Stiftung Tierärztliche Hochschule Hannover (TiHo)TiHo eLib

Looking at developmental neurotoxicity testing from the perspective of an invertebrate embryo

Developmental neurotoxicity (DNT) of chemical compounds disrupts the formation of a normal brain. There is impressive progress in the development of alternative testing methods for DNT potential in chemicals, some of which also incorporate invertebrate animals. This review briefly touches upon studies on the genetically tractable model organisms of Caenorhabditis elegans and Drosophila melanogaster about the action of specific developmental neurotoxicants. The formation of a functional nervous system requires precisely timed axonal pathfinding to the correct cellular targets. To address this complex key event, our lab developed an alternative assay using a serum-free culture of intact locust embryos. The first neural pathways in the leg of embryonic locusts are established by a pair of afferent pioneer neurons which use guidance cues from membrane-bound and diffusible semaphorin proteins. In a systematic approach according to recommendations for alternative testing, the embryo assay quantifies defects in pioneer navigation after exposure to a panel of recognized test compounds for DNT. The outcome indicates a high predictability for test-compound classification. Since the pyramidal neurons of the mammalian cortex also use a semaphorin gradient for neurite guidance, the assay is based on evolutionary conserved cellular mechanisms, supporting its relevance for cortical development.


Citation style:
Could not load citation form.

Access Statistic

Last 12 Month:


Use and reproduction: