 100 µl Assay Diluent RD1-43 aufpipettieren.
- Pro well 100 µl der Standards bzw. Proben aufpipettieren und Platte vorsichtig hin und her schwenken.
- 2 h bei Raumtemperatur inkubieren.
- Platte 4x mit Waschpuffer waschen, zwischen drin gut ausklopfen.
- Pro well 200 µl FGF Konjugat aufpipettieren und 2 h bei Raumtemperatur inkubieren.
- Platte 4x mit Waschpuffer waschen, zwischen drin gut ausklopfen.
- Pro well 200 µl Substrate Solution auftragen und 30 min, lichtgeschützt, bei Raumtemperatur inkubieren.
- Pro well 50 µl Stop Solution auftragen und Platte vorsichtig hin und her schwenken.
- Innerhalb 30 min Platte im ELISA Lesegerät bei 450/570 nm messen.

9.2 Versuchsprotokolle der Hauptversuche

9.2.1 Aufrüstung der Kollagenmatrix durch Lyophilisierung mit verschiedenen Wachstumsfaktoren (FGF-2, TGF-β1)

Material

- Kollagen Typ II Scaffolds (Geistlich Biomaterials, Wolhusen Schweiz)
- Wachstumsfaktoren (1 µg FGF-2/Scaffold; 1 µg TGF-β1/Scaffold)
- Steriles Filterpapier
- Sterile Pinzetten
- 24-well Platten
Lösungen
- Cross-linking Lösung (EDAC/NHS/COOH – 2,5:1:5)
- Chondrogenes Medium
 - +/- 10ng/ml TGF-β1
 - 100 nM Dexamethasone
 - 170 µM L-Ascorbic-Acid 2 Phosphate
 - 5µg/ml Insulin

Methode
- Chemisches cross-linking.
 - 1 ml cross-linking Lösung/Scaffold.
 - 30 min Inkubation bei Raumtemperatur.
 - Absaugen.
 - 2x waschen mit PBS.
 - 1 h auf Schüttler (in PBS).
- Scaffolds auf Filterpapier trocknen (nur kurz, da Scaffolds schnell auf dem Filterpapier kleben bleiben).
- Scaffolds in beschichtete 24-well Platte überführen.
- 10 µl Wachstumsfaktorlösung auf Scaffold auftropfen.
- Über Nacht Lyophilisation der Platte im FreezeDryer.
 - Programm: 01 -40°C 300min H
 01 -40°C 5min H
 02 0°C 1200min H
- Zellen vom Flaschenboden lösen und in chondrogenes Medium aufnehmen, so dass in 40 µl gleich 1.000.000 Zellen.
- 20 µl der Zellsuspension auf Scaffolds pipettieren.
- Platte für 15 min in Inkubator stellen.
- Scaffolds umdrehen und restlichen 20 µl Zellsuspension auftragen
- Platte für weitere 15 min in Inkubator stellen.
- Vorsichtig 2 ml Medium (möglichst fern vom Scaffold) hinzugeben (chondrogenes Medium mit/ohne TGF-β1)
• Mediumwechsel alle 3 Tage.
• 3 Wochen Inkubationsdauer.
• Am 3 und 14 Tag aus jeder Gruppe ein Scaffold rausnehmen für GAG/DNA Analyse, am 21 Tag aus jeder Gruppe zwei Scaffolds rausnehmen für GAG/DNA Analyse.
• Am 21. Tag aus jeder Gruppe ein Scaffold rausnehmen für histologische Auswertung.

9.2.2 Nicht virale 3D-Matrix assoziierte Gentransfektion

Material

• Kollagen Typ II Scaffolds (Geistlich Biomaterials, Wolhusen Schweiz)
• Steriles Filterpapier
• Sterile Pinzetten
• 24-well Platten
• GenePorter 2 Transfektions Reagent

Lösungen

• Cross-linking Lösung (EDAC/NHS/COOH – 2,5:1:5)
• Chondrogenes Medium
 • +/- 10 ng/ml TGF-β1
 • 100 nM Dexamethasone
 • 170 µM L-Ascorbic-Acid 2 Phosphate
 • 5 µg/ml Insulin
• Plasmid-DNA
 • pIGF-1 (1 µg/µl)
 • pTGF-β1 (1 µg/µl)
 • insgesamt pro Scaffold: 10 µg DNA
Methode

- 15 µl GP2 in 10 µl TE-Puffer lösen.
- 5 µl Plasmid-DNA in 10 µl Diluent B lösen und gut resuspendieren.
- 5 min Inkubation bei Raumtemperatur.
- Gelöste Plasmid-DNA mit GP2 vermischen.
- 10 min Inkubation bei Raumtemperatur.
- Pro Scaffold 40 µl Plasmid/GP2 auftragen (5 µg DNA/Scaffold).
- 1 h Inkubation bei Raumtemperatur.
- chemisches cross-linking.
 - 1 ml EDAC/NHS cross-linking Lösung/Scaffold.
 - 30 min Inkubation bei Raumtemperatur.
 - Cross-linking Lösung absaugen.
 - 2x waschen mit PBS.
 - 1 h auf Schüttler (in PBS).
- Scaffolds auf Filterpapier trocknen (nur kurz, da Scaffolds schnell auf dem Filterpapier kleben bleiben).
- Scaffolds in beschichtete 24-well Platte überführen.
- 15 µl GP2 mit 5 µl Plasmid-DNA vermischen.
- 10 min Inkubation bei Raumtemperatur.
- Pro Scaffold 20 µl Plasmid/GP2 auftragen (5 µg DNA/Scaffold).
- 1 h Inkubation bei Raumtemperatur.
- Während der Inkubationsperiode Zellen vom Flaschenboden lösen und in chondrogenes Medium aufnehmen, so dass in 20 µl gleich 1.000.000 Zellen.
- 10 µl der Zellsuspension auf Scaffolds pipettieren.
- Platte für 15 min in Inkubator stellen.
- Scaffolds umdrehen und restlichen 10 µl Zellsuspension auftragen.
- Platte für weitere 15 min in Inkubator stellen.
- vorsichtig 2ml Medium (möglichst fern vom Scaffold) hinzugeben (chondrogenes Medium mit/ohne TGF-β1).
• Mediumwechsel alle 3 Tage.
• 4 Wochen Inkubationsdauer.
• Am 28. Tag aus jeder Gruppe ein Scaffold rausnehmen für histologische Auswertung.

9.2.3 Biotin-Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II - Geistlich)

Material
• Biotinylierte Kollagen Typ II Scaffolds (Geistlich Biomaterials, Wolhusen Schweiz)
• Steriles Filterpapier
• Sterile Pinzetten
• 24-well Platten

Lösungen
• Cross-linking Lösung (EDAC/NHS/COOH – 2,5:1:5)
• Wachstumsfaktoren (biotinyliertes IGF-1)
• In Aqua dest. gelöstes Streptavidin
• Chondrogenes Medium
 • 10 ng/ml TGF-ß1
 • 100 nM Dexamethasone
 • 170 µM L-Ascorbic-Acid 2 Phosphate
 • 5 µg/ml Insulin
Methode

- Chemisches cross-linking.
 - 1 ml cross-linking Lösung/Scaffold.
 - 30 min Inkubation bei Raumtemperatur.
 - Cross-linking Lösung absaugen.
 - 2x waschen mit PBS.
 - 1 h auf Schüttler (in PBS).
- Scaffolds auf Filterpapier trocknen (nur kurz, da Scaffolds schnell auf dem Filterpapier kleben bleiben).
- Scaffolds in beschichtete 24-well Platte überführen.
- Biotiniertes IGF-1 und Streptavidin auftragen (30 µl pro Scaffold; 0.1 µg bIGF-1/Scaffold bzw. 1 µg bIGF-1/Scaffold).
- 15 min Inkubation.
- 2x waschen mit PBS (jeweils 2 ml pro Scaffold) um nicht gebundenes bIGF-1 zu entfernen.
- Scaffolds auf Filterpapier trocknen.
- Zellen vom Flaschenboden lösen und in chondrogenes Medium aufnehmen, so dass in 40 µl gleich 1 x 10⁶ Zellen.
- 20 µl der Zellsuspension auf Scaffolds pipettieren
- Platte für 15 min in Inkubator stellen.
- Scaffolds umdrehen und restlichen 20 µl Zellsuspension auftragen.
- Platte für weitere 15 min in Inkubator stellen.
- vorsichtig 2 ml Medium (möglichst fern vom Scaffold) hinzugeben (chondrogenes Medium mit TGFβ-1).
- Mediumwechsel alle 3 Tage.
- 4 Wochen Inkubationsdauer.
9.2.4 Biotin-Streptavidin Koppelung an den Kollagenträger (Kollagen Typ II - porcin)

Siehe Versuchsprotokoll 2.3.5.3

9.2.5 Kombinierte Wachstumsfaktorfreisetzung (FGF-2, TGF-β1, IGF-1)

Material

- Biotinylierte Kollagen Typ II Scaffolds (Geistlich Biomaterials, Wolhusen Schweiz)
- Steriles Filterpapier
- Sterile Pinzetten
- 24-well Platten

Lösungen

- Cross-linking Lösung (EDAC/NHS/COOH – 2,5:1:5)
- Wachstumsfaktoren (biotinyliertes IGF-1; FGF-2; TGF-β1)
- Streptavidin (1µg/ml)
- Chondrogenes Medium
 - 10 ng/ml TGFβ-1
 - 100 nM Dexamethasone
 - 170 µM L-Ascorbic-Acid 2 Phosphate
 - 5 µg/ml Insulin
Methode

- Chemisches cross-linking.
 - 1 ml cross-linking Lösung/Scaffold.
 - 30 min Inkubation bei Raumtemperatur.
 - Cross-linking Lösung absaugen.
 - 2x waschen mit PBS.
 - 1 h auf Schüttler (in PBS).
- Scaffolds auf Filterpapier trocknen (nur kurz, da Scaffolds schnell auf dem Filterpapier kleben bleiben).
- Scaffolds in beschichtete 24-well Platte überführen.
- Biotinyliertes IGF-1 und Streptavidin auftragen (30 µl pro Scaffold).
- 15 min Inkubation.
- 2x waschen mit PBS (jeweils 2 ml pro Scaffold) um nicht gebundenes biIGF-1 zu entfernen.
- Scaffolds auf Filterpapier trocknen.
- Scaffolds in beschichtete 24-well Platte überführen.
- Gelöstes TGF-β1 auf Scaffold aufpipettieren (20 µl pro Scaffold).
- Gelöstes FGF-2 auf Scaffold aufpipettieren (20 µl pro Scaffold).
- Über Nacht Lyophilisation der Platte im FreezeDryer.
 - Programm: 01 -40°C 300min H

 01 -40°C 5min H

 02 0°C 1200min H

- Zellen vom Flaschenboden lösen und in chondrogenes Medium aufnehmen, so dass in 40 µl gleich 1.000.000 Zellen.
- 20 µl der Zellsuspension auf Scaffolds pipettieren.
- Platte für 15 min in Inkubator stellen.
- Scaffolds umdrehen und restlichen 20 µl Zellsuspension auftragen.
- Platte für weitere 15 min in Inkubator stellen.
- vorsichtig 2 ml Medium (möglichst fern vom Scaffold) hinzugeben (chondrogenes Medium mit/ohne TGFβ-1).
- Mediumwechsel alle 3 Tage.
• 6 Wochen Inkubationsdauer.
• Am 3. -und 14. Tag aus jeder Gruppe ein Scaffold rausnehmen für GAG/DNA Analyse, am 42. Tag aus jeder Gruppe zwei Scaffolds rausnehmen für GAG/DNA Analyse.
• Am 42. Tag aus jeder Gruppe ein Scaffold rausnehmen für histologische Auswertung.

9.2.6 Kombinierte Wachstumsfaktorfreisetzung (die Rolle von FGF-2)

Siehe Versuchsprotokoll 9.2.5.
10 Danksagung

Mein ganz besonderer Dank gilt dem Betreuer meiner Doktorarbeit Dr. Tobias Gotterbarm für die Überlassung des Themas der Promotion sowie für die umfassende Unterstützung und Betreuung in den letzten Jahren. Vielen Dank für deine unermüdliche Hilfe, die weit über die Aufgaben eines Betreuers hinausging.

Bei Prof. rer. biol. hum. Wiltrud Richter möchte ich mich für die Bereitstellung des Arbeitsplatzes sowie für das schnelle Korrekturlesen dieser Arbeit bedanken.

Ein weiteres Dankeschön gilt meinem Doktorvater Prof. Dr. med. vet Heiner Niemann für die Übernahme des Erstgutachtens und für die stets hilfsbereite und geduldige Beantwortung all meiner Fragen.

Ein riesen Dank gilt meinen Eltern, die mich das ganze Studium lang unterstützten, mir immer mit Rat und Tat zur Seite standen und somit die Promotion erst ermöglichten.

Von ganzem Herzen bedanke ich mich bei meinem Mann für seinen Beistand, seine Geduld und sein großes Vertrauen in mich.