Stiftung Tierärztliche Hochschule Hannover (TiHo)TiHo eLib

Developing a predictive model for beta-hydroxybutyrate and non-esterified fatty acids using milk Fourier-transform infrared spectroscopy in dairy cows

Negative energy balance following parturition predisposes dairy cattle to numerous metabolic disorders. Current diagnostics are limited by their labor requirements and inability to measure multiple metabolic markers simultaneously. Fourier-transform Infrared spectroscopy (FTIR) data, measured from milk samples, could improve the detection of metabolic disorders using routine milk samples from dairy farms. The objective of this study was to develop a predictive model for numeric values of blood beta-hydroxybutyrate (BHB) and blood non-esterified fatty acids (NEFA). The study utilized a dataset comprised of 622 observations with known blood BHB and blood NEFA values measured concurrently with the milk FTIR data. Using ElasticNet regression on milk FTIR data and production information, we built regression models for numeric blood BHB and blood NEFA prediction and classification models for blood BHB values greater than 1.2 mmol/L and blood NEFA values greater than 0.7 mmol/L. The R2 of the best fitting model was 0.56 and 0.51 for log-transformed BHB and log-transformed NEFA, respectively. The BHB classification model had a 90 % sensitivity and 83 % specificity and the NEFA classification model achieved a sensitivity of 73 % and specificity of 74 %. We applied our numeric prediction models to an external dataset (n = 9660) with known blood metabolites to validate the prediction accuracy of log-transformed blood BHB and log-transformed blood NEFA models. Log-transformed BHB root mean square error (RMSE) was 0.4018 and log-transformed NEFA RMSE was 0.4043.

The second objective of this study was to develop a categorization for cows as either metabolically disordered or healthy. Responses to negative energy balance in transition cows are related to blood levels of BHB and NEFA. Cows suffering from metabolic disorders without elevated blood BHB values remain unidentified when detection is focused on blood BHB alone. To account for this differentiated metabolic response, we categorized cows as either ‘metabolically healthy’ or suffering a ‘metabolic disorder’ by using a combination of blood BHB, blood NEFA, and milk fat to protein quotient. We obtained a balanced accuracy of 94 % for the prediction of cow metabolic status. Direct prediction of metabolic status can be used to identify hyperketonemic cows in addition to cows exhibiting metabolic response patterns not detected by elevated blood BHB alone.


Citation style:
Could not load citation form.


Use and reproduction:
All rights reserved