Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions
Background: Rational design of cryopreservation strategies for oocytes and ovarian cortex tissue requires insights in the rate at which cryoprotective agents (CPA) permeate and concomitant water transport takes place. The aim of the current study was to investigate possible differences in permeation kinetics of different CPAs (i.e., glycerol/GLY, ethylene glycol/EG, dimethyl sulfoxide/DMSO, and propylene glycol/PG), in equine oocytes as well as ovarian tissue. Methods: Membrane permeability of oocytes to water (Lp) and to CPAs (Ps) was inferred from video microscopic imaging of oocyte volume responses during perfusion with anisotonic and CPA solutions. CPA diffusion into ovarian tissue and tissue dehydration was monitored during incubation, using osmometer and weight measurements, to derive CPA diffusion coefficients (D). Results: Membrane permeability of oocytes towards CPAs was found to increase in the order GLY < EG < DMSO
Cite
Access Statistic

Rights
Use and reproduction:
All rights reserved